qemu-e2k/monitor.c
Luiz Capitulino 9eedeb3b88 QMP: Introduce WATCHDOG event
It's emitted whenever the watchdog device's timer expires. The action
taken is provided in the 'data' member.

Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2010-03-09 08:47:27 -06:00

4772 lines
125 KiB
C

/*
* QEMU monitor
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <dirent.h>
#include "hw/hw.h"
#include "hw/qdev.h"
#include "hw/usb.h"
#include "hw/pcmcia.h"
#include "hw/pc.h"
#include "hw/pci.h"
#include "hw/watchdog.h"
#include "hw/loader.h"
#include "gdbstub.h"
#include "net.h"
#include "net/slirp.h"
#include "qemu-char.h"
#include "sysemu.h"
#include "monitor.h"
#include "readline.h"
#include "console.h"
#include "block.h"
#include "audio/audio.h"
#include "disas.h"
#include "balloon.h"
#include "qemu-timer.h"
#include "migration.h"
#include "kvm.h"
#include "acl.h"
#include "qint.h"
#include "qfloat.h"
#include "qlist.h"
#include "qdict.h"
#include "qbool.h"
#include "qstring.h"
#include "qerror.h"
#include "qjson.h"
#include "json-streamer.h"
#include "json-parser.h"
#include "osdep.h"
//#define DEBUG
//#define DEBUG_COMPLETION
/*
* Supported types:
*
* 'F' filename
* 'B' block device name
* 's' string (accept optional quote)
* 'i' 32 bit integer
* 'l' target long (32 or 64 bit)
* 'M' just like 'l', except in user mode the value is
* multiplied by 2^20 (think Mebibyte)
* 'b' double
* user mode accepts an optional G, g, M, m, K, k suffix,
* which multiplies the value by 2^30 for suffixes G and
* g, 2^20 for M and m, 2^10 for K and k
* 'T' double
* user mode accepts an optional ms, us, ns suffix,
* which divides the value by 1e3, 1e6, 1e9, respectively
* '/' optional gdb-like print format (like "/10x")
*
* '?' optional type (for all types, except '/')
* '.' other form of optional type (for 'i' and 'l')
* '-' optional parameter (eg. '-f')
*
*/
typedef struct MonitorCompletionData MonitorCompletionData;
struct MonitorCompletionData {
Monitor *mon;
void (*user_print)(Monitor *mon, const QObject *data);
};
typedef struct mon_cmd_t {
const char *name;
const char *args_type;
const char *params;
const char *help;
void (*user_print)(Monitor *mon, const QObject *data);
union {
void (*info)(Monitor *mon);
void (*info_new)(Monitor *mon, QObject **ret_data);
int (*info_async)(Monitor *mon, MonitorCompletion *cb, void *opaque);
void (*cmd)(Monitor *mon, const QDict *qdict);
int (*cmd_new)(Monitor *mon, const QDict *params, QObject **ret_data);
int (*cmd_async)(Monitor *mon, const QDict *params,
MonitorCompletion *cb, void *opaque);
} mhandler;
int async;
} mon_cmd_t;
/* file descriptors passed via SCM_RIGHTS */
typedef struct mon_fd_t mon_fd_t;
struct mon_fd_t {
char *name;
int fd;
QLIST_ENTRY(mon_fd_t) next;
};
typedef struct MonitorControl {
QObject *id;
JSONMessageParser parser;
int command_mode;
} MonitorControl;
struct Monitor {
CharDriverState *chr;
int mux_out;
int reset_seen;
int flags;
int suspend_cnt;
uint8_t outbuf[1024];
int outbuf_index;
ReadLineState *rs;
MonitorControl *mc;
CPUState *mon_cpu;
BlockDriverCompletionFunc *password_completion_cb;
void *password_opaque;
#ifdef CONFIG_DEBUG_MONITOR
int print_calls_nr;
#endif
QError *error;
QLIST_HEAD(,mon_fd_t) fds;
QLIST_ENTRY(Monitor) entry;
};
#ifdef CONFIG_DEBUG_MONITOR
#define MON_DEBUG(fmt, ...) do { \
fprintf(stderr, "Monitor: "); \
fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
static inline void mon_print_count_inc(Monitor *mon)
{
mon->print_calls_nr++;
}
static inline void mon_print_count_init(Monitor *mon)
{
mon->print_calls_nr = 0;
}
static inline int mon_print_count_get(const Monitor *mon)
{
return mon->print_calls_nr;
}
#else /* !CONFIG_DEBUG_MONITOR */
#define MON_DEBUG(fmt, ...) do { } while (0)
static inline void mon_print_count_inc(Monitor *mon) { }
static inline void mon_print_count_init(Monitor *mon) { }
static inline int mon_print_count_get(const Monitor *mon) { return 0; }
#endif /* CONFIG_DEBUG_MONITOR */
static QLIST_HEAD(mon_list, Monitor) mon_list;
static const mon_cmd_t mon_cmds[];
static const mon_cmd_t info_cmds[];
Monitor *cur_mon = NULL;
static void monitor_command_cb(Monitor *mon, const char *cmdline,
void *opaque);
static inline int qmp_cmd_mode(const Monitor *mon)
{
return (mon->mc ? mon->mc->command_mode : 0);
}
/* Return true if in control mode, false otherwise */
static inline int monitor_ctrl_mode(const Monitor *mon)
{
