qemu-e2k/hw/i386/amd_iommu.c
Markus Armbruster d645427057 Include migration/vmstate.h less
In my "build everything" tree, changing migration/vmstate.h triggers a
recompile of some 2700 out of 6600 objects (not counting tests and
objects that don't depend on qemu/osdep.h).

hw/hw.h supposedly includes it for convenience.  Several other headers
include it just to get VMStateDescription.  The previous commit made
that unnecessary.

Include migration/vmstate.h only where it's still needed.  Touching it
now recompiles only some 1600 objects.

Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20190812052359.30071-16-armbru@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
2019-08-16 13:31:52 +02:00

1650 lines
52 KiB
C

/*
* QEMU emulation of AMD IOMMU (AMD-Vi)
*
* Copyright (C) 2011 Eduard - Gabriel Munteanu
* Copyright (C) 2015, 2016 David Kiarie Kahurani
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*
* Cache implementation inspired by hw/i386/intel_iommu.c
*/
#include "qemu/osdep.h"
#include "hw/i386/pc.h"
#include "hw/pci/msi.h"
#include "hw/pci/pci_bus.h"
#include "migration/vmstate.h"
#include "amd_iommu.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "hw/i386/apic_internal.h"
#include "trace.h"
#include "hw/i386/apic-msidef.h"
/* used AMD-Vi MMIO registers */
const char *amdvi_mmio_low[] = {
"AMDVI_MMIO_DEVTAB_BASE",
"AMDVI_MMIO_CMDBUF_BASE",
"AMDVI_MMIO_EVTLOG_BASE",
"AMDVI_MMIO_CONTROL",
"AMDVI_MMIO_EXCL_BASE",
"AMDVI_MMIO_EXCL_LIMIT",
"AMDVI_MMIO_EXT_FEATURES",
"AMDVI_MMIO_PPR_BASE",
"UNHANDLED"
};
const char *amdvi_mmio_high[] = {
"AMDVI_MMIO_COMMAND_HEAD",
"AMDVI_MMIO_COMMAND_TAIL",
"AMDVI_MMIO_EVTLOG_HEAD",
"AMDVI_MMIO_EVTLOG_TAIL",
"AMDVI_MMIO_STATUS",
"AMDVI_MMIO_PPR_HEAD",
"AMDVI_MMIO_PPR_TAIL",
"UNHANDLED"
};
struct AMDVIAddressSpace {
uint8_t bus_num; /* bus number */
uint8_t devfn; /* device function */
AMDVIState *iommu_state; /* AMDVI - one per machine */
MemoryRegion root; /* AMDVI Root memory map region */
IOMMUMemoryRegion iommu; /* Device's address translation region */
MemoryRegion iommu_ir; /* Device's interrupt remapping region */
AddressSpace as; /* device's corresponding address space */
};
/* AMDVI cache entry */
typedef struct AMDVIIOTLBEntry {
uint16_t domid; /* assigned domain id */
uint16_t devid; /* device owning entry */
uint64_t perms; /* access permissions */
uint64_t translated_addr; /* translated address */
uint64_t page_mask; /* physical page size */
} AMDVIIOTLBEntry;
/* configure MMIO registers at startup/reset */
static void amdvi_set_quad(AMDVIState *s, hwaddr addr, uint64_t val,
uint64_t romask, uint64_t w1cmask)
{
stq_le_p(&s->mmior[addr], val);
stq_le_p(&s->romask[addr], romask);
stq_le_p(&s->w1cmask[addr], w1cmask);
}
static uint16_t amdvi_readw(AMDVIState *s, hwaddr addr)
{
return lduw_le_p(&s->mmior[addr]);
}
static uint32_t amdvi_readl(AMDVIState *s, hwaddr addr)
{
return ldl_le_p(&s->mmior[addr]);
}
static uint64_t amdvi_readq(AMDVIState *s, hwaddr addr)
{
return ldq_le_p(&s->mmior[addr]);
}
/* internal write */
static void amdvi_writeq_raw(AMDVIState *s, uint64_t val, hwaddr addr)
{
stq_le_p(&s->mmior[addr], val);
}
/* external write */
static void amdvi_writew(AMDVIState *s, hwaddr addr, uint16_t val)
{
uint16_t romask = lduw_le_p(&s->romask[addr]);
uint16_t w1cmask = lduw_le_p(&s->w1cmask[addr]);
uint16_t oldval = lduw_le_p(&s->mmior[addr]);
stw_le_p(&s->mmior[addr],
((oldval & romask) | (val & ~romask)) & ~(val & w1cmask));
}
static void amdvi_writel(AMDVIState *s, hwaddr addr, uint32_t val)
{
uint32_t romask = ldl_le_p(&s->romask[addr]);
uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
uint32_t oldval = ldl_le_p(&s->mmior[addr]);
stl_le_p(&s->mmior[addr],
((oldval & romask) | (val & ~romask)) & ~(val & w1cmask));
}
static void amdvi_writeq(AMDVIState *s, hwaddr addr, uint64_t val)
{
uint64_t romask = ldq_le_p(&s->romask[addr]);
uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
uint32_t oldval = ldq_le_p(&s->mmior[addr]);
stq_le_p(&s->mmior[addr],
((oldval & romask) | (val & ~romask)) & ~(val & w1cmask));
}
/* OR a 64-bit register with a 64-bit value */
static bool amdvi_test_mask(AMDVIState *s, hwaddr addr, uint64_t val)
{
return amdvi_readq(s, addr) | val;
}
/* OR a 64-bit register with a 64-bit value storing result in the register */
static void amdvi_assign_orq(AMDVIState *s, hwaddr addr, uint64_t val)
{
amdvi_writeq_raw(s, addr, amdvi_readq(s, addr) | val);
}
/* AND a 64-bit register with a 64-bit value storing result in the register */
static void amdvi_assign_andq(AMDVIState *s, hwaddr addr, uint64_t val)
{
amdvi_writeq_raw(s, addr, amdvi_readq(s, addr) & val);
}
static void amdvi_generate_msi_interrupt(AMDVIState *s)
{
MSIMessage msg = {};
MemTxAttrs attrs = {
.requester_id = pci_requester_id(&s->pci.dev)
};
if (msi_enabled(&s->pci.dev)) {
msg = msi_get_message(&s->pci.dev, 0);
address_space_stl_le(&address_space_memory, msg.address, msg.data,
attrs, NULL);
}
}
static void amdvi_log_event(AMDVIState *s, uint64_t *evt)
{
/* event logging not enabled */
if (!s->evtlog_enabled || amdvi_test_mask(s, AMDVI_MMIO_STATUS,
AMDVI_MMIO_STATUS_EVT_OVF)) {
return;
}
/* event log buffer full */
if (s->evtlog_tail >= s->evtlog_len) {
amdvi_assign_orq(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_EVT_OVF);
/* generate interrupt */
amdvi_generate_msi_interrupt(s);
return;
}
