Benjamin Herrenschmidt 97ed5ccdee tlb: Add "ifetch" argument to cpu_mmu_index()
This is set to true when the index is for an instruction fetch
translation.

The core get_page_addr_code() sets it, as do the SOFTMMU_CODE_ACCESS
acessors.

All targets ignore it for now, and all other callers pass "false".

This will allow targets who wish to split the mmu index between
instruction and data accesses to do so. A subsequent patch will
do just that for PowerPC.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Message-Id: <1439796853-4410-2-git-send-email-benh@kernel.crashing.org>
Signed-off-by: Richard Henderson <rth@twiddle.net>
2015-09-11 08:15:28 -07:00

243 lines
6.1 KiB
C

/*
* LatticeMico32 virtual CPU header.
*
* Copyright (c) 2010 Michael Walle <michael@walle.cc>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef CPU_LM32_H
#define CPU_LM32_H
#define TARGET_LONG_BITS 32
#define CPUArchState struct CPULM32State
#include "config.h"
#include "qemu-common.h"
#include "exec/cpu-defs.h"
struct CPULM32State;
typedef struct CPULM32State CPULM32State;
#define ELF_MACHINE EM_LATTICEMICO32
#define NB_MMU_MODES 1
#define TARGET_PAGE_BITS 12
static inline int cpu_mmu_index(CPULM32State *env, bool ifetch)
{
return 0;
}
#define TARGET_PHYS_ADDR_SPACE_BITS 32
#define TARGET_VIRT_ADDR_SPACE_BITS 32
/* Exceptions indices */
enum {
EXCP_RESET = 0,
EXCP_BREAKPOINT,
EXCP_INSN_BUS_ERROR,
EXCP_WATCHPOINT,
EXCP_DATA_BUS_ERROR,
EXCP_DIVIDE_BY_ZERO,
EXCP_IRQ,
EXCP_SYSTEMCALL
};
/* Registers */
enum {
R_R0 = 0, R_R1, R_R2, R_R3, R_R4, R_R5, R_R6, R_R7, R_R8, R_R9, R_R10,
R_R11, R_R12, R_R13, R_R14, R_R15, R_R16, R_R17, R_R18, R_R19, R_R20,
R_R21, R_R22, R_R23, R_R24, R_R25, R_R26, R_R27, R_R28, R_R29, R_R30,
R_R31
};
/* Register aliases */
enum {
R_GP = R_R26,
R_FP = R_R27,
R_SP = R_R28,
R_RA = R_R29,
R_EA = R_R30,
R_BA = R_R31
};
/* IE flags */
enum {
IE_IE = (1<<0),
IE_EIE = (1<<1),
IE_BIE = (1<<2),
};
/* DC flags */
enum {
DC_SS = (1<<0),
DC_RE = (1<<1),
DC_C0 = (1<<2),
DC_C1 = (1<<3),
DC_C2 = (1<<4),
DC_C3 = (1<<5),
};
/* CFG mask */
enum {
CFG_M = (1<<0),
CFG_D = (1<<1),
CFG_S = (1<<2),
CFG_U = (1<<3),
CFG_X = (1<<4),
CFG_CC = (1<<5),
CFG_IC = (1<<6),
CFG_DC = (1<<7),
CFG_G = (1<<8),
CFG_H = (1<<9),
CFG_R = (1<<10),
CFG_J = (1<<11),
CFG_INT_SHIFT = 12,
CFG_BP_SHIFT = 18,
CFG_WP_SHIFT = 22,
CFG_REV_SHIFT = 26,
};
/* CSRs */
enum {
CSR_IE = 0x00,
CSR_IM = 0x01,
CSR_IP = 0x02,
CSR_ICC = 0x03,
CSR_DCC = 0x04,
CSR_CC = 0x05,
CSR_CFG = 0x06,
CSR_EBA = 0x07,
CSR_DC = 0x08,
CSR_DEBA = 0x09,
CSR_JTX = 0x0e,
CSR_JRX = 0x0f,
CSR_BP0 = 0x10,
CSR_BP1 = 0x11,
CSR_BP2 = 0x12,
CSR_BP3 = 0x13,
CSR_WP0 = 0x18,
CSR_WP1 = 0x19,
CSR_WP2 = 0x1a,
CSR_WP3 = 0x1b,
};
enum {
LM32_FEATURE_MULTIPLY = 1,
LM32_FEATURE_DIVIDE = 2,