return (mon->flags & MONITOR_USE_CONTROL);
}
static void monitor_read_command(Monitor *mon, int show_prompt)
{
if (!mon->rs)
return;
readline_start(mon->rs, "(qemu) ", 0, monitor_command_cb, NULL);
if (show_prompt)
readline_show_prompt(mon->rs);
}
static int monitor_read_password(Monitor *mon, ReadLineFunc *readline_func,
void *opaque)
{
if (monitor_ctrl_mode(mon)) {
qemu_error_new(QERR_MISSING_PARAMETER, "password");
return -EINVAL;
} else if (mon->rs) {
readline_start(mon->rs, "Password: ", 1, readline_func, opaque);
/* prompt is printed on return from the command handler */
return 0;
} else {
monitor_printf(mon, "terminal does not support password prompting\n");
return -ENOTTY;
}
}
void monitor_flush(Monitor *mon)
{
if (mon && mon->outbuf_index != 0 && !mon->mux_out) {
qemu_chr_write(mon->chr, mon->outbuf, mon->outbuf_index);
mon->outbuf_index = 0;
}
}
/* flush at every end of line or if the buffer is full */
static void monitor_puts(Monitor *mon, const char *str)
{
char c;
for(;;) {
c = *str++;
if (c == '\0')
break;
if (c == '\n')
mon->outbuf[mon->outbuf_index++] = '\r';
mon->outbuf[mon->outbuf_index++] = c;
if (mon->outbuf_index >= (sizeof(mon->outbuf) - 1)
|| c == '\n')
monitor_flush(mon);
}
}
void monitor_vprintf(Monitor *mon, const char *fmt, va_list ap)
{
char buf[4096];
if (!mon)
return;
mon_print_count_inc(mon);
if (monitor_ctrl_mode(mon)) {
return;
}
vsnprintf(buf, sizeof(buf), fmt, ap);
monitor_puts(mon, buf);
}
void monitor_printf(Monitor *mon, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
monitor_vprintf(mon, fmt, ap);
va_end(ap);
}
void monitor_print_filename(Monitor *mon, const char *filename)
{
int i;
for (i = 0; filename[i]; i++) {
switch (filename[i]) {
case ' ':
case '"':
case '\\':
monitor_printf(mon, "\\%c", filename[i]);
break;
case '\t':
monitor_printf(mon, "\\t");
break;
case '\r':
monitor_printf(mon, "\\r");
break;
case '\n':
monitor_printf(mon, "\\n");
break;
default:
monitor_printf(mon, "%c", filename[i]);
break;
}
}
}
static int monitor_fprintf(FILE *stream, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
monitor_vprintf((Monitor *)stream, fmt, ap);
va_end(ap);
return 0;
}
static void monitor_user_noop(Monitor *mon, const QObject *data) { }
static inline int monitor_handler_ported(const mon_cmd_t *cmd)
{
return cmd->user_print != NULL;
}
static inline bool monitor_handler_is_async(const mon_cmd_t *cmd)
{
return cmd->async != 0;
}
static inline int monitor_has_error(const Monitor *mon)
{
return mon->error != NULL;
}
static void monitor_json_emitter(Monitor *mon, const QObject *data)
{
QString *json;
json = qobject_to_json(data);
assert(json != NULL);
qstring_append_chr(json, '\n');
monitor_puts(mon, qstring_get_str(json));
QDECREF(json);
}
static void monitor_protocol_emitter(Monitor *mon, QObject *data)
{
QDict *qmp;
qmp = qdict_new();
if (!monitor_has_error(mon)) {
/* success response */
if (data) {
qobject_incref(data);
qdict_put_obj(qmp, "return", data);
} else {
/* return an empty QDict by default */
qdict_put(qmp, "return", qdict_new());
}
} else {
/* error response */
qdict_put(mon->error->error, "desc", qerror_human(mon->error));
qdict_put(qmp, "error", mon->error->error);
QINCREF(mon->error->error);
QDECREF(mon->error);
mon->error = NULL;
}
if (mon->mc->id) {
qdict_put_obj(qmp, "id", mon->mc->id);
mon->mc->id = NULL;
}
monitor_json_emitter(mon, QOBJECT(qmp));
QDECREF(qmp);
}
static void timestamp_put(QDict *qdict)
{
int err;
QObject *obj;
qemu_timeval tv;
err = qemu_gettimeofday(&tv);
if (err < 0)
return;
obj = qobject_from_jsonf("{ 'seconds': %" PRId64 ", "
"'microseconds': %" PRId64 " }",
(int64_t) tv.tv_sec, (int64_t) tv.tv_usec);
qdict_put_obj(qdict, "timestamp", obj);
}
/**
* monitor_protocol_event(): Generate a Monitor event
*
* Event-specific data can be emitted through the (optional) 'data' parameter.
*/
void monitor_protocol_event(MonitorEvent event, QObject *data)
{
QDict *qmp;
const char *event_name;
Monitor *mon;
assert(event < QEVENT_MAX);
switch (event) {
case QEVENT_SHUTDOWN:
event_name = "SHUTDOWN";
break;
case QEVENT_RESET:
event_name = "RESET";
break;
case QEVENT_POWERDOWN:
event_name = "POWERDOWN";
break;
case QEVENT_STOP:
event_name = "STOP";
break;
case QEVENT_VNC_CONNECTED:
event_name = "VNC_CONNECTED";
break;
case QEVENT_VNC_INITIALIZED:
event_name = "VNC_INITIALIZED";
break;
case QEVENT_VNC_DISCONNECTED:
event_name = "VNC_DISCONNECTED";