if (dma_memory_write(&address_space_memory, s->evtlog + s->evtlog_tail,
&evt, AMDVI_EVENT_LEN)) {
trace_amdvi_evntlog_fail(s->evtlog, s->evtlog_tail);
}
s->evtlog_tail += AMDVI_EVENT_LEN;
amdvi_assign_orq(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_COMP_INT);
amdvi_generate_msi_interrupt(s);
}
static void amdvi_setevent_bits(uint64_t *buffer, uint64_t value, int start,
int length)
{
int index = start / 64, bitpos = start % 64;
uint64_t mask = MAKE_64BIT_MASK(start, length);
buffer[index] &= ~mask;
buffer[index] |= (value << bitpos) & mask;
}
/*
* AMDVi event structure
* 0:15 -> DeviceID
* 55:63 -> event type + miscellaneous info
* 63:127 -> related address
*/
static void amdvi_encode_event(uint64_t *evt, uint16_t devid, uint64_t addr,
uint16_t info)
{
amdvi_setevent_bits(evt, devid, 0, 16);
amdvi_setevent_bits(evt, info, 55, 8);
amdvi_setevent_bits(evt, addr, 63, 64);
}
/* log an error encountered during a page walk
*
* @addr: virtual address in translation request
*/
static void amdvi_page_fault(AMDVIState *s, uint16_t devid,
hwaddr addr, uint16_t info)
{
uint64_t evt[4];
info |= AMDVI_EVENT_IOPF_I | AMDVI_EVENT_IOPF;
amdvi_encode_event(evt, devid, addr, info);
amdvi_log_event(s, evt);
pci_word_test_and_set_mask(s->pci.dev.config + PCI_STATUS,
PCI_STATUS_SIG_TARGET_ABORT);
}
/*
* log a master abort accessing device table
* @devtab : address of device table entry
* @info : error flags
*/
static void amdvi_log_devtab_error(AMDVIState *s, uint16_t devid,
hwaddr devtab, uint16_t info)
{
uint64_t evt[4];
info |= AMDVI_EVENT_DEV_TAB_HW_ERROR;
amdvi_encode_event(evt, devid, devtab, info);
amdvi_log_event(s, evt);
pci_word_test_and_set_mask(s->pci.dev.config + PCI_STATUS,
PCI_STATUS_SIG_TARGET_ABORT);
}
/* log an event trying to access command buffer
* @addr : address that couldn't be accessed
*/
static void amdvi_log_command_error(AMDVIState *s, hwaddr addr)
{
uint64_t evt[4], info = AMDVI_EVENT_COMMAND_HW_ERROR;
amdvi_encode_event(evt, 0, addr, info);
amdvi_log_event(s, evt);
pci_word_test_and_set_mask(s->pci.dev.config + PCI_STATUS,
PCI_STATUS_SIG_TARGET_ABORT);
}
/* log an illegal comand event
* @addr : address of illegal command
*/
static void amdvi_log_illegalcom_error(AMDVIState *s, uint16_t info,
hwaddr addr)
{
uint64_t evt[4];
info |= AMDVI_EVENT_ILLEGAL_COMMAND_ERROR;
amdvi_encode_event(evt, 0, addr, info);
amdvi_log_event(s, evt);
}
/* log an error accessing device table
*
* @devid : device owning the table entry
* @devtab : address of device table entry
* @info : error flags
*/
static void amdvi_log_illegaldevtab_error(AMDVIState *s, uint16_t devid,
hwaddr addr, uint16_t info)
{
uint64_t evt[4];
info |= AMDVI_EVENT_ILLEGAL_DEVTAB_ENTRY;
amdvi_encode_event(evt, devid, addr, info);
amdvi_log_event(s, evt);
}
/* log an error accessing a PTE entry
* @addr : address that couldn't be accessed
*/
static void amdvi_log_pagetab_error(AMDVIState *s, uint16_t devid,
hwaddr addr, uint16_t info)
{
uint64_t evt[4];
info |= AMDVI_EVENT_PAGE_TAB_HW_ERROR;
amdvi_encode_event(evt, devid, addr, info);
amdvi_log_event(s, evt);
pci_word_test_and_set_mask(s->pci.dev.config + PCI_STATUS,
PCI_STATUS_SIG_TARGET_ABORT);
}
static gboolean amdvi_uint64_equal(gconstpointer v1, gconstpointer v2)
{
return *((const uint64_t *)v1) == *((const uint64_t *)v2);
}
static guint amdvi_uint64_hash(gconstpointer v)
{
return (guint)*(const uint64_t *)v;
}
static AMDVIIOTLBEntry *amdvi_iotlb_lookup(AMDVIState *s, hwaddr addr,
uint64_t devid)
{
uint64_t key = (addr >> AMDVI_PAGE_SHIFT_4K) |
((uint64_t)(devid) << AMDVI_DEVID_SHIFT);
return g_hash_table_lookup(s->iotlb, &key);
}
static void amdvi_iotlb_reset(AMDVIState *s)
{
assert(s->iotlb);
trace_amdvi_iotlb_reset();
g_hash_table_remove_all(s->iotlb);
}
static gboolean amdvi_iotlb_remove_by_devid(gpointer key, gpointer value,
gpointer user_data)
{
AMDVIIOTLBEntry *entry = (AMDVIIOTLBEntry *)value;
uint16_t devid = *(uint16_t *)user_data;
return entry->devid == devid;
}
static void amdvi_iotlb_remove_page(AMDVIState *s, hwaddr addr,
uint64_t devid)
{
uint64_t key = (addr >> AMDVI_PAGE_SHIFT_4K) |
((uint64_t)(devid) << AMDVI_DEVID_SHIFT);
g_hash_table_remove(s->iotlb, &key);
}
static void amdvi_update_iotlb(AMDVIState *s, uint16_t devid,
uint64_t gpa, IOMMUTLBEntry to_cache,
uint16_t domid)
{
AMDVIIOTLBEntry *entry = g_new(AMDVIIOTLBEntry, 1);
uint64_t *key = g_new(uint64_t, 1);
uint64_t gfn = gpa >> AMDVI_PAGE_SHIFT_4K;
/* don't cache erroneous translations */
if (to_cache.perm != IOMMU_NONE) {
trace_amdvi_cache_update(domid, PCI_BUS_NUM(devid), PCI_SLOT(devid),
PCI_FUNC(devid), gpa, to_cache.translated_addr);
if (g_hash_table_size(s->iotlb) >= AMDVI_IOTLB_MAX_SIZE) {
amdvi_iotlb_reset(s);
}
entry->domid = domid;
entry->perms = to_cache.perm;
entry->translated_addr = to_cache.translated_addr;
entry->page_mask = to_cache.addr_mask;
*key = gfn | ((uint64_t)(devid) << AMDVI_DEVID_SHIFT);
g_hash_table_replace(s->iotlb, key, entry);
}
}
static void amdvi_completion_wait(AMDVIState *s, uint64_t *cmd)
{
/* pad the last 3 bits */
hwaddr addr = cpu_to_le64(extract64(cmd[0], 3, 49)) << 3;
uint64_t data = cpu_to_le64(cmd[1]);
if (extract64(cmd[0], 51, 8)) {
amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
s->cmdbuf + s->cmdbuf_head);
}
if (extract64(cmd[0], 0, 1)) {
if (dma_memory_write(&address_space_memory, addr, &data,
AMDVI_COMPLETION_DATA_SIZE)) {