LM32_FEATURE_SHIFT = 4,
LM32_FEATURE_SIGN_EXTEND = 8,
LM32_FEATURE_I_CACHE = 16,
LM32_FEATURE_D_CACHE = 32,
LM32_FEATURE_CYCLE_COUNT = 64,
};
enum {
LM32_FLAG_IGNORE_MSB = 1,
};
struct CPULM32State {
/* general registers */
uint32_t regs[32];
/* special registers */
uint32_t pc; /* program counter */
uint32_t ie; /* interrupt enable */
uint32_t icc; /* instruction cache control */
uint32_t dcc; /* data cache control */
uint32_t cc; /* cycle counter */
uint32_t cfg; /* configuration */
/* debug registers */
uint32_t dc; /* debug control */
uint32_t bp[4]; /* breakpoints */
uint32_t wp[4]; /* watchpoints */
struct CPUBreakpoint *cpu_breakpoint[4];
struct CPUWatchpoint *cpu_watchpoint[4];
CPU_COMMON
/* Fields from here on are preserved across CPU reset. */
uint32_t eba; /* exception base address */
uint32_t deba; /* debug exception base address */
/* interrupt controller handle for callbacks */
DeviceState *pic_state;
/* JTAG UART handle for callbacks */
DeviceState *juart_state;
/* processor core features */
uint32_t flags;
};
typedef enum {
LM32_WP_DISABLED = 0,
LM32_WP_READ,
LM32_WP_WRITE,
LM32_WP_READ_WRITE,
} lm32_wp_t;
static inline lm32_wp_t lm32_wp_type(uint32_t dc, int idx)
{
assert(idx < 4);
return (dc >> (idx+1)*2) & 0x3;
}
#include "cpu-qom.h"
LM32CPU *cpu_lm32_init(const char *cpu_model);
int cpu_lm32_exec(CPUState *cpu);
/* you can call this signal handler from your SIGBUS and SIGSEGV
signal handlers to inform the virtual CPU of exceptions. non zero
is returned if the signal was handled by the virtual CPU. */
int cpu_lm32_signal_handler(int host_signum, void *pinfo,
void *puc);
void lm32_cpu_list(FILE *f, fprintf_function cpu_fprintf);
void lm32_translate_init(void);
void cpu_lm32_set_phys_msb_ignore(CPULM32State *env, int value);
void QEMU_NORETURN raise_exception(CPULM32State *env, int index);
void lm32_debug_excp_handler(CPUState *cs);
void lm32_breakpoint_insert(CPULM32State *env, int index, target_ulong address);
void lm32_breakpoint_remove(CPULM32State *env, int index);
void lm32_watchpoint_insert(CPULM32State *env, int index, target_ulong address,
lm32_wp_t wp_type);
void lm32_watchpoint_remove(CPULM32State *env, int index);
bool lm32_cpu_do_semihosting(CPUState *cs);
#define cpu_init(cpu_model) CPU(cpu_lm32_init(cpu_model))
#define cpu_list lm32_cpu_list
#define cpu_exec cpu_lm32_exec
#define cpu_gen_code cpu_lm32_gen_code
#define cpu_signal_handler cpu_lm32_signal_handler
int lm32_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
int mmu_idx);
#include "exec/cpu-all.h"
static inline void cpu_get_tb_cpu_state(CPULM32State *env, target_ulong *pc,
target_ulong *cs_base, int *flags)
{
*pc = env->pc;
*cs_base = 0;
*flags = 0;
}
#include "exec/exec-all.h"
#endif