break;
case QEVENT_BLOCK_IO_ERROR:
event_name = "BLOCK_IO_ERROR";
break;
case QEVENT_RTC_CHANGE:
event_name = "RTC_CHANGE";
break;
case QEVENT_WATCHDOG:
event_name = "WATCHDOG";
break;
default:
abort();
break;
}
qmp = qdict_new();
timestamp_put(qmp);
qdict_put(qmp, "event", qstring_from_str(event_name));
if (data) {
qobject_incref(data);
qdict_put_obj(qmp, "data", data);
}
QLIST_FOREACH(mon, &mon_list, entry) {
if (monitor_ctrl_mode(mon) && qmp_cmd_mode(mon)) {
monitor_json_emitter(mon, QOBJECT(qmp));
}
}
QDECREF(qmp);
}
static int do_qmp_capabilities(Monitor *mon, const QDict *params,
QObject **ret_data)
{
/* Will setup QMP capabilities in the future */
if (monitor_ctrl_mode(mon)) {
mon->mc->command_mode = 1;
}
return 0;
}
static int compare_cmd(const char *name, const char *list)
{
const char *p, *pstart;
int len;
len = strlen(name);
p = list;
for(;;) {
pstart = p;
p = strchr(p, '|');
if (!p)
p = pstart + strlen(pstart);
if ((p - pstart) == len && !memcmp(pstart, name, len))
return 1;
if (*p == '\0')
break;
p++;
}
return 0;
}
static void help_cmd_dump(Monitor *mon, const mon_cmd_t *cmds,
const char *prefix, const char *name)
{
const mon_cmd_t *cmd;
for(cmd = cmds; cmd->name != NULL; cmd++) {
if (!name || !strcmp(name, cmd->name))
monitor_printf(mon, "%s%s %s -- %s\n", prefix, cmd->name,
cmd->params, cmd->help);
}
}
static void help_cmd(Monitor *mon, const char *name)
{
if (name && !strcmp(name, "info")) {
help_cmd_dump(mon, info_cmds, "info ", NULL);
} else {
help_cmd_dump(mon, mon_cmds, "", name);
if (name && !strcmp(name, "log")) {
const CPULogItem *item;
monitor_printf(mon, "Log items (comma separated):\n");
monitor_printf(mon, "%-10s %s\n", "none", "remove all logs");
for(item = cpu_log_items; item->mask != 0; item++) {
monitor_printf(mon, "%-10s %s\n", item->name, item->help);
}
}
}
}
static void do_help_cmd(Monitor *mon, const QDict *qdict)
{
help_cmd(mon, qdict_get_try_str(qdict, "name"));
}
static void do_commit(Monitor *mon, const QDict *qdict)
{
int all_devices;
DriveInfo *dinfo;
const char *device = qdict_get_str(qdict, "device");
all_devices = !strcmp(device, "all");
QTAILQ_FOREACH(dinfo, &drives, next) {
if (!all_devices)
if (strcmp(bdrv_get_device_name(dinfo->bdrv), device))
continue;
bdrv_commit(dinfo->bdrv);
}
}
static void user_monitor_complete(void *opaque, QObject *ret_data)
{
MonitorCompletionData *data = (MonitorCompletionData *)opaque;
if (ret_data) {
data->user_print(data->mon, ret_data);
}
monitor_resume(data->mon);
qemu_free(data);
}
static void qmp_monitor_complete(void *opaque, QObject *ret_data)
{
monitor_protocol_emitter(opaque, ret_data);
}
static void qmp_async_cmd_handler(Monitor *mon, const mon_cmd_t *cmd,
const QDict *params)
{
cmd->mhandler.cmd_async(mon, params, qmp_monitor_complete, mon);
}
static void qmp_async_info_handler(Monitor *mon, const mon_cmd_t *cmd)
{
cmd->mhandler.info_async(mon, qmp_monitor_complete, mon);
}
static void user_async_cmd_handler(Monitor *mon, const mon_cmd_t *cmd,
const QDict *params)
{
int ret;
MonitorCompletionData *cb_data = qemu_malloc(sizeof(*cb_data));
cb_data->mon = mon;
cb_data->user_print = cmd->user_print;
monitor_suspend(mon);
ret = cmd->mhandler.cmd_async(mon, params,
user_monitor_complete, cb_data);
if (ret < 0) {
monitor_resume(mon);
qemu_free(cb_data);
}
}
static void user_async_info_handler(Monitor *mon, const mon_cmd_t *cmd)
{
int ret;
MonitorCompletionData *cb_data = qemu_malloc(sizeof(*cb_data));
cb_data->mon = mon;
cb_data->user_print = cmd->user_print;
monitor_suspend(mon);
ret = cmd->mhandler.info_async(mon, user_monitor_complete, cb_data);
if (ret < 0) {
monitor_resume(mon);
qemu_free(cb_data);
}
}
static int do_info(Monitor *mon, const QDict *qdict, QObject **ret_data)
{
const mon_cmd_t *cmd;
const char *item = qdict_get_try_str(qdict, "item");
if (!item) {
assert(monitor_ctrl_mode(mon) == 0);
goto help;
}
for (cmd = info_cmds; cmd->name != NULL; cmd++) {
if (compare_cmd(item, cmd->name))
break;
}
if (cmd->name == NULL) {
if (monitor_ctrl_mode(mon)) {
qemu_error_new(QERR_COMMAND_NOT_FOUND, item);
return -1;
}
goto help;
}
if (monitor_handler_is_async(cmd)) {
if (monitor_ctrl_mode(mon)) {
qmp_async_info_handler(mon, cmd);
} else {
user_async_info_handler(mon, cmd);
}
/*
* Indicate that this command is asynchronous and will not return any
* data (not even empty). Instead, the data will be returned via a
* completion callback.