trace_amdvi_completion_wait_fail(addr);
}
}
/* set completion interrupt */
if (extract64(cmd[0], 1, 1)) {
amdvi_test_mask(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_COMP_INT);
/* generate interrupt */
amdvi_generate_msi_interrupt(s);
}
trace_amdvi_completion_wait(addr, data);
}
/* log error without aborting since linux seems to be using reserved bits */
static void amdvi_inval_devtab_entry(AMDVIState *s, uint64_t *cmd)
{
uint16_t devid = cpu_to_le16((uint16_t)extract64(cmd[0], 0, 16));
/* This command should invalidate internal caches of which there isn't */
if (extract64(cmd[0], 15, 16) || cmd[1]) {
amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
s->cmdbuf + s->cmdbuf_head);
}
trace_amdvi_devtab_inval(PCI_BUS_NUM(devid), PCI_SLOT(devid),
PCI_FUNC(devid));
}
static void amdvi_complete_ppr(AMDVIState *s, uint64_t *cmd)
{
if (extract64(cmd[0], 15, 16) || extract64(cmd[0], 19, 8) ||
extract64(cmd[1], 0, 2) || extract64(cmd[1], 3, 29)
|| extract64(cmd[1], 47, 16)) {
amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
s->cmdbuf + s->cmdbuf_head);
}
trace_amdvi_ppr_exec();
}
static void amdvi_inval_all(AMDVIState *s, uint64_t *cmd)
{
if (extract64(cmd[0], 0, 60) || cmd[1]) {
amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
s->cmdbuf + s->cmdbuf_head);
}
amdvi_iotlb_reset(s);
trace_amdvi_all_inval();
}
static gboolean amdvi_iotlb_remove_by_domid(gpointer key, gpointer value,
gpointer user_data)
{
AMDVIIOTLBEntry *entry = (AMDVIIOTLBEntry *)value;
uint16_t domid = *(uint16_t *)user_data;
return entry->domid == domid;
}
/* we don't have devid - we can't remove pages by address */
static void amdvi_inval_pages(AMDVIState *s, uint64_t *cmd)
{
uint16_t domid = cpu_to_le16((uint16_t)extract64(cmd[0], 32, 16));
if (extract64(cmd[0], 20, 12) || extract64(cmd[0], 16, 12) ||
extract64(cmd[0], 3, 10)) {
amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
s->cmdbuf + s->cmdbuf_head);
}
g_hash_table_foreach_remove(s->iotlb, amdvi_iotlb_remove_by_domid,
&domid);
trace_amdvi_pages_inval(domid);
}
static void amdvi_prefetch_pages(AMDVIState *s, uint64_t *cmd)
{
if (extract64(cmd[0], 16, 8) || extract64(cmd[0], 20, 8) ||
extract64(cmd[1], 1, 1) || extract64(cmd[1], 3, 1) ||
extract64(cmd[1], 5, 7)) {
amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
s->cmdbuf + s->cmdbuf_head);
}
trace_amdvi_prefetch_pages();
}
static void amdvi_inval_inttable(AMDVIState *s, uint64_t *cmd)
{
if (extract64(cmd[0], 16, 16) || cmd[1]) {
amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
s->cmdbuf + s->cmdbuf_head);
return;
}
trace_amdvi_intr_inval();
}
/* FIXME: Try to work with the specified size instead of all the pages
* when the S bit is on
*/
static void iommu_inval_iotlb(AMDVIState *s, uint64_t *cmd)
{
uint16_t devid = extract64(cmd[0], 0, 16);
if (extract64(cmd[1], 1, 1) || extract64(cmd[1], 3, 9)) {
amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
s->cmdbuf + s->cmdbuf_head);
return;
}
if (extract64(cmd[1], 0, 1)) {
g_hash_table_foreach_remove(s->iotlb, amdvi_iotlb_remove_by_devid,
&devid);
} else {
amdvi_iotlb_remove_page(s, cpu_to_le64(extract64(cmd[1], 12, 52)) << 12,
cpu_to_le16(extract64(cmd[1], 0, 16)));
}
trace_amdvi_iotlb_inval();
}
/* not honouring reserved bits is regarded as an illegal command */
static void amdvi_cmdbuf_exec(AMDVIState *s)
{
uint64_t cmd[2];
if (dma_memory_read(&address_space_memory, s->cmdbuf + s->cmdbuf_head,
cmd, AMDVI_COMMAND_SIZE)) {
trace_amdvi_command_read_fail(s->cmdbuf, s->cmdbuf_head);
amdvi_log_command_error(s, s->cmdbuf + s->cmdbuf_head);
return;
}
switch (extract64(cmd[0], 60, 4)) {
case AMDVI_CMD_COMPLETION_WAIT:
amdvi_completion_wait(s, cmd);
break;
case AMDVI_CMD_INVAL_DEVTAB_ENTRY:
amdvi_inval_devtab_entry(s, cmd);
break;
case AMDVI_CMD_INVAL_AMDVI_PAGES:
amdvi_inval_pages(s, cmd);
break;
case AMDVI_CMD_INVAL_IOTLB_PAGES:
iommu_inval_iotlb(s, cmd);
break;
case AMDVI_CMD_INVAL_INTR_TABLE:
amdvi_inval_inttable(s, cmd);
break;
case AMDVI_CMD_PREFETCH_AMDVI_PAGES:
amdvi_prefetch_pages(s, cmd);
break;
case AMDVI_CMD_COMPLETE_PPR_REQUEST:
amdvi_complete_ppr(s, cmd);
break;
case AMDVI_CMD_INVAL_AMDVI_ALL:
amdvi_inval_all(s, cmd);
break;
default:
trace_amdvi_unhandled_command(extract64(cmd[1], 60, 4));
/* log illegal command */
amdvi_log_illegalcom_error(s, extract64(cmd[1], 60, 4),
s->cmdbuf + s->cmdbuf_head);
}
}
static void amdvi_cmdbuf_run(AMDVIState *s)
{
if (!s->cmdbuf_enabled) {
trace_amdvi_command_error(amdvi_readq(s, AMDVI_MMIO_CONTROL));
return;
}
/* check if there is work to do. */
while (s->cmdbuf_head != s->cmdbuf_tail) {
trace_amdvi_command_exec(s->cmdbuf_head, s->cmdbuf_tail, s->cmdbuf);
amdvi_cmdbuf_exec(s);
s->cmdbuf_head += AMDVI_COMMAND_SIZE;
amdvi_writeq_raw(s, s->cmdbuf_head, AMDVI_MMIO_COMMAND_HEAD);
/* wrap head pointer */
if (s->cmdbuf_head >= s->cmdbuf_len * AMDVI_COMMAND_SIZE) {
s->cmdbuf_head = 0;
}
}
}
static void amdvi_mmio_trace(hwaddr addr, unsigned size)
{
uint8_t index = (addr & ~0x2000) / 8;
if ((addr & 0x2000)) {
/* high table */
index = index >= AMDVI_MMIO_REGS_HIGH ? AMDVI_MMIO_REGS_HIGH : index;
trace_amdvi_mmio_read(amdvi_mmio_high[index], addr, size, addr & ~0x07);
} else {
index = index >= AMDVI_MMIO_REGS_LOW ? AMDVI_MMIO_REGS_LOW : index;
trace_amdvi_mmio_read(amdvi_mmio_low[index], addr, size, addr & ~0x07);
}
}
static uint64_t amdvi_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
