qemu-e2k/target/hexagon/op_helper.c
Taylor Simpson e22edc7c1d Hexagon (target/hexagon) Move new_pred_value to DisasContext
The new_pred_value array in the CPUHexagonState is only used for
bookkeeping within the translation of a packet.  With recent changes
that eliminate the need to free TCGv variables, these make more sense
to be transient and kept in DisasContext.

Suggested-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Taylor Simpson <tsimpson@quicinc.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20230427230012.3800327-19-tsimpson@quicinc.com>
2023-05-18 12:40:52 -07:00

1513 lines
43 KiB
C

/*
* Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "exec/helper-proto.h"
#include "fpu/softfloat.h"
#include "cpu.h"
#include "internal.h"
#include "macros.h"
#include "arch.h"
#include "hex_arch_types.h"
#include "fma_emu.h"
#include "mmvec/mmvec.h"
#include "mmvec/macros.h"
#include "op_helper.h"
#include "translate.h"
#define SF_BIAS 127
#define SF_MANTBITS 23
/* Exceptions processing helpers */
static G_NORETURN
void do_raise_exception_err(CPUHexagonState *env,
uint32_t exception,
uintptr_t pc)
{
CPUState *cs = env_cpu(env);
qemu_log_mask(CPU_LOG_INT, "%s: %d\n", __func__, exception);
cs->exception_index = exception;
cpu_loop_exit_restore(cs, pc);
}
G_NORETURN void HELPER(raise_exception)(CPUHexagonState *env, uint32_t excp)
{
do_raise_exception_err(env, excp, 0);
}
void log_store32(CPUHexagonState *env, target_ulong addr,
target_ulong val, int width, int slot)
{
HEX_DEBUG_LOG("log_store%d(0x" TARGET_FMT_lx
", %" PRId32 " [0x08%" PRIx32 "])\n",
width, addr, val, val);
env->mem_log_stores[slot].va = addr;
env->mem_log_stores[slot].width = width;
env->mem_log_stores[slot].data32 = val;
}
void log_store64(CPUHexagonState *env, target_ulong addr,
int64_t val, int width, int slot)
{
HEX_DEBUG_LOG("log_store%d(0x" TARGET_FMT_lx
", %" PRId64 " [0x016%" PRIx64 "])\n",
width, addr, val, val);
env->mem_log_stores[slot].va = addr;
env->mem_log_stores[slot].width = width;
env->mem_log_stores[slot].data64 = val;
}
/* Handy place to set a breakpoint */
void HELPER(debug_start_packet)(CPUHexagonState *env)
{
HEX_DEBUG_LOG("Start packet: pc = 0x" TARGET_FMT_lx "\n",
env->gpr[HEX_REG_PC]);
for (int i = 0; i < TOTAL_PER_THREAD_REGS; i++) {
env->reg_written[i] = 0;
}
}
/* Checks for bookkeeping errors between disassembly context and runtime */
void HELPER(debug_check_store_width)(CPUHexagonState *env, int slot, int check)
{
if (env->mem_log_stores[slot].width != check) {
HEX_DEBUG_LOG("ERROR: %d != %d\n",
env->mem_log_stores[slot].width, check);
g_assert_not_reached();
}
}
void HELPER(commit_store)(CPUHexagonState *env, int slot_num)
{
uintptr_t ra = GETPC();
uint8_t width = env->mem_log_stores[slot_num].width;
target_ulong va = env->mem_log_stores[slot_num].va;
switch (width) {
case 1:
cpu_stb_data_ra(env, va, env->mem_log_stores[slot_num].data32, ra);
break;
case 2:
cpu_stw_data_ra(env, va, env->mem_log_stores[slot_num].data32, ra);
break;
case 4:
cpu_stl_data_ra(env, va, env->mem_log_stores[slot_num].data32, ra);
break;
case 8:
cpu_stq_data_ra(env, va, env->mem_log_stores[slot_num].data64, ra);
break;
default:
g_assert_not_reached();
}
}
void HELPER(gather_store)(CPUHexagonState *env, uint32_t addr, int slot)
{
mem_gather_store(env, addr, slot);
}
void HELPER(commit_hvx_stores)(CPUHexagonState *env)
{
uintptr_t ra = GETPC();
int i;
/* Normal (possibly masked) vector store */
for (i = 0; i < VSTORES_MAX; i++) {
if (env->vstore_pending[i]) {
env->vstore_pending[i] = 0;
target_ulong va = env->vstore[i].va;
int size = env->vstore[i].size;
for (int j = 0; j < size; j++) {
if (test_bit(j, env->vstore[i].mask)) {
cpu_stb_data_ra(env, va + j, env->vstore[i].data.ub[j], ra);
}
}
}
}
/* Scatter store */
if (env->vtcm_pending) {
env->vtcm_pending = false;
if (env->vtcm_log.op) {
/* Need to perform the scatter read/modify/write at commit time */
if (env->vtcm_log.op_size == 2) {
SCATTER_OP_WRITE_TO_MEM(uint16_t);
} else if (env->vtcm_log.op_size == 4) {
/* Word Scatter += */
SCATTER_OP_WRITE_TO_MEM(uint32_t);
} else {
g_assert_not_reached();
}
} else {
for (i = 0; i < sizeof(MMVector); i++) {
if (test_bit(i, env->vtcm_log.mask)) {
cpu_stb_data_ra(env, env->vtcm_log.va[i],
env->vtcm_log.data.ub[i], ra);
clear_bit(i, env->vtcm_log.mask);
env->vtcm_log.data.ub[i] = 0;
}
}
}
}
}
static void print_store(CPUHexagonState *env, int slot)
{
if (!(env->slot_cancelled & (1 << slot))) {
uint8_t width = env->mem_log_stores[slot].width;
if (width == 1) {
uint32_t data = env->mem_log_stores[slot].data32 & 0xff;
HEX_DEBUG_LOG("\tmemb[0x" TARGET_FMT_lx "] = %" PRId32
" (0x%02" PRIx32 ")\n",
env->mem_log_stores[slot].va, data, data);
} else if (width == 2) {