*/
*ret_data = qobject_from_jsonf("{ '__mon_async': 'return' }");
} else if (monitor_handler_ported(cmd)) {
cmd->mhandler.info_new(mon, ret_data);
if (!monitor_ctrl_mode(mon)) {
/*
* User Protocol function is called here, Monitor Protocol is
* handled by monitor_call_handler()
*/
if (*ret_data)
cmd->user_print(mon, *ret_data);
}
} else {
if (monitor_ctrl_mode(mon)) {
/* handler not converted yet */
qemu_error_new(QERR_COMMAND_NOT_FOUND, item);
return -1;
} else {
cmd->mhandler.info(mon);
}
}
return 0;
help:
help_cmd(mon, "info");
return 0;
}
static void do_info_version_print(Monitor *mon, const QObject *data)
{
QDict *qdict;
qdict = qobject_to_qdict(data);
monitor_printf(mon, "%s%s\n", qdict_get_str(qdict, "qemu"),
qdict_get_str(qdict, "package"));
}
/**
* do_info_version(): Show QEMU version
*
* Return a QDict with the following information:
*
* - "qemu": QEMU's version
* - "package": package's version
*
* Example:
*
* { "qemu": "0.11.50", "package": "" }
*/
static void do_info_version(Monitor *mon, QObject **ret_data)
{
*ret_data = qobject_from_jsonf("{ 'qemu': %s, 'package': %s }",
QEMU_VERSION, QEMU_PKGVERSION);
}
static void do_info_name_print(Monitor *mon, const QObject *data)
{
QDict *qdict;
qdict = qobject_to_qdict(data);
if (qdict_size(qdict) == 0) {
return;
}
monitor_printf(mon, "%s\n", qdict_get_str(qdict, "name"));
}
/**
* do_info_name(): Show VM name
*
* Return a QDict with the following information:
*
* - "name": VM's name (optional)
*
* Example:
*
* { "name": "qemu-name" }
*/
static void do_info_name(Monitor *mon, QObject **ret_data)
{
*ret_data = qemu_name ? qobject_from_jsonf("{'name': %s }", qemu_name) :
qobject_from_jsonf("{}");
}
static QObject *get_cmd_dict(const char *name)
{
const char *p;
/* Remove '|' from some commands */
p = strchr(name, '|');
if (p) {
p++;
} else {
p = name;
}
return qobject_from_jsonf("{ 'name': %s }", p);
}
/**
* do_info_commands(): List QMP available commands
*
* Each command is represented by a QDict, the returned QObject is a QList
* of all commands.
*
* The QDict contains:
*
* - "name": command's name
*
* Example:
*
* { [ { "name": "query-balloon" }, { "name": "system_powerdown" } ] }
*/
static void do_info_commands(Monitor *mon, QObject **ret_data)
{
QList *cmd_list;
const mon_cmd_t *cmd;
cmd_list = qlist_new();
for (cmd = mon_cmds; cmd->name != NULL; cmd++) {
if (monitor_handler_ported(cmd) && !compare_cmd(cmd->name, "info")) {
qlist_append_obj(cmd_list, get_cmd_dict(cmd->name));
}
}
for (cmd = info_cmds; cmd->name != NULL; cmd++) {
if (monitor_handler_ported(cmd)) {
char buf[128];
snprintf(buf, sizeof(buf), "query-%s", cmd->name);
qlist_append_obj(cmd_list, get_cmd_dict(buf));
}
}
*ret_data = QOBJECT(cmd_list);
}
#if defined(TARGET_I386)
static void do_info_hpet_print(Monitor *mon, const QObject *data)
{
monitor_printf(mon, "HPET is %s by QEMU\n",
qdict_get_bool(qobject_to_qdict(data), "enabled") ?
"enabled" : "disabled");
}
/**
* do_info_hpet(): Show HPET state
*
* Return a QDict with the following information:
*
* - "enabled": true if hpet if enabled, false otherwise
*
* Example:
*
* { "enabled": true }
*/
static void do_info_hpet(Monitor *mon, QObject **ret_data)
{
*ret_data = qobject_from_jsonf("{ 'enabled': %i }", !no_hpet);
}
#endif
static void do_info_uuid_print(Monitor *mon, const QObject *data)
{
monitor_printf(mon, "%s\n", qdict_get_str(qobject_to_qdict(data), "UUID"));
}
/**
* do_info_uuid(): Show VM UUID
*
* Return a QDict with the following information:
*
* - "UUID": Universally Unique Identifier
*
* Example:
*
* { "UUID": "550e8400-e29b-41d4-a716-446655440000" }
*/
static void do_info_uuid(Monitor *mon, QObject **ret_data)
{
char uuid[64];
snprintf(uuid, sizeof(uuid), UUID_FMT, qemu_uuid[0], qemu_uuid[1],
qemu_uuid[2], qemu_uuid[3], qemu_uuid[4], qemu_uuid[5],
qemu_uuid[6], qemu_uuid[7], qemu_uuid[8], qemu_uuid[9],
qemu_uuid[10], qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
qemu_uuid[14], qemu_uuid[15]);
*ret_data = qobject_from_jsonf("{ 'UUID': %s }", uuid);
}
/* get the current CPU defined by the user */
static int mon_set_cpu(int cpu_index)
{
CPUState *env;
for(env = first_cpu; env != NULL; env = env->next_cpu) {
if (env->cpu_index == cpu_index) {
cur_mon->mon_cpu = env;
return 0;
}
}
return -1;
}
static CPUState *mon_get_cpu(void)
{
if (!cur_mon->mon_cpu) {
mon_set_cpu(0);
}
cpu_synchronize_state(cur_mon->mon_cpu);
return cur_mon->mon_cpu;
}
static void do_info_registers(Monitor *mon)
{
CPUState *env;
env = mon_get_cpu();
#ifdef TARGET_I386
cpu_dump_state(env, (FILE *)mon, monitor_fprintf,