AMDVIState *s = opaque;
uint64_t val = -1;
if (addr + size > AMDVI_MMIO_SIZE) {
trace_amdvi_mmio_read_invalid(AMDVI_MMIO_SIZE, addr, size);
return (uint64_t)-1;
}
if (size == 2) {
val = amdvi_readw(s, addr);
} else if (size == 4) {
val = amdvi_readl(s, addr);
} else if (size == 8) {
val = amdvi_readq(s, addr);
}
amdvi_mmio_trace(addr, size);
return val;
}
static void amdvi_handle_control_write(AMDVIState *s)
{
unsigned long control = amdvi_readq(s, AMDVI_MMIO_CONTROL);
s->enabled = !!(control & AMDVI_MMIO_CONTROL_AMDVIEN);
s->ats_enabled = !!(control & AMDVI_MMIO_CONTROL_HTTUNEN);
s->evtlog_enabled = s->enabled && !!(control &
AMDVI_MMIO_CONTROL_EVENTLOGEN);
s->evtlog_intr = !!(control & AMDVI_MMIO_CONTROL_EVENTINTEN);
s->completion_wait_intr = !!(control & AMDVI_MMIO_CONTROL_COMWAITINTEN);
s->cmdbuf_enabled = s->enabled && !!(control &
AMDVI_MMIO_CONTROL_CMDBUFLEN);
s->ga_enabled = !!(control & AMDVI_MMIO_CONTROL_GAEN);
/* update the flags depending on the control register */
if (s->cmdbuf_enabled) {
amdvi_assign_orq(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_CMDBUF_RUN);
} else {
amdvi_assign_andq(s, AMDVI_MMIO_STATUS, ~AMDVI_MMIO_STATUS_CMDBUF_RUN);
}
if (s->evtlog_enabled) {
amdvi_assign_orq(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_EVT_RUN);
} else {
amdvi_assign_andq(s, AMDVI_MMIO_STATUS, ~AMDVI_MMIO_STATUS_EVT_RUN);
}
trace_amdvi_control_status(control);
amdvi_cmdbuf_run(s);
}
static inline void amdvi_handle_devtab_write(AMDVIState *s)
{
uint64_t val = amdvi_readq(s, AMDVI_MMIO_DEVICE_TABLE);
s->devtab = (val & AMDVI_MMIO_DEVTAB_BASE_MASK);
/* set device table length */
s->devtab_len = ((val & AMDVI_MMIO_DEVTAB_SIZE_MASK) + 1 *
(AMDVI_MMIO_DEVTAB_SIZE_UNIT /
AMDVI_MMIO_DEVTAB_ENTRY_SIZE));
}
static inline void amdvi_handle_cmdhead_write(AMDVIState *s)
{
s->cmdbuf_head = amdvi_readq(s, AMDVI_MMIO_COMMAND_HEAD)
& AMDVI_MMIO_CMDBUF_HEAD_MASK;
amdvi_cmdbuf_run(s);
}
static inline void amdvi_handle_cmdbase_write(AMDVIState *s)
{
s->cmdbuf = amdvi_readq(s, AMDVI_MMIO_COMMAND_BASE)
& AMDVI_MMIO_CMDBUF_BASE_MASK;
s->cmdbuf_len = 1UL << (amdvi_readq(s, AMDVI_MMIO_CMDBUF_SIZE_BYTE)
& AMDVI_MMIO_CMDBUF_SIZE_MASK);
s->cmdbuf_head = s->cmdbuf_tail = 0;
}
static inline void amdvi_handle_cmdtail_write(AMDVIState *s)
{
s->cmdbuf_tail = amdvi_readq(s, AMDVI_MMIO_COMMAND_TAIL)
& AMDVI_MMIO_CMDBUF_TAIL_MASK;
amdvi_cmdbuf_run(s);
}
static inline void amdvi_handle_excllim_write(AMDVIState *s)
{
uint64_t val = amdvi_readq(s, AMDVI_MMIO_EXCL_LIMIT);
s->excl_limit = (val & AMDVI_MMIO_EXCL_LIMIT_MASK) |
AMDVI_MMIO_EXCL_LIMIT_LOW;
}
static inline void amdvi_handle_evtbase_write(AMDVIState *s)
{
uint64_t val = amdvi_readq(s, AMDVI_MMIO_EVENT_BASE);
s->evtlog = val & AMDVI_MMIO_EVTLOG_BASE_MASK;
s->evtlog_len = 1UL << (amdvi_readq(s, AMDVI_MMIO_EVTLOG_SIZE_BYTE)
& AMDVI_MMIO_EVTLOG_SIZE_MASK);
}
static inline void amdvi_handle_evttail_write(AMDVIState *s)
{
uint64_t val = amdvi_readq(s, AMDVI_MMIO_EVENT_TAIL);
s->evtlog_tail = val & AMDVI_MMIO_EVTLOG_TAIL_MASK;
}
static inline void amdvi_handle_evthead_write(AMDVIState *s)
{
uint64_t val = amdvi_readq(s, AMDVI_MMIO_EVENT_HEAD);
s->evtlog_head = val & AMDVI_MMIO_EVTLOG_HEAD_MASK;
}
static inline void amdvi_handle_pprbase_write(AMDVIState *s)
{
uint64_t val = amdvi_readq(s, AMDVI_MMIO_PPR_BASE);
s->ppr_log = val & AMDVI_MMIO_PPRLOG_BASE_MASK;
s->pprlog_len = 1UL << (amdvi_readq(s, AMDVI_MMIO_PPRLOG_SIZE_BYTE)
& AMDVI_MMIO_PPRLOG_SIZE_MASK);
}
static inline void amdvi_handle_pprhead_write(AMDVIState *s)
{
uint64_t val = amdvi_readq(s, AMDVI_MMIO_PPR_HEAD);
s->pprlog_head = val & AMDVI_MMIO_PPRLOG_HEAD_MASK;
}
static inline void amdvi_handle_pprtail_write(AMDVIState *s)
{
uint64_t val = amdvi_readq(s, AMDVI_MMIO_PPR_TAIL);
s->pprlog_tail = val & AMDVI_MMIO_PPRLOG_TAIL_MASK;
}
/* FIXME: something might go wrong if System Software writes in chunks
* of one byte but linux writes in chunks of 4 bytes so currently it
* works correctly with linux but will definitely be busted if software
* reads/writes 8 bytes
*/
static void amdvi_mmio_reg_write(AMDVIState *s, unsigned size, uint64_t val,
hwaddr addr)
{
if (size == 2) {
amdvi_writew(s, addr, val);
} else if (size == 4) {
amdvi_writel(s, addr, val);
} else if (size == 8) {
amdvi_writeq(s, addr, val);
}
}
static void amdvi_mmio_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
AMDVIState *s = opaque;
unsigned long offset = addr & 0x07;
if (addr + size > AMDVI_MMIO_SIZE) {
trace_amdvi_mmio_write("error: addr outside region: max ",
(uint64_t)AMDVI_MMIO_SIZE, size, val, offset);
return;
}
amdvi_mmio_trace(addr, size);
switch (addr & ~0x07) {
case AMDVI_MMIO_CONTROL:
amdvi_mmio_reg_write(s, size, val, addr);
amdvi_handle_control_write(s);
break;
case AMDVI_MMIO_DEVICE_TABLE:
amdvi_mmio_reg_write(s, size, val, addr);
/* set device table address
* This also suffers from inability to tell whether software
* is done writing
*/
if (offset || (size == 8)) {
amdvi_handle_devtab_write(s);
}
break;
case AMDVI_MMIO_COMMAND_HEAD:
amdvi_mmio_reg_write(s, size, val, addr);
amdvi_handle_cmdhead_write(s);
break;
case AMDVI_MMIO_COMMAND_BASE:
amdvi_mmio_reg_write(s, size, val, addr);
/* FIXME - make sure System Software has finished writing incase
* it writes in chucks less than 8 bytes in a robust way.As for
* now, this hacks works for the linux driver
*/
if (offset || (size == 8)) {