uint32_t data = env->mem_log_stores[slot].data32 & 0xffff;
HEX_DEBUG_LOG("\tmemh[0x" TARGET_FMT_lx "] = %" PRId32
" (0x%04" PRIx32 ")\n",
env->mem_log_stores[slot].va, data, data);
} else if (width == 4) {
uint32_t data = env->mem_log_stores[slot].data32;
HEX_DEBUG_LOG("\tmemw[0x" TARGET_FMT_lx "] = %" PRId32
" (0x%08" PRIx32 ")\n",
env->mem_log_stores[slot].va, data, data);
} else if (width == 8) {
HEX_DEBUG_LOG("\tmemd[0x" TARGET_FMT_lx "] = %" PRId64
" (0x%016" PRIx64 ")\n",
env->mem_log_stores[slot].va,
env->mem_log_stores[slot].data64,
env->mem_log_stores[slot].data64);
} else {
HEX_DEBUG_LOG("\tBad store width %d\n", width);
g_assert_not_reached();
}
}
}
/* This function is a handy place to set a breakpoint */
void HELPER(debug_commit_end)(CPUHexagonState *env, int has_st0, int has_st1)
{
bool reg_printed = false;
bool pred_printed = false;
int i;
HEX_DEBUG_LOG("Packet committed: pc = 0x" TARGET_FMT_lx "\n",
env->this_PC);
HEX_DEBUG_LOG("slot_cancelled = %d\n", env->slot_cancelled);
for (i = 0; i < TOTAL_PER_THREAD_REGS; i++) {
if (env->reg_written[i]) {
if (!reg_printed) {
HEX_DEBUG_LOG("Regs written\n");
reg_printed = true;
}
HEX_DEBUG_LOG("\tr%d = " TARGET_FMT_ld " (0x" TARGET_FMT_lx ")\n",
i, env->gpr[i], env->gpr[i]);
}
}
for (i = 0; i < NUM_PREGS; i++) {
if (env->pred_written & (1 << i)) {
if (!pred_printed) {
HEX_DEBUG_LOG("Predicates written\n");
pred_printed = true;
}
HEX_DEBUG_LOG("\tp%d = 0x" TARGET_FMT_lx "\n",
i, env->pred[i]);
}
}
if (has_st0 || has_st1) {
HEX_DEBUG_LOG("Stores\n");
if (has_st0) {
print_store(env, 0);
}
if (has_st1) {
print_store(env, 1);
}
}
HEX_DEBUG_LOG("Next PC = " TARGET_FMT_lx "\n", env->gpr[HEX_REG_PC]);
HEX_DEBUG_LOG("Exec counters: pkt = " TARGET_FMT_lx
", insn = " TARGET_FMT_lx
", hvx = " TARGET_FMT_lx "\n",
env->gpr[HEX_REG_QEMU_PKT_CNT],
env->gpr[HEX_REG_QEMU_INSN_CNT],
env->gpr[HEX_REG_QEMU_HVX_CNT]);
}
int32_t HELPER(fcircadd)(int32_t RxV, int32_t offset, int32_t M, int32_t CS)
{
uint32_t K_const = extract32(M, 24, 4);
uint32_t length = extract32(M, 0, 17);
uint32_t new_ptr = RxV + offset;
uint32_t start_addr;
uint32_t end_addr;
if (K_const == 0 && length >= 4) {
start_addr = CS;
end_addr = start_addr + length;
} else {
/*
* Versions v3 and earlier used the K value to specify a power-of-2 size
* 2^(K+2) that is greater than the buffer length
*/
int32_t mask = (1 << (K_const + 2)) - 1;
start_addr = RxV & (~mask);
end_addr = start_addr | length;
}
if (new_ptr >= end_addr) {
new_ptr -= length;
} else if (new_ptr < start_addr) {
new_ptr += length;
}
return new_ptr;
}
uint32_t HELPER(fbrev)(uint32_t addr)
{
/*
* Bit reverse the low 16 bits of the address
*/
return deposit32(addr, 0, 16, revbit16(addr));
}
static float32 build_float32(uint8_t sign, uint32_t exp, uint32_t mant)
{
return make_float32(
((sign & 1) << 31) |
((exp & 0xff) << SF_MANTBITS) |
(mant & ((1 << SF_MANTBITS) - 1)));
}
/*
* sfrecipa, sfinvsqrta have two 32-bit results
* r0,p0=sfrecipa(r1,r2)
* r0,p0=sfinvsqrta(r1)
*
* Since helpers can only return a single value, we pack the two results
* into a 64-bit value.
*/
uint64_t HELPER(sfrecipa)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
int32_t PeV = 0;
float32 RdV;
int idx;
int adjust;
int mant;
int exp;
arch_fpop_start(env);
if (arch_sf_recip_common(&RsV, &RtV, &RdV, &adjust, &env->fp_status)) {
PeV = adjust;
idx = (RtV >> 16) & 0x7f;
mant = (recip_lookup_table[idx] << 15) | 1;
exp = SF_BIAS - (float32_getexp(RtV) - SF_BIAS) - 1;
RdV = build_float32(extract32(RtV, 31, 1), exp, mant);
}
arch_fpop_end(env);
return ((uint64_t)RdV << 32) | PeV;
}
uint64_t HELPER(sfinvsqrta)(CPUHexagonState *env, float32 RsV)
{
int PeV = 0;
float32 RdV;
int idx;
int adjust;
int mant;
int exp;
arch_fpop_start(env);
if (arch_sf_invsqrt_common(&RsV, &RdV, &adjust, &env->fp_status)) {
PeV = adjust;
idx = (RsV >> 17) & 0x7f;
mant = (invsqrt_lookup_table[idx] << 15);
exp = SF_BIAS - ((float32_getexp(RsV) - SF_BIAS) >> 1) - 1;
RdV = build_float32(extract32(RsV, 31, 1), exp, mant);
}
arch_fpop_end(env);
return ((uint64_t)RdV << 32) | PeV;
}
int64_t HELPER(vacsh_val)(CPUHexagonState *env,
int64_t RxxV, int64_t RssV, int64_t RttV,
uint32_t pkt_need_commit)
{
for (int i = 0; i < 4; i++) {
int xv = sextract64(RxxV, i * 16, 16);
int sv = sextract64(RssV, i * 16, 16);
int tv = sextract64(RttV, i * 16, 16);
int max;
xv = xv + tv;
sv = sv - tv;
max = xv > sv ? xv : sv;
/* Note that fSATH can set the OVF bit in usr */
RxxV = deposit64(RxxV, i * 16, 16, fSATH(max));
}
return RxxV;
}
int32_t HELPER(vacsh_pred)(CPUHexagonState *env,
int64_t RxxV, int64_t RssV, int64_t RttV)
{
int32_t PeV = 0;
for (int i = 0; i < 4; i++) {
int xv = sextract64(RxxV, i * 16, 16);
int sv = sextract64(RssV, i * 16, 16);