X86_DUMP_FPU);
#else
cpu_dump_state(env, (FILE *)mon, monitor_fprintf,
0);
#endif
}
static void print_cpu_iter(QObject *obj, void *opaque)
{
QDict *cpu;
int active = ' ';
Monitor *mon = opaque;
assert(qobject_type(obj) == QTYPE_QDICT);
cpu = qobject_to_qdict(obj);
if (qdict_get_bool(cpu, "current")) {
active = '*';
}
monitor_printf(mon, "%c CPU #%d: ", active, (int)qdict_get_int(cpu, "CPU"));
#if defined(TARGET_I386)
monitor_printf(mon, "pc=0x" TARGET_FMT_lx,
(target_ulong) qdict_get_int(cpu, "pc"));
#elif defined(TARGET_PPC)
monitor_printf(mon, "nip=0x" TARGET_FMT_lx,
(target_long) qdict_get_int(cpu, "nip"));
#elif defined(TARGET_SPARC)
monitor_printf(mon, "pc=0x " TARGET_FMT_lx,
(target_long) qdict_get_int(cpu, "pc"));
monitor_printf(mon, "npc=0x" TARGET_FMT_lx,
(target_long) qdict_get_int(cpu, "npc"));
#elif defined(TARGET_MIPS)
monitor_printf(mon, "PC=0x" TARGET_FMT_lx,
(target_long) qdict_get_int(cpu, "PC"));
#endif
if (qdict_get_bool(cpu, "halted")) {
monitor_printf(mon, " (halted)");
}
monitor_printf(mon, "\n");
}
static void monitor_print_cpus(Monitor *mon, const QObject *data)
{
QList *cpu_list;
assert(qobject_type(data) == QTYPE_QLIST);
cpu_list = qobject_to_qlist(data);
qlist_iter(cpu_list, print_cpu_iter, mon);
}
/**
* do_info_cpus(): Show CPU information
*
* Return a QList. Each CPU is represented by a QDict, which contains:
*
* - "cpu": CPU index
* - "current": true if this is the current CPU, false otherwise
* - "halted": true if the cpu is halted, false otherwise
* - Current program counter. The key's name depends on the architecture:
* "pc": i386/x86)64
* "nip": PPC
* "pc" and "npc": sparc
* "PC": mips
*
* Example:
*
* [ { "CPU": 0, "current": true, "halted": false, "pc": 3227107138 },
* { "CPU": 1, "current": false, "halted": true, "pc": 7108165 } ]
*/
static void do_info_cpus(Monitor *mon, QObject **ret_data)
{
CPUState *env;
QList *cpu_list;
cpu_list = qlist_new();
/* just to set the default cpu if not already done */
mon_get_cpu();
for(env = first_cpu; env != NULL; env = env->next_cpu) {
QDict *cpu;
QObject *obj;
cpu_synchronize_state(env);
obj = qobject_from_jsonf("{ 'CPU': %d, 'current': %i, 'halted': %i }",
env->cpu_index, env == mon->mon_cpu,
env->halted);
cpu = qobject_to_qdict(obj);
#if defined(TARGET_I386)
qdict_put(cpu, "pc", qint_from_int(env->eip + env->segs[R_CS].base));
#elif defined(TARGET_PPC)
qdict_put(cpu, "nip", qint_from_int(env->nip));
#elif defined(TARGET_SPARC)
qdict_put(cpu, "pc", qint_from_int(env->pc));
qdict_put(cpu, "npc", qint_from_int(env->npc));
#elif defined(TARGET_MIPS)
qdict_put(cpu, "PC", qint_from_int(env->active_tc.PC));
#endif
qlist_append(cpu_list, cpu);
}
*ret_data = QOBJECT(cpu_list);
}
static int do_cpu_set(Monitor *mon, const QDict *qdict, QObject **ret_data)
{
int index = qdict_get_int(qdict, "index");
if (mon_set_cpu(index) < 0) {
qemu_error_new(QERR_INVALID_PARAMETER, "index");
return -1;
}
return 0;
}
static void do_info_jit(Monitor *mon)
{
dump_exec_info((FILE *)mon, monitor_fprintf);
}
static void do_info_history(Monitor *mon)
{
int i;
const char *str;
if (!mon->rs)
return;
i = 0;
for(;;) {
str = readline_get_history(mon->rs, i);
if (!str)
break;
monitor_printf(mon, "%d: '%s'\n", i, str);
i++;
}
}
#if defined(TARGET_PPC)
/* XXX: not implemented in other targets */
static void do_info_cpu_stats(Monitor *mon)
{
CPUState *env;
env = mon_get_cpu();
cpu_dump_statistics(env, (FILE *)mon, &monitor_fprintf, 0);
}
#endif
/**
* do_quit(): Quit QEMU execution
*/
static int do_quit(Monitor *mon, const QDict *qdict, QObject **ret_data)
{
exit(0);
return 0;
}
static int eject_device(Monitor *mon, BlockDriverState *bs, int force)
{
if (bdrv_is_inserted(bs)) {
if (!force) {
if (!bdrv_is_removable(bs)) {
qemu_error_new(QERR_DEVICE_NOT_REMOVABLE,
bdrv_get_device_name(bs));
return -1;
}
if (bdrv_is_locked(bs)) {
qemu_error_new(QERR_DEVICE_LOCKED, bdrv_get_device_name(bs));
return -1;
}
}
bdrv_close(bs);
}
return 0;
}
static int do_eject(Monitor *mon, const QDict *qdict, QObject **ret_data)
{
BlockDriverState *bs;
int force = qdict_get_int(qdict, "force");
const char *filename = qdict_get_str(qdict, "device");
bs = bdrv_find(filename);
if (!bs) {
qemu_error_new(QERR_DEVICE_NOT_FOUND, filename);
return -1;
}
return eject_device(mon, bs, force);
}
static int do_block_set_passwd(Monitor *mon, const QDict *qdict,
QObject **ret_data)
{
BlockDriverState *bs;
bs = bdrv_find(qdict_get_str(qdict, "device"));
if (!bs) {
qemu_error_new(QERR_DEVICE_NOT_FOUND, qdict_get_str(qdict, "device"));
return -1;
}