amdvi_handle_cmdbase_write(s);
}
break;
case AMDVI_MMIO_COMMAND_TAIL:
amdvi_mmio_reg_write(s, size, val, addr);
amdvi_handle_cmdtail_write(s);
break;
case AMDVI_MMIO_EVENT_BASE:
amdvi_mmio_reg_write(s, size, val, addr);
amdvi_handle_evtbase_write(s);
break;
case AMDVI_MMIO_EVENT_HEAD:
amdvi_mmio_reg_write(s, size, val, addr);
amdvi_handle_evthead_write(s);
break;
case AMDVI_MMIO_EVENT_TAIL:
amdvi_mmio_reg_write(s, size, val, addr);
amdvi_handle_evttail_write(s);
break;
case AMDVI_MMIO_EXCL_LIMIT:
amdvi_mmio_reg_write(s, size, val, addr);
amdvi_handle_excllim_write(s);
break;
/* PPR log base - unused for now */
case AMDVI_MMIO_PPR_BASE:
amdvi_mmio_reg_write(s, size, val, addr);
amdvi_handle_pprbase_write(s);
break;
/* PPR log head - also unused for now */
case AMDVI_MMIO_PPR_HEAD:
amdvi_mmio_reg_write(s, size, val, addr);
amdvi_handle_pprhead_write(s);
break;
/* PPR log tail - unused for now */
case AMDVI_MMIO_PPR_TAIL:
amdvi_mmio_reg_write(s, size, val, addr);
amdvi_handle_pprtail_write(s);
break;
}
}
static inline uint64_t amdvi_get_perms(uint64_t entry)
{
return (entry & (AMDVI_DEV_PERM_READ | AMDVI_DEV_PERM_WRITE)) >>
AMDVI_DEV_PERM_SHIFT;
}
/* validate that reserved bits are honoured */
static bool amdvi_validate_dte(AMDVIState *s, uint16_t devid,
uint64_t *dte)
{
if ((dte[0] & AMDVI_DTE_LOWER_QUAD_RESERVED)
|| (dte[1] & AMDVI_DTE_MIDDLE_QUAD_RESERVED)
|| (dte[2] & AMDVI_DTE_UPPER_QUAD_RESERVED) || dte[3]) {
amdvi_log_illegaldevtab_error(s, devid,
s->devtab +
devid * AMDVI_DEVTAB_ENTRY_SIZE, 0);
return false;
}
return true;
}
/* get a device table entry given the devid */
static bool amdvi_get_dte(AMDVIState *s, int devid, uint64_t *entry)
{
uint32_t offset = devid * AMDVI_DEVTAB_ENTRY_SIZE;
if (dma_memory_read(&address_space_memory, s->devtab + offset, entry,
AMDVI_DEVTAB_ENTRY_SIZE)) {
trace_amdvi_dte_get_fail(s->devtab, offset);
/* log error accessing dte */
amdvi_log_devtab_error(s, devid, s->devtab + offset, 0);
return false;
}
*entry = le64_to_cpu(*entry);
if (!amdvi_validate_dte(s, devid, entry)) {
trace_amdvi_invalid_dte(entry[0]);
return false;
}
return true;
}
/* get pte translation mode */
static inline uint8_t get_pte_translation_mode(uint64_t pte)
{
return (pte >> AMDVI_DEV_MODE_RSHIFT) & AMDVI_DEV_MODE_MASK;
}
static inline uint64_t pte_override_page_mask(uint64_t pte)
{
uint8_t page_mask = 12;
uint64_t addr = (pte & AMDVI_DEV_PT_ROOT_MASK) ^ AMDVI_DEV_PT_ROOT_MASK;
/* find the first zero bit */
while (addr & 1) {
page_mask++;
addr = addr >> 1;
}
return ~((1ULL << page_mask) - 1);
}
static inline uint64_t pte_get_page_mask(uint64_t oldlevel)
{
return ~((1UL << ((oldlevel * 9) + 3)) - 1);
}
static inline uint64_t amdvi_get_pte_entry(AMDVIState *s, uint64_t pte_addr,
uint16_t devid)
{
uint64_t pte;
if (dma_memory_read(&address_space_memory, pte_addr, &pte, sizeof(pte))) {
trace_amdvi_get_pte_hwerror(pte_addr);
amdvi_log_pagetab_error(s, devid, pte_addr, 0);
pte = 0;
return pte;
}
pte = le64_to_cpu(pte);
return pte;
}
static void amdvi_page_walk(AMDVIAddressSpace *as, uint64_t *dte,
IOMMUTLBEntry *ret, unsigned perms,
hwaddr addr)
{
unsigned level, present, pte_perms, oldlevel;
uint64_t pte = dte[0], pte_addr, page_mask;
/* make sure the DTE has TV = 1 */
if (pte & AMDVI_DEV_TRANSLATION_VALID) {
level = get_pte_translation_mode(pte);
if (level >= 7) {
trace_amdvi_mode_invalid(level, addr);
return;
}
if (level == 0) {
goto no_remap;
}
/* we are at the leaf page table or page table encodes a huge page */
while (level > 0) {
pte_perms = amdvi_get_perms(pte);
present = pte & 1;
if (!present || perms != (perms & pte_perms)) {
amdvi_page_fault(as->iommu_state, as->devfn, addr, perms);
trace_amdvi_page_fault(addr);
return;
}
/* go to the next lower level */
pte_addr = pte & AMDVI_DEV_PT_ROOT_MASK;
/* add offset and load pte */
pte_addr += ((addr >> (3 + 9 * level)) & 0x1FF) << 3;
pte = amdvi_get_pte_entry(as->iommu_state, pte_addr, as->devfn);
if (!pte) {
return;
}
oldlevel = level;
level = get_pte_translation_mode(pte);
if (level == 0x7) {
break;
}
}
if (level == 0x7) {
page_mask = pte_override_page_mask(pte);
} else {
page_mask = pte_get_page_mask(oldlevel);
}
/* get access permissions from pte */
ret->iova = addr & page_mask;
ret->translated_addr = (pte & AMDVI_DEV_PT_ROOT_MASK) & page_mask;
ret->addr_mask = ~page_mask;
ret->perm = amdvi_get_perms(pte);
return;
}
no_remap:
ret->iova = addr & AMDVI_PAGE_MASK_4K;
ret->translated_addr = addr & AMDVI_PAGE_MASK_4K;
ret->addr_mask = ~AMDVI_PAGE_MASK_4K;
ret->perm = amdvi_get_perms(pte);
}
static void amdvi_do_translate(AMDVIAddressSpace *as, hwaddr addr,
bool is_write, IOMMUTLBEntry *ret)
{
AMDVIState *s = as->iommu_state;
uint16_t devid = PCI_BUILD_BDF(as->bus_num, as->devfn);
AMDVIIOTLBEntry *iotlb_entry = amdvi_iotlb_lookup(s, addr, devid);
uint64_t entry[4];
if (iotlb_entry) {
trace_amdvi_iotlb_hit(PCI_BUS_NUM(devid), PCI_SLOT(devid),
PCI_FUNC(devid), addr, iotlb_entry->translated_addr);
ret->iova = addr & ~iotlb_entry->page_mask;
ret->translated_addr = iotlb_entry->translated_addr;
ret->addr_mask = iotlb_entry->page_mask;
ret->perm = iotlb_entry->perms;
return;
}
if (!amdvi_get_dte(s, devid, entry)) {
return;
}
/* devices with V = 0 are not translated */
if (!(entry[0] & AMDVI_DEV_VALID)) {
goto out;
}
amdvi_page_walk(as, entry, ret,
is_write ? AMDVI_PERM_WRITE : AMDVI_PERM_READ, addr);
amdvi_update_iotlb(s, devid, addr, *ret,