int tv = sextract64(RttV, i * 16, 16);
xv = xv + tv;
sv = sv - tv;
PeV = deposit32(PeV, i * 2, 1, (xv > sv));
PeV = deposit32(PeV, i * 2 + 1, 1, (xv > sv));
}
return PeV;
}
int64_t HELPER(cabacdecbin_val)(int64_t RssV, int64_t RttV)
{
int64_t RddV = 0;
size4u_t state;
size4u_t valMPS;
size4u_t bitpos;
size4u_t range;
size4u_t offset;
size4u_t rLPS;
size4u_t rMPS;
state = fEXTRACTU_RANGE(fGETWORD(1, RttV), 5, 0);
valMPS = fEXTRACTU_RANGE(fGETWORD(1, RttV), 8, 8);
bitpos = fEXTRACTU_RANGE(fGETWORD(0, RttV), 4, 0);
range = fGETWORD(0, RssV);
offset = fGETWORD(1, RssV);
/* calculate rLPS */
range <<= bitpos;
offset <<= bitpos;
rLPS = rLPS_table_64x4[state][(range >> 29) & 3];
rLPS = rLPS << 23; /* left aligned */
/* calculate rMPS */
rMPS = (range & 0xff800000) - rLPS;
/* most probable region */
if (offset < rMPS) {
RddV = AC_next_state_MPS_64[state];
fINSERT_RANGE(RddV, 8, 8, valMPS);
fINSERT_RANGE(RddV, 31, 23, (rMPS >> 23));
fSETWORD(1, RddV, offset);
}
/* least probable region */
else {
RddV = AC_next_state_LPS_64[state];
fINSERT_RANGE(RddV, 8, 8, ((!state) ? (1 - valMPS) : (valMPS)));
fINSERT_RANGE(RddV, 31, 23, (rLPS >> 23));
fSETWORD(1, RddV, (offset - rMPS));
}
return RddV;
}
int32_t HELPER(cabacdecbin_pred)(int64_t RssV, int64_t RttV)
{
int32_t p0 = 0;
size4u_t state;
size4u_t valMPS;
size4u_t bitpos;
size4u_t range;
size4u_t offset;
size4u_t rLPS;
size4u_t rMPS;
state = fEXTRACTU_RANGE(fGETWORD(1, RttV), 5, 0);
valMPS = fEXTRACTU_RANGE(fGETWORD(1, RttV), 8, 8);
bitpos = fEXTRACTU_RANGE(fGETWORD(0, RttV), 4, 0);
range = fGETWORD(0, RssV);
offset = fGETWORD(1, RssV);
/* calculate rLPS */
range <<= bitpos;
offset <<= bitpos;
rLPS = rLPS_table_64x4[state][(range >> 29) & 3];
rLPS = rLPS << 23; /* left aligned */
/* calculate rMPS */
rMPS = (range & 0xff800000) - rLPS;
/* most probable region */
if (offset < rMPS) {
p0 = valMPS;
}
/* least probable region */
else {
p0 = valMPS ^ 1;
}
return p0;
}
static void probe_store(CPUHexagonState *env, int slot, int mmu_idx,
bool is_predicated)
{
if (!is_predicated || !(env->slot_cancelled & (1 << slot))) {
size1u_t width = env->mem_log_stores[slot].width;
target_ulong va = env->mem_log_stores[slot].va;
uintptr_t ra = GETPC();
probe_write(env, va, width, mmu_idx, ra);
}
}
/*
* Called from a mem_noshuf packet to make sure the load doesn't
* raise an exception
*/
void HELPER(probe_noshuf_load)(CPUHexagonState *env, target_ulong va,
int size, int mmu_idx)
{
uintptr_t retaddr = GETPC();
probe_read(env, va, size, mmu_idx, retaddr);
}
/* Called during packet commit when there are two scalar stores */
void HELPER(probe_pkt_scalar_store_s0)(CPUHexagonState *env, int args)
{
int mmu_idx = FIELD_EX32(args, PROBE_PKT_SCALAR_STORE_S0, MMU_IDX);
bool is_predicated =
FIELD_EX32(args, PROBE_PKT_SCALAR_STORE_S0, IS_PREDICATED);
probe_store(env, 0, mmu_idx, is_predicated);
}
void HELPER(probe_hvx_stores)(CPUHexagonState *env, int mmu_idx)
{
uintptr_t retaddr = GETPC();
int i;
/* Normal (possibly masked) vector store */
for (i = 0; i < VSTORES_MAX; i++) {
if (env->vstore_pending[i]) {
target_ulong va = env->vstore[i].va;
int size = env->vstore[i].size;
for (int j = 0; j < size; j++) {
if (test_bit(j, env->vstore[i].mask)) {
probe_write(env, va + j, 1, mmu_idx, retaddr);
}
}
}
}
/* Scatter store */
if (env->vtcm_pending) {
if (env->vtcm_log.op) {
/* Need to perform the scatter read/modify/write at commit time */
if (env->vtcm_log.op_size == 2) {
SCATTER_OP_PROBE_MEM(size2u_t, mmu_idx, retaddr);
} else if (env->vtcm_log.op_size == 4) {
/* Word Scatter += */
SCATTER_OP_PROBE_MEM(size4u_t, mmu_idx, retaddr);
} else {
g_assert_not_reached();
}
} else {
for (int i = 0; i < sizeof(MMVector); i++) {
if (test_bit(i, env->vtcm_log.mask)) {
probe_write(env, env->vtcm_log.va[i], 1, mmu_idx, retaddr);
}
}
}
}
}
void HELPER(probe_pkt_scalar_hvx_stores)(CPUHexagonState *env, int mask)
{
bool has_st0 = FIELD_EX32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST0);
bool has_st1 = FIELD_EX32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST1);
bool has_hvx_stores =
FIELD_EX32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_HVX_STORES);
bool s0_is_pred = FIELD_EX32(mask, PROBE_PKT_SCALAR_HVX_STORES, S0_IS_PRED);
bool s1_is_pred = FIELD_EX32(mask, PROBE_PKT_SCALAR_HVX_STORES, S1_IS_PRED);
int mmu_idx = FIELD_EX32(mask, PROBE_PKT_SCALAR_HVX_STORES, MMU_IDX);
if (has_st0) {
probe_store(env, 0, mmu_idx, s0_is_pred);
}
if (has_st1) {
probe_store(env, 1, mmu_idx, s1_is_pred);
}
if (has_hvx_stores) {
HELPER(probe_hvx_stores)(env, mmu_idx);
}
}
/*
* mem_noshuf
* Section 5.5 of the Hexagon V67 Programmer's Reference Manual
*
* If the load is in slot 0 and there is a store in slot1 (that
* wasn't cancelled), we have to do the store first.