if (bdrv_set_key(bs, qdict_get_str(qdict, "password")) < 0) {
qemu_error_new(QERR_INVALID_PASSWORD);
return -1;
}
return 0;
}
static int do_change_block(Monitor *mon, const char *device,
const char *filename, const char *fmt)
{
BlockDriverState *bs;
BlockDriver *drv = NULL;
bs = bdrv_find(device);
if (!bs) {
qemu_error_new(QERR_DEVICE_NOT_FOUND, device);
return -1;
}
if (fmt) {
drv = bdrv_find_whitelisted_format(fmt);
if (!drv) {
qemu_error_new(QERR_INVALID_BLOCK_FORMAT, fmt);
return -1;
}
}
if (eject_device(mon, bs, 0) < 0) {
return -1;
}
if (bdrv_open2(bs, filename, BDRV_O_RDWR, drv) < 0) {
return -1;
}
return monitor_read_bdrv_key_start(mon, bs, NULL, NULL);
}
static int change_vnc_password(const char *password)
{
if (vnc_display_password(NULL, password) < 0) {
qemu_error_new(QERR_SET_PASSWD_FAILED);
return -1;
}
return 0;
}
static void change_vnc_password_cb(Monitor *mon, const char *password,
void *opaque)
{
change_vnc_password(password);
monitor_read_command(mon, 1);
}
static int do_change_vnc(Monitor *mon, const char *target, const char *arg)
{
if (strcmp(target, "passwd") == 0 ||
strcmp(target, "password") == 0) {
if (arg) {
char password[9];
strncpy(password, arg, sizeof(password));
password[sizeof(password) - 1] = '\0';
return change_vnc_password(password);
} else {
return monitor_read_password(mon, change_vnc_password_cb, NULL);
}
} else {
if (vnc_display_open(NULL, target) < 0) {
qemu_error_new(QERR_VNC_SERVER_FAILED, target);
return -1;
}
}
return 0;
}
/**
* do_change(): Change a removable medium, or VNC configuration
*/
static int do_change(Monitor *mon, const QDict *qdict, QObject **ret_data)
{
const char *device = qdict_get_str(qdict, "device");
const char *target = qdict_get_str(qdict, "target");
const char *arg = qdict_get_try_str(qdict, "arg");
int ret;
if (strcmp(device, "vnc") == 0) {
ret = do_change_vnc(mon, target, arg);
} else {
ret = do_change_block(mon, device, target, arg);
}
return ret;
}
static void do_screen_dump(Monitor *mon, const QDict *qdict)
{
vga_hw_screen_dump(qdict_get_str(qdict, "filename"));
}
static void do_logfile(Monitor *mon, const QDict *qdict)
{
cpu_set_log_filename(qdict_get_str(qdict, "filename"));
}
static void do_log(Monitor *mon, const QDict *qdict)
{
int mask;
const char *items = qdict_get_str(qdict, "items");
if (!strcmp(items, "none")) {
mask = 0;
} else {
mask = cpu_str_to_log_mask(items);
if (!mask) {
help_cmd(mon, "log");
return;
}
}
cpu_set_log(mask);
}
static void do_singlestep(Monitor *mon, const QDict *qdict)
{
const char *option = qdict_get_try_str(qdict, "option");
if (!option || !strcmp(option, "on")) {
singlestep = 1;
} else if (!strcmp(option, "off")) {
singlestep = 0;
} else {
monitor_printf(mon, "unexpected option %s\n", option);
}
}
/**
* do_stop(): Stop VM execution
*/
static int do_stop(Monitor *mon, const QDict *qdict, QObject **ret_data)
{
vm_stop(EXCP_INTERRUPT);
return 0;
}
static void encrypted_bdrv_it(void *opaque, BlockDriverState *bs);
struct bdrv_iterate_context {
Monitor *mon;
int err;
};
/**
* do_cont(): Resume emulation.
*/
static int do_cont(Monitor *mon, const QDict *qdict, QObject **ret_data)
{
struct bdrv_iterate_context context = { mon, 0 };
bdrv_iterate(encrypted_bdrv_it, &context);
/* only resume the vm if all keys are set and valid */
if (!context.err) {
vm_start();
return 0;
} else {
return -1;
}
}
static void bdrv_key_cb(void *opaque, int err)
{
Monitor *mon = opaque;
/* another key was set successfully, retry to continue */
if (!err)
do_cont(mon, NULL, NULL);
}
static void encrypted_bdrv_it(void *opaque, BlockDriverState *bs)
{
struct bdrv_iterate_context *context = opaque;
if (!context->err && bdrv_key_required(bs)) {
context->err = -EBUSY;
monitor_read_bdrv_key_start(context->mon, bs, bdrv_key_cb,
context->mon);
}
}
static void do_gdbserver(Monitor *mon, const QDict *qdict)
{
const char *device = qdict_get_try_str(qdict, "device");
if (!device)
device = "tcp::" DEFAULT_GDBSTUB_PORT;
if (gdbserver_start(device) < 0) {
monitor_printf(mon, "Could not open gdbserver on device '%s'\n",
device);
} else if (strcmp(device, "none") == 0) {
monitor_printf(mon, "Disabled gdbserver\n");
} else {
monitor_printf(mon, "Waiting for gdb connection on device '%s'\n",
device);
}
}
static void do_watchdog_action(Monitor *mon, const QDict *qdict)
{
const char *action = qdict_get_str(qdict, "action");
if (select_watchdog_action(action) == -1) {
monitor_printf(mon, "Unknown watchdog action '%s'\n", action);
}
}
static void monitor_printc(Monitor *mon, int c)
{
monitor_printf(mon, "'");
switch(c) {
case '\'':