entry[1] & AMDVI_DEV_DOMID_ID_MASK);
return;
out:
ret->iova = addr & AMDVI_PAGE_MASK_4K;
ret->translated_addr = addr & AMDVI_PAGE_MASK_4K;
ret->addr_mask = ~AMDVI_PAGE_MASK_4K;
ret->perm = IOMMU_RW;
}
static inline bool amdvi_is_interrupt_addr(hwaddr addr)
{
return addr >= AMDVI_INT_ADDR_FIRST && addr <= AMDVI_INT_ADDR_LAST;
}
static IOMMUTLBEntry amdvi_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
IOMMUAccessFlags flag, int iommu_idx)
{
AMDVIAddressSpace *as = container_of(iommu, AMDVIAddressSpace, iommu);
AMDVIState *s = as->iommu_state;
IOMMUTLBEntry ret = {
.target_as = &address_space_memory,
.iova = addr,
.translated_addr = 0,
.addr_mask = ~(hwaddr)0,
.perm = IOMMU_NONE
};
if (!s->enabled) {
/* AMDVI disabled - corresponds to iommu=off not
* failure to provide any parameter
*/
ret.iova = addr & AMDVI_PAGE_MASK_4K;
ret.translated_addr = addr & AMDVI_PAGE_MASK_4K;
ret.addr_mask = ~AMDVI_PAGE_MASK_4K;
ret.perm = IOMMU_RW;
return ret;
} else if (amdvi_is_interrupt_addr(addr)) {
ret.iova = addr & AMDVI_PAGE_MASK_4K;
ret.translated_addr = addr & AMDVI_PAGE_MASK_4K;
ret.addr_mask = ~AMDVI_PAGE_MASK_4K;
ret.perm = IOMMU_WO;
return ret;
}
amdvi_do_translate(as, addr, flag & IOMMU_WO, &ret);
trace_amdvi_translation_result(as->bus_num, PCI_SLOT(as->devfn),
PCI_FUNC(as->devfn), addr, ret.translated_addr);
return ret;
}
static int amdvi_get_irte(AMDVIState *s, MSIMessage *origin, uint64_t *dte,
union irte *irte, uint16_t devid)
{
uint64_t irte_root, offset;
irte_root = dte[2] & AMDVI_IR_PHYS_ADDR_MASK;
offset = (origin->data & AMDVI_IRTE_OFFSET) << 2;
trace_amdvi_ir_irte(irte_root, offset);
if (dma_memory_read(&address_space_memory, irte_root + offset,
irte, sizeof(*irte))) {
trace_amdvi_ir_err("failed to get irte");
return -AMDVI_IR_GET_IRTE;
}
trace_amdvi_ir_irte_val(irte->val);
return 0;
}
static int amdvi_int_remap_legacy(AMDVIState *iommu,
MSIMessage *origin,
MSIMessage *translated,
uint64_t *dte,
X86IOMMUIrq *irq,
uint16_t sid)
{
int ret;
union irte irte;
/* get interrupt remapping table */
ret = amdvi_get_irte(iommu, origin, dte, &irte, sid);
if (ret < 0) {
return ret;
}
if (!irte.fields.valid) {
trace_amdvi_ir_target_abort("RemapEn is disabled");
return -AMDVI_IR_TARGET_ABORT;
}
if (irte.fields.guest_mode) {
error_report_once("guest mode is not zero");
return -AMDVI_IR_ERR;
}
if (irte.fields.int_type > AMDVI_IOAPIC_INT_TYPE_ARBITRATED) {
error_report_once("reserved int_type");
return -AMDVI_IR_ERR;
}
irq->delivery_mode = irte.fields.int_type;
irq->vector = irte.fields.vector;
irq->dest_mode = irte.fields.dm;
irq->redir_hint = irte.fields.rq_eoi;
irq->dest = irte.fields.destination;
return 0;
}
static int amdvi_get_irte_ga(AMDVIState *s, MSIMessage *origin, uint64_t *dte,
struct irte_ga *irte, uint16_t devid)
{
uint64_t irte_root, offset;
irte_root = dte[2] & AMDVI_IR_PHYS_ADDR_MASK;
offset = (origin->data & AMDVI_IRTE_OFFSET) << 4;
trace_amdvi_ir_irte(irte_root, offset);
if (dma_memory_read(&address_space_memory, irte_root + offset,
irte, sizeof(*irte))) {
trace_amdvi_ir_err("failed to get irte_ga");
return -AMDVI_IR_GET_IRTE;
}
trace_amdvi_ir_irte_ga_val(irte->hi.val, irte->lo.val);
return 0;
}
static int amdvi_int_remap_ga(AMDVIState *iommu,
MSIMessage *origin,
MSIMessage *translated,
uint64_t *dte,
X86IOMMUIrq *irq,
uint16_t sid)
{
int ret;
struct irte_ga irte;
/* get interrupt remapping table */
ret = amdvi_get_irte_ga(iommu, origin, dte, &irte, sid);
if (ret < 0) {
return ret;
}
if (!irte.lo.fields_remap.valid) {
trace_amdvi_ir_target_abort("RemapEn is disabled");
return -AMDVI_IR_TARGET_ABORT;
}
if (irte.lo.fields_remap.guest_mode) {
error_report_once("guest mode is not zero");
return -AMDVI_IR_ERR;
}
if (irte.lo.fields_remap.int_type > AMDVI_IOAPIC_INT_TYPE_ARBITRATED) {
error_report_once("reserved int_type is set");
return -AMDVI_IR_ERR;
}
irq->delivery_mode = irte.lo.fields_remap.int_type;
irq->vector = irte.hi.fields.vector;
irq->dest_mode = irte.lo.fields_remap.dm;
irq->redir_hint = irte.lo.fields_remap.rq_eoi;
irq->dest = irte.lo.fields_remap.destination;
return 0;
}
static int __amdvi_int_remap_msi(AMDVIState *iommu,
MSIMessage *origin,
MSIMessage *translated,
uint64_t *dte,
X86IOMMUIrq *irq,
uint16_t sid)
{
int ret;
uint8_t int_ctl;
int_ctl = (dte[2] >> AMDVI_IR_INTCTL_SHIFT) & 3;
trace_amdvi_ir_intctl(int_ctl);
switch (int_ctl) {
case AMDVI_IR_INTCTL_PASS:
memcpy(translated, origin, sizeof(*origin));
return 0;
case AMDVI_IR_INTCTL_REMAP:
break;
case AMDVI_IR_INTCTL_ABORT:
trace_amdvi_ir_target_abort("int_ctl abort");
return -AMDVI_IR_TARGET_ABORT;
default:
trace_amdvi_ir_err("int_ctl reserved");
return -AMDVI_IR_ERR;
}
if (iommu->ga_enabled) {
ret = amdvi_int_remap_ga(iommu, origin, translated, dte, irq, sid);
} else {
ret = amdvi_int_remap_legacy(iommu, origin, translated, dte, irq, sid);
}
return ret;
}
/* Interrupt remapping for MSI/MSI-X entry */
static int amdvi_int_remap_msi(AMDVIState *iommu,
MSIMessage *origin,
MSIMessage *translated,
uint16_t sid)
{
int ret = 0;
uint64_t pass = 0;
uint64_t dte[4] = { 0 };
X86IOMMUIrq irq = { 0 };
uint8_t dest_mode, delivery_mode;
assert(origin && translated);
/*
* When IOMMU is enabled, interrupt remap request will come either from
* IO-APIC or PCI device. If interrupt is from PCI device then it will
* have a valid requester id but if the interrupt is from IO-APIC
* then requester id will be invalid.