*/
static void check_noshuf(CPUHexagonState *env, uint32_t slot,
target_ulong vaddr, int size)
{
if (slot == 0 && env->pkt_has_store_s1 &&
((env->slot_cancelled & (1 << 1)) == 0)) {
HELPER(probe_noshuf_load)(env, vaddr, size, MMU_USER_IDX);
HELPER(commit_store)(env, 1);
}
}
uint8_t mem_load1(CPUHexagonState *env, uint32_t slot, target_ulong vaddr)
{
uintptr_t ra = GETPC();
check_noshuf(env, slot, vaddr, 1);
return cpu_ldub_data_ra(env, vaddr, ra);
}
uint16_t mem_load2(CPUHexagonState *env, uint32_t slot, target_ulong vaddr)
{
uintptr_t ra = GETPC();
check_noshuf(env, slot, vaddr, 2);
return cpu_lduw_data_ra(env, vaddr, ra);
}
uint32_t mem_load4(CPUHexagonState *env, uint32_t slot, target_ulong vaddr)
{
uintptr_t ra = GETPC();
check_noshuf(env, slot, vaddr, 4);
return cpu_ldl_data_ra(env, vaddr, ra);
}
uint64_t mem_load8(CPUHexagonState *env, uint32_t slot, target_ulong vaddr)
{
uintptr_t ra = GETPC();
check_noshuf(env, slot, vaddr, 8);
return cpu_ldq_data_ra(env, vaddr, ra);
}
/* Floating point */
float64 HELPER(conv_sf2df)(CPUHexagonState *env, float32 RsV)
{
float64 out_f64;
arch_fpop_start(env);
out_f64 = float32_to_float64(RsV, &env->fp_status);
arch_fpop_end(env);
return out_f64;
}
float32 HELPER(conv_df2sf)(CPUHexagonState *env, float64 RssV)
{
float32 out_f32;
arch_fpop_start(env);
out_f32 = float64_to_float32(RssV, &env->fp_status);
arch_fpop_end(env);
return out_f32;
}
float32 HELPER(conv_uw2sf)(CPUHexagonState *env, int32_t RsV)
{
float32 RdV;
arch_fpop_start(env);
RdV = uint32_to_float32(RsV, &env->fp_status);
arch_fpop_end(env);
return RdV;
}
float64 HELPER(conv_uw2df)(CPUHexagonState *env, int32_t RsV)
{
float64 RddV;
arch_fpop_start(env);
RddV = uint32_to_float64(RsV, &env->fp_status);
arch_fpop_end(env);
return RddV;
}
float32 HELPER(conv_w2sf)(CPUHexagonState *env, int32_t RsV)
{
float32 RdV;
arch_fpop_start(env);
RdV = int32_to_float32(RsV, &env->fp_status);
arch_fpop_end(env);
return RdV;
}
float64 HELPER(conv_w2df)(CPUHexagonState *env, int32_t RsV)
{
float64 RddV;
arch_fpop_start(env);
RddV = int32_to_float64(RsV, &env->fp_status);
arch_fpop_end(env);
return RddV;
}
float32 HELPER(conv_ud2sf)(CPUHexagonState *env, int64_t RssV)
{
float32 RdV;
arch_fpop_start(env);
RdV = uint64_to_float32(RssV, &env->fp_status);
arch_fpop_end(env);
return RdV;
}
float64 HELPER(conv_ud2df)(CPUHexagonState *env, int64_t RssV)
{
float64 RddV;
arch_fpop_start(env);
RddV = uint64_to_float64(RssV, &env->fp_status);
arch_fpop_end(env);
return RddV;
}
float32 HELPER(conv_d2sf)(CPUHexagonState *env, int64_t RssV)
{
float32 RdV;
arch_fpop_start(env);
RdV = int64_to_float32(RssV, &env->fp_status);
arch_fpop_end(env);
return RdV;
}
float64 HELPER(conv_d2df)(CPUHexagonState *env, int64_t RssV)
{
float64 RddV;
arch_fpop_start(env);
RddV = int64_to_float64(RssV, &env->fp_status);
arch_fpop_end(env);
return RddV;
}
uint32_t HELPER(conv_sf2uw)(CPUHexagonState *env, float32 RsV)
{
uint32_t RdV;
arch_fpop_start(env);
/* Hexagon checks the sign before rounding */
if (float32_is_neg(RsV) && !float32_is_any_nan(RsV)) {
float_raise(float_flag_invalid, &env->fp_status);
RdV = 0;
} else {
RdV = float32_to_uint32(RsV, &env->fp_status);
}
arch_fpop_end(env);
return RdV;
}
int32_t HELPER(conv_sf2w)(CPUHexagonState *env, float32 RsV)
{
int32_t RdV;
arch_fpop_start(env);
/* Hexagon returns -1 for NaN */
if (float32_is_any_nan(RsV)) {
float_raise(float_flag_invalid, &env->fp_status);
RdV = -1;
} else {
RdV = float32_to_int32(RsV, &env->fp_status);
}
arch_fpop_end(env);
return RdV;
}
uint64_t HELPER(conv_sf2ud)(CPUHexagonState *env, float32 RsV)
{
uint64_t RddV;
arch_fpop_start(env);
/* Hexagon checks the sign before rounding */
if (float32_is_neg(RsV) && !float32_is_any_nan(RsV)) {
float_raise(float_flag_invalid, &env->fp_status);
RddV = 0;
} else {
RddV = float32_to_uint64(RsV, &env->fp_status);
}
arch_fpop_end(env);
return RddV;
}
int64_t HELPER(conv_sf2d)(CPUHexagonState *env, float32 RsV)
{
int64_t RddV;
arch_fpop_start(env);
/* Hexagon returns -1 for NaN */
if (float32_is_any_nan(RsV)) {
float_raise(float_flag_invalid, &env->fp_status);
RddV = -1;
} else {
RddV = float32_to_int64(RsV, &env->fp_status);
}
arch_fpop_end(env);
return RddV;
}
uint32_t HELPER(conv_df2uw)(CPUHexagonState *env, float64 RssV)
{
uint32_t RdV;
arch_fpop_start(env);
/* Hexagon checks the sign before rounding */
if (float64_is_neg(RssV) && !float64_is_any_nan(RssV)) {
float_raise(float_flag_invalid, &env->fp_status);
RdV = 0;
} else {
RdV = float64_to_uint32(RssV, &env->fp_status);
}