monitor_printf(mon, "\\'");
break;
case '\\':
monitor_printf(mon, "\\\\");
break;
case '\n':
monitor_printf(mon, "\\n");
break;
case '\r':
monitor_printf(mon, "\\r");
break;
default:
if (c >= 32 && c <= 126) {
monitor_printf(mon, "%c", c);
} else {
monitor_printf(mon, "\\x%02x", c);
}
break;
}
monitor_printf(mon, "'");
}
static void memory_dump(Monitor *mon, int count, int format, int wsize,
target_phys_addr_t addr, int is_physical)
{
CPUState *env;
int l, line_size, i, max_digits, len;
uint8_t buf[16];
uint64_t v;
if (format == 'i') {
int flags;
flags = 0;
env = mon_get_cpu();
#ifdef TARGET_I386
if (wsize == 2) {
flags = 1;
} else if (wsize == 4) {
flags = 0;
} else {
/* as default we use the current CS size */
flags = 0;
if (env) {
#ifdef TARGET_X86_64
if ((env->efer & MSR_EFER_LMA) &&
(env->segs[R_CS].flags & DESC_L_MASK))
flags = 2;
else
#endif
if (!(env->segs[R_CS].flags & DESC_B_MASK))
flags = 1;
}
}
#endif
monitor_disas(mon, env, addr, count, is_physical, flags);
return;
}
len = wsize * count;
if (wsize == 1)
line_size = 8;
else
line_size = 16;
max_digits = 0;
switch(format) {
case 'o':
max_digits = (wsize * 8 + 2) / 3;
break;
default:
case 'x':
max_digits = (wsize * 8) / 4;
break;
case 'u':
case 'd':
max_digits = (wsize * 8 * 10 + 32) / 33;
break;
case 'c':
wsize = 1;
break;
}
while (len > 0) {
if (is_physical)
monitor_printf(mon, TARGET_FMT_plx ":", addr);
else
monitor_printf(mon, TARGET_FMT_lx ":", (target_ulong)addr);
l = len;
if (l > line_size)
l = line_size;
if (is_physical) {
cpu_physical_memory_rw(addr, buf, l, 0);
} else {
env = mon_get_cpu();
if (cpu_memory_rw_debug(env, addr, buf, l, 0) < 0) {
monitor_printf(mon, " Cannot access memory\n");
break;
}
}
i = 0;
while (i < l) {
switch(wsize) {
default:
case 1:
v = ldub_raw(buf + i);
break;
case 2:
v = lduw_raw(buf + i);
break;
case 4:
v = (uint32_t)ldl_raw(buf + i);
break;
case 8:
v = ldq_raw(buf + i);
break;
}
monitor_printf(mon, " ");
switch(format) {
case 'o':
monitor_printf(mon, "%#*" PRIo64, max_digits, v);
break;
case 'x':
monitor_printf(mon, "0x%0*" PRIx64, max_digits, v);
break;
case 'u':
monitor_printf(mon, "%*" PRIu64, max_digits, v);
break;
case 'd':
monitor_printf(mon, "%*" PRId64, max_digits, v);
break;
case 'c':
monitor_printc(mon, v);
break;
}
i += wsize;
}
monitor_printf(mon, "\n");
addr += l;
len -= l;
}
}
static void do_memory_dump(Monitor *mon, const QDict *qdict)
{
int count = qdict_get_int(qdict, "count");
int format = qdict_get_int(qdict, "format");
int size = qdict_get_int(qdict, "size");
target_long addr = qdict_get_int(qdict, "addr");
memory_dump(mon, count, format, size, addr, 0);
}
static void do_physical_memory_dump(Monitor *mon, const QDict *qdict)
{
int count = qdict_get_int(qdict, "count");
int format = qdict_get_int(qdict, "format");
int size = qdict_get_int(qdict, "size");
target_phys_addr_t addr = qdict_get_int(qdict, "addr");
memory_dump(mon, count, format, size, addr, 1);
}
static void do_print(Monitor *mon, const QDict *qdict)
{
int format = qdict_get_int(qdict, "format");
target_phys_addr_t val = qdict_get_int(qdict, "val");
#if TARGET_PHYS_ADDR_BITS == 32
switch(format) {
case 'o':
monitor_printf(mon, "%#o", val);
break;
case 'x':
monitor_printf(mon, "%#x", val);
break;
case 'u':
monitor_printf(mon, "%u", val);
break;
default:
case 'd':
monitor_printf(mon, "%d", val);
break;
case 'c':
monitor_printc(mon, val);
break;
}
#else
switch(format) {
case 'o':
monitor_printf(mon, "%#" PRIo64, val);
break;
case 'x':
monitor_printf(mon, "%#" PRIx64, val);
break;
case 'u':
monitor_printf(mon, "%" PRIu64, val);
break;
default:
case 'd':
monitor_printf(mon, "%" PRId64, val);
break;
case 'c':
monitor_printc(mon, val);
break;
}
#endif
monitor_printf(mon, "\n");
}
static int do_memory_save(Monitor *mon, const QDict *qdict, QObject **ret_data)
{
FILE *f;
uint32_t size = qdict_get_int(qdict, "size");
const char *filename = qdict_get_str(qdict, "filename");
target_long addr = qdict_get_int(qdict, "val");
uint32_t l;
CPUState *env;
uint8_t buf[1024];
int ret = -1;
env = mon_get_cpu();
f = fopen(filename, "wb");
if (!f) {
qemu_error_new(QERR_OPEN_FILE_FAILED, filename);
return -1;
}
while (size != 0) {
l = sizeof(buf);
if (l > size)
l = size;
cpu_memory_rw_debug(env, addr, buf, l, 0);
if (fwrite(buf, 1, l, f) != l) {
monitor_printf(mon, "fwrite() error in do_memory_save\n");
goto exit;
}
addr += l;
size -= l;
}
ret = 0;
exit:
fclose(f);
return ret;
}
static int do_physical_memory_save(Monitor *mon, const QDict *qdict,
QObject **ret_data)
{
FILE *f;
uint32_t l;
uint8_t buf[1024];