*/
if (sid == X86_IOMMU_SID_INVALID) {
sid = AMDVI_IOAPIC_SB_DEVID;
}
trace_amdvi_ir_remap_msi_req(origin->address, origin->data, sid);
/* check if device table entry is set before we go further. */
if (!iommu || !iommu->devtab_len) {
memcpy(translated, origin, sizeof(*origin));
goto out;
}
if (!amdvi_get_dte(iommu, sid, dte)) {
return -AMDVI_IR_ERR;
}
/* Check if IR is enabled in DTE */
if (!(dte[2] & AMDVI_IR_REMAP_ENABLE)) {
memcpy(translated, origin, sizeof(*origin));
goto out;
}
/* validate that we are configure with intremap=on */
if (!x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu))) {
trace_amdvi_err("Interrupt remapping is enabled in the guest but "
"not in the host. Use intremap=on to enable interrupt "
"remapping in amd-iommu.");
return -AMDVI_IR_ERR;
}
if (origin->address & AMDVI_MSI_ADDR_HI_MASK) {
trace_amdvi_err("MSI address high 32 bits non-zero when "
"Interrupt Remapping enabled.");
return -AMDVI_IR_ERR;
}
if ((origin->address & AMDVI_MSI_ADDR_LO_MASK) != APIC_DEFAULT_ADDRESS) {
trace_amdvi_err("MSI is not from IOAPIC.");
return -AMDVI_IR_ERR;
}
/*
* The MSI data register [10:8] are used to get the upstream interrupt type.
*
* See MSI/MSI-X format:
* https://pdfs.semanticscholar.org/presentation/9420/c279e942eca568157711ef5c92b800c40a79.pdf
* (page 5)
*/
delivery_mode = (origin->data >> MSI_DATA_DELIVERY_MODE_SHIFT) & 7;
switch (delivery_mode) {
case AMDVI_IOAPIC_INT_TYPE_FIXED:
case AMDVI_IOAPIC_INT_TYPE_ARBITRATED:
trace_amdvi_ir_delivery_mode("fixed/arbitrated");
ret = __amdvi_int_remap_msi(iommu, origin, translated, dte, &irq, sid);
if (ret < 0) {
goto remap_fail;
} else {
/* Translate IRQ to MSI messages */
x86_iommu_irq_to_msi_message(&irq, translated);
goto out;
}
break;
case AMDVI_IOAPIC_INT_TYPE_SMI:
error_report("SMI is not supported!");
ret = -AMDVI_IR_ERR;
break;
case AMDVI_IOAPIC_INT_TYPE_NMI:
pass = dte[3] & AMDVI_DEV_NMI_PASS_MASK;
trace_amdvi_ir_delivery_mode("nmi");
break;
case AMDVI_IOAPIC_INT_TYPE_INIT:
pass = dte[3] & AMDVI_DEV_INT_PASS_MASK;
trace_amdvi_ir_delivery_mode("init");
break;
case AMDVI_IOAPIC_INT_TYPE_EINT:
pass = dte[3] & AMDVI_DEV_EINT_PASS_MASK;
trace_amdvi_ir_delivery_mode("eint");
break;
default:
trace_amdvi_ir_delivery_mode("unsupported delivery_mode");
ret = -AMDVI_IR_ERR;
break;
}
if (ret < 0) {
goto remap_fail;
}
/*
* The MSI address register bit[2] is used to get the destination
* mode. The dest_mode 1 is valid for fixed and arbitrated interrupts
* only.
*/
dest_mode = (origin->address >> MSI_ADDR_DEST_MODE_SHIFT) & 1;
if (dest_mode) {
trace_amdvi_ir_err("invalid dest_mode");
ret = -AMDVI_IR_ERR;
goto remap_fail;
}
if (pass) {
memcpy(translated, origin, sizeof(*origin));
} else {
trace_amdvi_ir_err("passthrough is not enabled");
ret = -AMDVI_IR_ERR;
goto remap_fail;
}
out:
trace_amdvi_ir_remap_msi(origin->address, origin->data,
translated->address, translated->data);
return 0;
remap_fail:
return ret;
}
static int amdvi_int_remap(X86IOMMUState *iommu,
MSIMessage *origin,
MSIMessage *translated,
uint16_t sid)
{
return amdvi_int_remap_msi(AMD_IOMMU_DEVICE(iommu), origin,
translated, sid);
}
static MemTxResult amdvi_mem_ir_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
int ret;
MSIMessage from = { 0, 0 }, to = { 0, 0 };
uint16_t sid = AMDVI_IOAPIC_SB_DEVID;
from.address = (uint64_t) addr + AMDVI_INT_ADDR_FIRST;
from.data = (uint32_t) value;
trace_amdvi_mem_ir_write_req(addr, value, size);
if (!attrs.unspecified) {
/* We have explicit Source ID */
sid = attrs.requester_id;
}
ret = amdvi_int_remap_msi(opaque, &from, &to, sid);
if (ret < 0) {
/* TODO: log the event using IOMMU log event interface */
error_report_once("failed to remap interrupt from devid 0x%x", sid);
return MEMTX_ERROR;
}
apic_get_class()->send_msi(&to);
trace_amdvi_mem_ir_write(to.address, to.data);
return MEMTX_OK;
}
static MemTxResult amdvi_mem_ir_read(void *opaque, hwaddr addr,
uint64_t *data, unsigned size,
MemTxAttrs attrs)
{
return MEMTX_OK;
}
static const MemoryRegionOps amdvi_ir_ops = {
.read_with_attrs = amdvi_mem_ir_read,
.write_with_attrs = amdvi_mem_ir_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
.valid = {
.min_access_size = 4,
.max_access_size = 4,
}
};
static AddressSpace *amdvi_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
{
char name[128];
AMDVIState *s = opaque;
AMDVIAddressSpace **iommu_as, *amdvi_dev_as;
int bus_num = pci_bus_num(bus);
iommu_as = s->address_spaces[bus_num];
/* allocate memory during the first run */
if (!iommu_as) {
iommu_as = g_malloc0(sizeof(AMDVIAddressSpace *) * PCI_DEVFN_MAX);
s->address_spaces[bus_num] = iommu_as;
}
/* set up AMD-Vi region */
if (!iommu_as[devfn]) {
snprintf(name, sizeof(name), "amd_iommu_devfn_%d", devfn);
iommu_as[devfn] = g_malloc0(sizeof(AMDVIAddressSpace));
iommu_as[devfn]->bus_num = (uint8_t)bus_num;
iommu_as[devfn]->devfn = (uint8_t)devfn;
iommu_as[devfn]->iommu_state = s;
amdvi_dev_as = iommu_as[devfn];
/*
* Memory region relationships looks like (Address range shows
* only lower 32 bits to make it short in length...):
*
* |-----------------+-------------------+----------|
* | Name | Address range | Priority |
* |-----------------+-------------------+----------+
* | amdvi_root | 00000000-ffffffff | 0 |
* | amdvi_iommu | 00000000-ffffffff | 1 |
* | amdvi_iommu_ir | fee00000-feefffff | 64 |
* |-----------------+-------------------+----------|
*/
memory_region_init_iommu(&amdvi_dev_as->iommu,
sizeof(amdvi_dev_as->iommu),
TYPE_AMD_IOMMU_MEMORY_REGION,
OBJECT(s),
"amd_iommu", UINT64_MAX);
memory_region_init(&amdvi_dev_as->root, OBJECT(s),
"amdvi_root", UINT64_MAX);
address_space_init(&amdvi_dev_as->as, &amdvi_dev_as->root, name);
memory_region_init_io(&amdvi_dev_as->iommu_ir, OBJECT(s),