arch_fpop_end(env);
return RdV;
}
int32_t HELPER(conv_df2w)(CPUHexagonState *env, float64 RssV)
{
int32_t RdV;
arch_fpop_start(env);
/* Hexagon returns -1 for NaN */
if (float64_is_any_nan(RssV)) {
float_raise(float_flag_invalid, &env->fp_status);
RdV = -1;
} else {
RdV = float64_to_int32(RssV, &env->fp_status);
}
arch_fpop_end(env);
return RdV;
}
uint64_t HELPER(conv_df2ud)(CPUHexagonState *env, float64 RssV)
{
uint64_t RddV;
arch_fpop_start(env);
/* Hexagon checks the sign before rounding */
if (float64_is_neg(RssV) && !float64_is_any_nan(RssV)) {
float_raise(float_flag_invalid, &env->fp_status);
RddV = 0;
} else {
RddV = float64_to_uint64(RssV, &env->fp_status);
}
arch_fpop_end(env);
return RddV;
}
int64_t HELPER(conv_df2d)(CPUHexagonState *env, float64 RssV)
{
int64_t RddV;
arch_fpop_start(env);
/* Hexagon returns -1 for NaN */
if (float64_is_any_nan(RssV)) {
float_raise(float_flag_invalid, &env->fp_status);
RddV = -1;
} else {
RddV = float64_to_int64(RssV, &env->fp_status);
}
arch_fpop_end(env);
return RddV;
}
uint32_t HELPER(conv_sf2uw_chop)(CPUHexagonState *env, float32 RsV)
{
uint32_t RdV;
arch_fpop_start(env);
/* Hexagon checks the sign before rounding */
if (float32_is_neg(RsV) && !float32_is_any_nan(RsV)) {
float_raise(float_flag_invalid, &env->fp_status);
RdV = 0;
} else {
RdV = float32_to_uint32_round_to_zero(RsV, &env->fp_status);
}
arch_fpop_end(env);
return RdV;
}
int32_t HELPER(conv_sf2w_chop)(CPUHexagonState *env, float32 RsV)
{
int32_t RdV;
arch_fpop_start(env);
/* Hexagon returns -1 for NaN */
if (float32_is_any_nan(RsV)) {
float_raise(float_flag_invalid, &env->fp_status);
RdV = -1;
} else {
RdV = float32_to_int32_round_to_zero(RsV, &env->fp_status);
}
arch_fpop_end(env);
return RdV;
}
uint64_t HELPER(conv_sf2ud_chop)(CPUHexagonState *env, float32 RsV)
{
uint64_t RddV;
arch_fpop_start(env);
/* Hexagon checks the sign before rounding */
if (float32_is_neg(RsV) && !float32_is_any_nan(RsV)) {
float_raise(float_flag_invalid, &env->fp_status);
RddV = 0;
} else {
RddV = float32_to_uint64_round_to_zero(RsV, &env->fp_status);
}
arch_fpop_end(env);
return RddV;
}
int64_t HELPER(conv_sf2d_chop)(CPUHexagonState *env, float32 RsV)
{
int64_t RddV;
arch_fpop_start(env);
/* Hexagon returns -1 for NaN */
if (float32_is_any_nan(RsV)) {
float_raise(float_flag_invalid, &env->fp_status);
RddV = -1;
} else {
RddV = float32_to_int64_round_to_zero(RsV, &env->fp_status);
}
arch_fpop_end(env);
return RddV;
}
uint32_t HELPER(conv_df2uw_chop)(CPUHexagonState *env, float64 RssV)
{
uint32_t RdV;
arch_fpop_start(env);
/* Hexagon checks the sign before rounding */
if (float64_is_neg(RssV) && !float64_is_any_nan(RssV)) {
float_raise(float_flag_invalid, &env->fp_status);
RdV = 0;
} else {
RdV = float64_to_uint32_round_to_zero(RssV, &env->fp_status);
}
arch_fpop_end(env);
return RdV;
}
int32_t HELPER(conv_df2w_chop)(CPUHexagonState *env, float64 RssV)
{
int32_t RdV;
arch_fpop_start(env);
/* Hexagon returns -1 for NaN */
if (float64_is_any_nan(RssV)) {
float_raise(float_flag_invalid, &env->fp_status);
RdV = -1;
} else {
RdV = float64_to_int32_round_to_zero(RssV, &env->fp_status);
}
arch_fpop_end(env);
return RdV;
}
uint64_t HELPER(conv_df2ud_chop)(CPUHexagonState *env, float64 RssV)
{
uint64_t RddV;
arch_fpop_start(env);
/* Hexagon checks the sign before rounding */
if (float64_is_neg(RssV) && !float64_is_any_nan(RssV)) {
float_raise(float_flag_invalid, &env->fp_status);
RddV = 0;
} else {
RddV = float64_to_uint64_round_to_zero(RssV, &env->fp_status);
}
arch_fpop_end(env);
return RddV;
}
int64_t HELPER(conv_df2d_chop)(CPUHexagonState *env, float64 RssV)
{
int64_t RddV;
arch_fpop_start(env);
/* Hexagon returns -1 for NaN */
if (float64_is_any_nan(RssV)) {
float_raise(float_flag_invalid, &env->fp_status);
RddV = -1;
} else {
RddV = float64_to_int64_round_to_zero(RssV, &env->fp_status);
}
arch_fpop_end(env);
return RddV;
}
float32 HELPER(sfadd)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
float32 RdV;
arch_fpop_start(env);
RdV = float32_add(RsV, RtV, &env->fp_status);
arch_fpop_end(env);
return RdV;
}
float32 HELPER(sfsub)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
float32 RdV;
arch_fpop_start(env);
RdV = float32_sub(RsV, RtV, &env->fp_status);
arch_fpop_end(env);
return RdV;
}
int32_t HELPER(sfcmpeq)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
int32_t PdV;
arch_fpop_start(env);
PdV = f8BITSOF(float32_eq_quiet(RsV, RtV, &env->fp_status));
arch_fpop_end(env);
return PdV;
}
int32_t HELPER(sfcmpgt)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
int cmp;
int32_t PdV;
arch_fpop_start(env);
cmp = float32_compare_quiet(RsV, RtV, &env->fp_status);
PdV = f8BITSOF(cmp == float_relation_greater);
arch_fpop_end(env);
return PdV;
}
int32_t HELPER(sfcmpge)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
int cmp;
int32_t PdV;
arch_fpop_start(env);
cmp = float32_compare_quiet(RsV, RtV, &env->fp_status);
PdV = f8BITSOF(cmp == float_relation_greater ||
cmp == float_relation_equal);
arch_fpop_end(env);
return PdV;
}
int32_t HELPER(sfcmpuo)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
int32_t PdV;
arch_fpop_start(env);
PdV = f8BITSOF(float32_unordered_quiet(RsV, RtV, &env->fp_status));
arch_fpop_end(env);
return PdV;
}
float32 HELPER(sfmax)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
float32 RdV;
arch_fpop_start(env);
RdV = float32_maximum_number(RsV, RtV, &env->fp_status);
arch_fpop_end(env);
return RdV;
}
float32 HELPER(sfmin)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
float32 RdV;
arch_fpop_start(env);
RdV = float32_minimum_number(RsV, RtV, &env->fp_status);
arch_fpop_end(env);
return RdV;
}
int32_t HELPER(sfclass)(CPUHexagonState *env, float32 RsV, int32_t uiV)
{
int32_t PdV = 0;
arch_fpop_start(env);
if (fGETBIT(0, uiV) && float32_is_zero(RsV)) {
PdV = 0xff;
}
if (fGETBIT(1, uiV) && float32_is_normal(RsV)) {
PdV = 0xff;
}
if (fGETBIT(2, uiV) && float32_is_denormal(RsV)) {
PdV = 0xff;
}
if (fGETBIT(3, uiV) && float32_is_infinity(RsV)) {
PdV = 0xff;
}
if (fGETBIT(4, uiV) && float32_is_any_nan(RsV)) {
PdV = 0xff;
}
set_float_exception_flags(0, &env->fp_status);
arch_fpop_end(env);
return PdV;
}
float32 HELPER(sffixupn)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
float32 RdV = 0;
int adjust;
arch_fpop_start(env);
arch_sf_recip_common(&RsV, &RtV, &RdV, &adjust, &env->fp_status);
RdV = RsV;
arch_fpop_end(env);
return RdV;
}
float32 HELPER(sffixupd)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
float32 RdV = 0;
int adjust;
arch_fpop_start(env);
arch_sf_recip_common(&RsV, &RtV, &RdV, &adjust, &env->fp_status);
RdV = RtV;
arch_fpop_end(env);
return RdV;
}
float32 HELPER(sffixupr)(CPUHexagonState *env, float32 RsV)
{
float32 RdV = 0;
int adjust;
arch_fpop_start(env);
arch_sf_invsqrt_common(&RsV, &RdV, &adjust, &env->fp_status);
RdV = RsV;
arch_fpop_end(env);
return RdV;
}
float64 HELPER(dfadd)(CPUHexagonState *env, float64 RssV, float64 RttV)
{
float64 RddV;
arch_fpop_start(env);
RddV = float64_add(RssV, RttV, &env->fp_status);
arch_fpop_end(env);
return RddV;
}
float64 HELPER(dfsub)(CPUHexagonState *env, float64 RssV, float64 RttV)
{
float64 RddV;
arch_fpop_start(env);
RddV = float64_sub(RssV, RttV, &env->fp_status);
arch_fpop_end(env);
return RddV;
}
float64 HELPER(dfmax)(CPUHexagonState *env, float64 RssV, float64 RttV)
{
float64 RddV;
arch_fpop_start(env);
RddV = float64_maximum_number(RssV, RttV, &env->fp_status);
arch_fpop_end(env);
return RddV;
}
float64 HELPER(dfmin)(CPUHexagonState *env, float64 RssV, float64 RttV)
{
float64 RddV;
arch_fpop_start(env);
RddV = float64_minimum_number(RssV, RttV, &env->fp_status);
arch_fpop_end(env);
return RddV;
}
int32_t HELPER(dfcmpeq)(CPUHexagonState *env, float64 RssV, float64 RttV)
{
int32_t PdV;
arch_fpop_start(env);
PdV = f8BITSOF(float64_eq_quiet(RssV, RttV, &env->fp_status));
arch_fpop_end(env);
return PdV;
}
int32_t HELPER(dfcmpgt)(CPUHexagonState *env, float64 RssV, float64 RttV)
{
int cmp;
int32_t PdV;
arch_fpop_start(env);
cmp = float64_compare_quiet(RssV, RttV, &env->fp_status);
PdV = f8BITSOF(cmp == float_relation_greater);
arch_fpop_end(env);
return PdV;
}
int32_t HELPER(dfcmpge)(CPUHexagonState *env, float64 RssV, float64 RttV)
{
int cmp;
int32_t PdV;
arch_fpop_start(env);
cmp = float64_compare_quiet(RssV, RttV, &env->fp_status);
PdV = f8BITSOF(cmp == float_relation_greater ||
cmp == float_relation_equal);
arch_fpop_end(env);
return PdV;
}
int32_t HELPER(dfcmpuo)(CPUHexagonState *env, float64 RssV, float64 RttV)
{
int32_t PdV;
arch_fpop_start(env);
PdV = f8BITSOF(float64_unordered_quiet(RssV, RttV, &env->fp_status));
arch_fpop_end(env);
return PdV;
}
int32_t HELPER(dfclass)(CPUHexagonState *env, float64 RssV, int32_t uiV)
{
int32_t PdV = 0;
arch_fpop_start(env);
if (fGETBIT(0, uiV) && float64_is_zero(RssV)) {
PdV = 0xff;
}
if (fGETBIT(1, uiV) && float64_is_normal(RssV)) {
PdV = 0xff;
}
if (fGETBIT(2, uiV) && float64_is_denormal(RssV)) {
PdV = 0xff;
}
if (fGETBIT(3, uiV) && float64_is_infinity(RssV)) {
PdV = 0xff;
}
if (fGETBIT(4, uiV) && float64_is_any_nan(RssV)) {
PdV = 0xff;