&amdvi_ir_ops, s, "amd_iommu_ir",
AMDVI_INT_ADDR_SIZE);
memory_region_add_subregion_overlap(&amdvi_dev_as->root,
AMDVI_INT_ADDR_FIRST,
&amdvi_dev_as->iommu_ir,
64);
memory_region_add_subregion_overlap(&amdvi_dev_as->root, 0,
MEMORY_REGION(&amdvi_dev_as->iommu),
1);
}
return &iommu_as[devfn]->as;
}
static const MemoryRegionOps mmio_mem_ops = {
.read = amdvi_mmio_read,
.write = amdvi_mmio_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 1,
.max_access_size = 8,
.unaligned = false,
},
.valid = {
.min_access_size = 1,
.max_access_size = 8,
}
};
static void amdvi_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
IOMMUNotifierFlag old,
IOMMUNotifierFlag new)
{
AMDVIAddressSpace *as = container_of(iommu, AMDVIAddressSpace, iommu);
if (new & IOMMU_NOTIFIER_MAP) {
error_report("device %02x.%02x.%x requires iommu notifier which is not "
"currently supported", as->bus_num, PCI_SLOT(as->devfn),
PCI_FUNC(as->devfn));
exit(1);
}
}
static void amdvi_init(AMDVIState *s)
{
amdvi_iotlb_reset(s);
s->devtab_len = 0;
s->cmdbuf_len = 0;
s->cmdbuf_head = 0;
s->cmdbuf_tail = 0;
s->evtlog_head = 0;
s->evtlog_tail = 0;
s->excl_enabled = false;
s->excl_allow = false;
s->mmio_enabled = false;
s->enabled = false;
s->ats_enabled = false;
s->cmdbuf_enabled = false;
/* reset MMIO */
memset(s->mmior, 0, AMDVI_MMIO_SIZE);
amdvi_set_quad(s, AMDVI_MMIO_EXT_FEATURES, AMDVI_EXT_FEATURES,
0xffffffffffffffef, 0);
amdvi_set_quad(s, AMDVI_MMIO_STATUS, 0, 0x98, 0x67);
/* reset device ident */
pci_config_set_vendor_id(s->pci.dev.config, PCI_VENDOR_ID_AMD);
pci_config_set_prog_interface(s->pci.dev.config, 00);
pci_config_set_device_id(s->pci.dev.config, s->devid);
pci_config_set_class(s->pci.dev.config, 0x0806);
/* reset AMDVI specific capabilities, all r/o */
pci_set_long(s->pci.dev.config + s->capab_offset, AMDVI_CAPAB_FEATURES);
pci_set_long(s->pci.dev.config + s->capab_offset + AMDVI_CAPAB_BAR_LOW,
s->mmio.addr & ~(0xffff0000));
pci_set_long(s->pci.dev.config + s->capab_offset + AMDVI_CAPAB_BAR_HIGH,
(s->mmio.addr & ~(0xffff)) >> 16);
pci_set_long(s->pci.dev.config + s->capab_offset + AMDVI_CAPAB_RANGE,
0xff000000);
pci_set_long(s->pci.dev.config + s->capab_offset + AMDVI_CAPAB_MISC, 0);
pci_set_long(s->pci.dev.config + s->capab_offset + AMDVI_CAPAB_MISC,
AMDVI_MAX_PH_ADDR | AMDVI_MAX_GVA_ADDR | AMDVI_MAX_VA_ADDR);
}
static void amdvi_reset(DeviceState *dev)
{
AMDVIState *s = AMD_IOMMU_DEVICE(dev);
msi_reset(&s->pci.dev);
amdvi_init(s);
}
static void amdvi_realize(DeviceState *dev, Error **err)
{
int ret = 0;
AMDVIState *s = AMD_IOMMU_DEVICE(dev);
X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
MachineState *ms = MACHINE(qdev_get_machine());
PCMachineState *pcms = PC_MACHINE(ms);
PCIBus *bus = pcms->bus;
s->iotlb = g_hash_table_new_full(amdvi_uint64_hash,
amdvi_uint64_equal, g_free, g_free);
/* This device should take care of IOMMU PCI properties */
x86_iommu->type = TYPE_AMD;
qdev_set_parent_bus(DEVICE(&s->pci), &bus->qbus);
object_property_set_bool(OBJECT(&s->pci), true, "realized", err);
ret = pci_add_capability(&s->pci.dev, AMDVI_CAPAB_ID_SEC, 0,
AMDVI_CAPAB_SIZE, err);
if (ret < 0) {
return;
}
s->capab_offset = ret;
ret = pci_add_capability(&s->pci.dev, PCI_CAP_ID_MSI, 0,
AMDVI_CAPAB_REG_SIZE, err);
if (ret < 0) {
return;
}
ret = pci_add_capability(&s->pci.dev, PCI_CAP_ID_HT, 0,
AMDVI_CAPAB_REG_SIZE, err);
if (ret < 0) {
return;
}
/* Pseudo address space under root PCI bus. */
pcms->ioapic_as = amdvi_host_dma_iommu(bus, s, AMDVI_IOAPIC_SB_DEVID);
/* set up MMIO */
memory_region_init_io(&s->mmio, OBJECT(s), &mmio_mem_ops, s, "amdvi-mmio",
AMDVI_MMIO_SIZE);
sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->mmio);
sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, AMDVI_BASE_ADDR);
pci_setup_iommu(bus, amdvi_host_dma_iommu, s);
s->devid = object_property_get_int(OBJECT(&s->pci), "addr", err);
msi_init(&s->pci.dev, 0, 1, true, false, err);
amdvi_init(s);
}
static const VMStateDescription vmstate_amdvi = {
.name = "amd-iommu",
.unmigratable = 1
};
static void amdvi_instance_init(Object *klass)
{
AMDVIState *s = AMD_IOMMU_DEVICE(klass);
object_initialize(&s->pci, sizeof(s->pci), TYPE_AMD_IOMMU_PCI);
}
static void amdvi_class_init(ObjectClass *klass, void* data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
X86IOMMUClass *dc_class = X86_IOMMU_CLASS(klass);
dc->reset = amdvi_reset;
dc->vmsd = &vmstate_amdvi;
dc->hotpluggable = false;
dc_class->realize = amdvi_realize;
dc_class->int_remap = amdvi_int_remap;
/* Supported by the pc-q35-* machine types */
dc->user_creatable = true;
set_bit(DEVICE_CATEGORY_MISC, dc->categories);
dc->desc = "AMD IOMMU (AMD-Vi) DMA Remapping device";
}
static const TypeInfo amdvi = {
.name = TYPE_AMD_IOMMU_DEVICE,
.parent = TYPE_X86_IOMMU_DEVICE,
.instance_size = sizeof(AMDVIState),
.instance_init = amdvi_instance_init,
.class_init = amdvi_class_init
};
static const TypeInfo amdviPCI = {
.name = "AMDVI-PCI",
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(AMDVIPCIState),
.interfaces = (InterfaceInfo[]) {
{ INTERFACE_CONVENTIONAL_PCI_DEVICE },
{ },
},
};
static void amdvi_iommu_memory_region_class_init(ObjectClass *klass, void *data)
{
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
imrc->translate = amdvi_translate;
imrc->notify_flag_changed = amdvi_iommu_notify_flag_changed;
}
static const TypeInfo amdvi_iommu_memory_region_info = {
.parent = TYPE_IOMMU_MEMORY_REGION,
.name = TYPE_AMD_IOMMU_MEMORY_REGION,
.class_init = amdvi_iommu_memory_region_class_init,
};
static void amdviPCI_register_types(void)
{
type_register_static(&amdviPCI);
type_register_static(&amdvi);
type_register_static(&amdvi_iommu_memory_region_info);
}
type_init(amdviPCI_register_types);