}
set_float_exception_flags(0, &env->fp_status);
arch_fpop_end(env);
return PdV;
}
float32 HELPER(sfmpy)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
float32 RdV;
arch_fpop_start(env);
RdV = internal_mpyf(RsV, RtV, &env->fp_status);
arch_fpop_end(env);
return RdV;
}
float32 HELPER(sffma)(CPUHexagonState *env, float32 RxV,
float32 RsV, float32 RtV)
{
arch_fpop_start(env);
RxV = internal_fmafx(RsV, RtV, RxV, 0, &env->fp_status);
arch_fpop_end(env);
return RxV;
}
static bool is_zero_prod(float32 a, float32 b)
{
return ((float32_is_zero(a) && is_finite(b)) ||
(float32_is_zero(b) && is_finite(a)));
}
static float32 check_nan(float32 dst, float32 x, float_status *fp_status)
{
float32 ret = dst;
if (float32_is_any_nan(x)) {
if (extract32(x, 22, 1) == 0) {
float_raise(float_flag_invalid, fp_status);
}
ret = make_float32(0xffffffff); /* nan */
}
return ret;
}
float32 HELPER(sffma_sc)(CPUHexagonState *env, float32 RxV,
float32 RsV, float32 RtV, float32 PuV)
{
size4s_t tmp;
arch_fpop_start(env);
RxV = check_nan(RxV, RxV, &env->fp_status);
RxV = check_nan(RxV, RsV, &env->fp_status);
RxV = check_nan(RxV, RtV, &env->fp_status);
tmp = internal_fmafx(RsV, RtV, RxV, fSXTN(8, 64, PuV), &env->fp_status);
if (!(float32_is_zero(RxV) && is_zero_prod(RsV, RtV))) {
RxV = tmp;
}
arch_fpop_end(env);
return RxV;
}
float32 HELPER(sffms)(CPUHexagonState *env, float32 RxV,
float32 RsV, float32 RtV)
{
float32 neg_RsV;
arch_fpop_start(env);
neg_RsV = float32_set_sign(RsV, float32_is_neg(RsV) ? 0 : 1);
RxV = internal_fmafx(neg_RsV, RtV, RxV, 0, &env->fp_status);
arch_fpop_end(env);
return RxV;
}
static bool is_inf_prod(int32_t a, int32_t b)
{
return (float32_is_infinity(a) && float32_is_infinity(b)) ||
(float32_is_infinity(a) && is_finite(b) && !float32_is_zero(b)) ||
(float32_is_infinity(b) && is_finite(a) && !float32_is_zero(a));
}
float32 HELPER(sffma_lib)(CPUHexagonState *env, float32 RxV,
float32 RsV, float32 RtV)
{
bool infinp;
bool infminusinf;
float32 tmp;
arch_fpop_start(env);
set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
infminusinf = float32_is_infinity(RxV) &&
is_inf_prod(RsV, RtV) &&
(fGETBIT(31, RsV ^ RxV ^ RtV) != 0);
infinp = float32_is_infinity(RxV) ||
float32_is_infinity(RtV) ||
float32_is_infinity(RsV);
RxV = check_nan(RxV, RxV, &env->fp_status);
RxV = check_nan(RxV, RsV, &env->fp_status);
RxV = check_nan(RxV, RtV, &env->fp_status);
tmp = internal_fmafx(RsV, RtV, RxV, 0, &env->fp_status);
if (!(float32_is_zero(RxV) && is_zero_prod(RsV, RtV))) {
RxV = tmp;
}
set_float_exception_flags(0, &env->fp_status);
if (float32_is_infinity(RxV) && !infinp) {
RxV = RxV - 1;
}
if (infminusinf) {
RxV = 0;
}
arch_fpop_end(env);
return RxV;
}
float32 HELPER(sffms_lib)(CPUHexagonState *env, float32 RxV,
float32 RsV, float32 RtV)
{
bool infinp;
bool infminusinf;
float32 tmp;
arch_fpop_start(env);
set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
infminusinf = float32_is_infinity(RxV) &&
is_inf_prod(RsV, RtV) &&
(fGETBIT(31, RsV ^ RxV ^ RtV) == 0);
infinp = float32_is_infinity(RxV) ||
float32_is_infinity(RtV) ||
float32_is_infinity(RsV);
RxV = check_nan(RxV, RxV, &env->fp_status);
RxV = check_nan(RxV, RsV, &env->fp_status);
RxV = check_nan(RxV, RtV, &env->fp_status);
float32 minus_RsV = float32_sub(float32_zero, RsV, &env->fp_status);
tmp = internal_fmafx(minus_RsV, RtV, RxV, 0, &env->fp_status);
if (!(float32_is_zero(RxV) && is_zero_prod(RsV, RtV))) {
RxV = tmp;
}
set_float_exception_flags(0, &env->fp_status);
if (float32_is_infinity(RxV) && !infinp) {
RxV = RxV - 1;
}
if (infminusinf) {
RxV = 0;
}
arch_fpop_end(env);
return RxV;
}
float64 HELPER(dfmpyfix)(CPUHexagonState *env, float64 RssV, float64 RttV)
{
int64_t RddV;
arch_fpop_start(env);
if (float64_is_denormal(RssV) &&
(float64_getexp(RttV) >= 512) &&
float64_is_normal(RttV)) {
RddV = float64_mul(RssV, make_float64(0x4330000000000000),
&env->fp_status);
} else if (float64_is_denormal(RttV) &&
(float64_getexp(RssV) >= 512) &&
float64_is_normal(RssV)) {
RddV = float64_mul(RssV, make_float64(0x3cb0000000000000),
&env->fp_status);
} else {
RddV = RssV;
}
arch_fpop_end(env);
return RddV;
}
float64 HELPER(dfmpyhh)(CPUHexagonState *env, float64 RxxV,
float64 RssV, float64 RttV)
{
arch_fpop_start(env);
RxxV = internal_mpyhh(RssV, RttV, RxxV, &env->fp_status);
arch_fpop_end(env);
return RxxV;
}
/* Histogram instructions */
void HELPER(vhist)(CPUHexagonState *env)
{
MMVector *input = &env->tmp_VRegs[0];
for (int lane = 0; lane < 8; lane++) {
for (int i = 0; i < sizeof(MMVector) / 8; ++i) {
unsigned char value = input->ub[(sizeof(MMVector) / 8) * lane + i];
unsigned char regno = value >> 3;
unsigned char element = value & 7;
env->VRegs[regno].uh[(sizeof(MMVector) / 16) * lane + element]++;
}
}
}
void HELPER(vhistq)(CPUHexagonState *env)
{
MMVector *input = &env->tmp_VRegs[0];
for (int lane = 0; lane < 8; lane++) {
for (int i = 0; i < sizeof(MMVector) / 8; ++i) {
unsigned char value = input->ub[(sizeof(MMVector) / 8) * lane + i];
unsigned char regno = value >> 3;
unsigned char element = value & 7;
if (fGETQBIT(env->qtmp, sizeof(MMVector) / 8 * lane + i)) {
env->VRegs[regno].uh[
(sizeof(MMVector) / 16) * lane + element]++;
}
}
}
}
void HELPER(vwhist256)(CPUHexagonState *env)
{
MMVector *input = &env->tmp_VRegs[0];
for (int i = 0; i < (sizeof(MMVector) / 2); i++) {
unsigned int bucket = fGETUBYTE(0, input->h[i]);
unsigned int weight = fGETUBYTE(1, input->h[i]);
unsigned int vindex = (bucket >> 3) & 0x1F;
unsigned int elindex = ((i >> 0) & (~7)) | ((bucket >> 0) & 7);
env->VRegs[vindex].uh[elindex] =
env->VRegs[vindex].uh[elindex] + weight;
}
}
void HELPER(vwhist256q)(CPUHexagonState *env)
{
MMVector *input = &env->tmp_VRegs[0];
for (int i = 0; i < (sizeof(MMVector) / 2); i++) {
unsigned int bucket = fGETUBYTE(0, input->h[i]);
unsigned int weight = fGETUBYTE(1, input->h[i]);
unsigned int vindex = (bucket >> 3) & 0x1F;
unsigned int elindex = ((i >> 0) & (~7)) | ((bucket >> 0) & 7);
if (fGETQBIT(env->qtmp, 2 * i)) {
env->VRegs[vindex].uh[elindex] =
env->VRegs[vindex].uh[elindex] + weight;
}
}
}
void HELPER(vwhist256_sat)(CPUHexagonState *env)
{
MMVector *input = &env->tmp_VRegs[0];
for (int i = 0; i < (sizeof(MMVector) / 2); i++) {
unsigned int bucket = fGETUBYTE(0, input->h[i]);
unsigned int weight = fGETUBYTE(1, input->h[i]);
unsigned int vindex = (bucket >> 3) & 0x1F;
unsigned int elindex = ((i >> 0) & (~7)) | ((bucket >> 0) & 7);
env->VRegs[vindex].uh[elindex] =
fVSATUH(env->VRegs[vindex].uh[elindex] + weight);
}
}
void HELPER(vwhist256q_sat)(CPUHexagonState *env)
{
MMVector *input = &env->tmp_VRegs[0];
for (int i = 0; i < (sizeof(MMVector) / 2); i++) {
unsigned int bucket = fGETUBYTE(0, input->h[i]);
unsigned int weight = fGETUBYTE(1, input->h[i]);
unsigned int vindex = (bucket >> 3) & 0x1F;
unsigned int elindex = ((i >> 0) & (~7)) | ((bucket >> 0) & 7);
if (fGETQBIT(env->qtmp, 2 * i)) {
env->VRegs[vindex].uh[elindex] =
fVSATUH(env->VRegs[vindex].uh[elindex] + weight);
}
}
}
void HELPER(vwhist128)(CPUHexagonState *env)
{
MMVector *input = &env->tmp_VRegs[0];
for (int i = 0; i < (sizeof(MMVector) / 2); i++) {
unsigned int bucket = fGETUBYTE(0, input->h[i]);
unsigned int weight = fGETUBYTE(1, input->h[i]);
unsigned int vindex = (bucket >> 3) & 0x1F;
unsigned int elindex = ((i >> 1) & (~3)) | ((bucket >> 1) & 3);
env->VRegs[vindex].uw[elindex] =
env->VRegs[vindex].uw[elindex] + weight;
}
}
void HELPER(vwhist128q)(CPUHexagonState *env)
{
MMVector *input = &env->tmp_VRegs[0];
for (int i = 0; i < (sizeof(MMVector) / 2); i++) {
unsigned int bucket = fGETUBYTE(0, input->h[i]);
unsigned int weight = fGETUBYTE(1, input->h[i]);
unsigned int vindex = (bucket >> 3) & 0x1F;
unsigned int elindex = ((i >> 1) & (~3)) | ((bucket >> 1) & 3);
if (fGETQBIT(env->qtmp, 2 * i)) {
env->VRegs[vindex].uw[elindex] =
env->VRegs[vindex].uw[elindex] + weight;
}
}
}
void HELPER(vwhist128m)(CPUHexagonState *env, int32_t uiV)
{
MMVector *input = &env->tmp_VRegs[0];
for (int i = 0; i < (sizeof(MMVector) / 2); i++) {
unsigned int bucket = fGETUBYTE(0, input->h[i]);
unsigned int weight = fGETUBYTE(1, input->h[i]);
unsigned int vindex = (bucket >> 3) & 0x1F;
unsigned int elindex = ((i >> 1) & (~3)) | ((bucket >> 1) & 3);
if ((bucket & 1) == uiV) {
env->VRegs[vindex].uw[elindex] =
env->VRegs[vindex].uw[elindex] + weight;
}
}
}
void HELPER(vwhist128qm)(CPUHexagonState *env, int32_t uiV)
{
MMVector *input = &env->tmp_VRegs[0];
for (int i = 0; i < (sizeof(MMVector) / 2); i++) {
unsigned int bucket = fGETUBYTE(0, input->h[i]);
unsigned int weight = fGETUBYTE(1, input->h[i]);
unsigned int vindex = (bucket >> 3) & 0x1F;
unsigned int elindex = ((i >> 1) & (~3)) | ((bucket >> 1) & 3);
if (((bucket & 1) == uiV) && fGETQBIT(env->qtmp, 2 * i)) {
env->VRegs[vindex].uw[elindex] =
env->VRegs[vindex].uw[elindex] + weight;
}
}
}
/* These macros can be referenced in the generated helper functions */
#define warn(...) /* Nothing */
#define fatal(...) g_assert_not_reached();
#define BOGUS_HELPER(tag) \
printf("ERROR: bogus helper: " #tag "\n")
#include "helper_funcs_generated.c.inc"