uint32_t size = qdict_get_int(qdict, "size");
const char *filename = qdict_get_str(qdict, "filename");
target_phys_addr_t addr = qdict_get_int(qdict, "val");
int ret = -1;
f = fopen(filename, "wb");
if (!f) {
qemu_error_new(QERR_OPEN_FILE_FAILED, filename);
return -1;
}
while (size != 0) {
l = sizeof(buf);
if (l > size)
l = size;
cpu_physical_memory_rw(addr, buf, l, 0);
if (fwrite(buf, 1, l, f) != l) {
monitor_printf(mon, "fwrite() error in do_physical_memory_save\n");
goto exit;
}
fflush(f);
addr += l;
size -= l;
}
ret = 0;
exit:
fclose(f);
return ret;
}
static void do_sum(Monitor *mon, const QDict *qdict)
{
uint32_t addr;
uint8_t buf[1];
uint16_t sum;
uint32_t start = qdict_get_int(qdict, "start");
uint32_t size = qdict_get_int(qdict, "size");
sum = 0;
for(addr = start; addr < (start + size); addr++) {
cpu_physical_memory_rw(addr, buf, 1, 0);
/* BSD sum algorithm ('sum' Unix command) */
sum = (sum >> 1) | (sum << 15);
sum += buf[0];
}
monitor_printf(mon, "%05d\n", sum);
}
typedef struct {
int keycode;
const char *name;
} KeyDef;
static const KeyDef key_defs[] = {
{ 0x2a, "shift" },
{ 0x36, "shift_r" },
{ 0x38, "alt" },
{ 0xb8, "alt_r" },
{ 0x64, "altgr" },
{ 0xe4, "altgr_r" },
{ 0x1d, "ctrl" },
{ 0x9d, "ctrl_r" },
{ 0xdd, "menu" },
{ 0x01, "esc" },
{ 0x02, "1" },
{ 0x03, "2" },
{ 0x04, "3" },
{ 0x05, "4" },
{ 0x06, "5" },
{ 0x07, "6" },
{ 0x08, "7" },
{ 0x09, "8" },
{ 0x0a, "9" },
{ 0x0b, "0" },
{ 0x0c, "minus" },
{ 0x0d, "equal" },
{ 0x0e, "backspace" },
{ 0x0f, "tab" },
{ 0x10, "q" },
{ 0x11, "w" },
{ 0x12, "e" },
{ 0x13, "r" },
{ 0x14, "t" },
{ 0x15, "y" },
{ 0x16, "u" },
{ 0x17, "i" },
{ 0x18, "o" },
{ 0x19, "p" },
{ 0x1c, "ret" },
{ 0x1e, "a" },
{ 0x1f, "s" },
{ 0x20, "d" },
{ 0x21, "f" },
{ 0x22, "g" },
{ 0x23, "h" },
{ 0x24, "j" },
{ 0x25, "k" },
{ 0x26, "l" },
{ 0x2c, "z" },
{ 0x2d, "x" },
{ 0x2e, "c" },
{ 0x2f, "v" },
{ 0x30, "b" },
{ 0x31, "n" },
{ 0x32, "m" },
{ 0x33, "comma" },
{ 0x34, "dot" },
{ 0x35, "slash" },
{ 0x37, "asterisk" },
{ 0x39, "spc" },
{ 0x3a, "caps_lock" },
{ 0x3b, "f1" },
{ 0x3c, "f2" },
{ 0x3d, "f3" },
{ 0x3e, "f4" },
{ 0x3f, "f5" },
{ 0x40, "f6" },
{ 0x41, "f7" },
{ 0x42, "f8" },
{ 0x43, "f9" },
{ 0x44, "f10" },
{ 0x45, "num_lock" },
{ 0x46, "scroll_lock" },
{ 0xb5, "kp_divide" },
{ 0x37, "kp_multiply" },
{ 0x4a, "kp_subtract" },
{ 0x4e, "kp_add" },
{ 0x9c, "kp_enter" },
{ 0x53, "kp_decimal" },
{ 0x54, "sysrq" },
{ 0x52, "kp_0" },
{ 0x4f, "kp_1" },
{ 0x50, "kp_2" },
{ 0x51, "kp_3" },
{ 0x4b, "kp_4" },
{ 0x4c, "kp_5" },
{ 0x4d, "kp_6" },
{ 0x47, "kp_7" },
{ 0x48, "kp_8" },
{ 0x49, "kp_9" },
{ 0x56, "<" },
{ 0x57, "f11" },
{ 0x58, "f12" },
{ 0xb7, "print" },
{ 0xc7, "home" },
{ 0xc9, "pgup" },
{ 0xd1, "pgdn" },
{ 0xcf, "end" },
{ 0xcb, "left" },
{ 0xc8, "up" },
{ 0xd0, "down" },
{ 0xcd, "right" },
{ 0xd2, "insert" },
{ 0xd3, "delete" },
#if defined(TARGET_SPARC) && !defined(TARGET_SPARC64)
{ 0xf0, "stop" },
{ 0xf1, "again" },
{ 0xf2, "props" },
{ 0xf3, "undo" },
{ 0xf4, "front" },
{ 0xf5, "copy" },
{ 0xf6, "open" },
{ 0xf7, "paste" },
{ 0xf8, "find" },
{ 0xf9, "cut" },
{ 0xfa, "lf" },
{ 0xfb, "help" },
{ 0xfc, "meta_l" },
{ 0xfd, "meta_r" },
{ 0xfe, "compose" },
#endif
{ 0, NULL },
};
static int get_keycode(const char *key)
{
const KeyDef *p;
char *endp;
int ret;
for(p = key_defs; p->name != NULL; p++) {
if (!strcmp(key, p->name))
return p->keycode;
}
if (strstart(key, "0x", NULL)) {
ret = strtoul(key, &endp, 0);
if (*endp == '\0' && ret >= 0x01 && ret <= 0xff)
return ret;
}
return -1;
}
#define MAX_KEYCODES 16
static uint8_t keycodes[MAX_KEYCODES];
static int nb_pending_keycodes;
static QEMUTimer *key_timer;
static void release_keys(void *opaque)
{
int keycode;
while (nb_pending_keycodes > 0) {
nb_pending_keycodes--;
keycode = keycodes[nb_pending_keycodes];
if (keycode & 0x80)
kbd_put_keycode(0xe0);
kbd_put_keycode(keycode | 0x80);
}
}
static void do_sendkey(Monitor *mon, const QDict *qdict)
{
char keyname_buf[16];
char *separator;
int keyname_len, keycode, i;
const char *string = qdict_get_str(qdict, "string");
int has_hold_time = qdict_haskey(qdict, "hold_time");
int hold_time = qdict_get_try_int(qdict, "hold_time", -1);
if (nb_pending_keycodes > 0) {
qemu_del_timer(key_timer);
release_keys(NULL);
}
if (!has_hold_time)
hold_time = 100;
i = 0;
while (1) {
separator = strchr(string, '-');
keyname_len = separator ? separator - string : strlen(string);
if (keyname_len > 0) {
pstrcpy(keyname_buf, sizeof(keyname_buf), string);
if (keyname_len > sizeof(keyname_buf) - 1) {
monitor_printf(mon, "invalid key: '%s...'\n", keyname_buf);
return;
}
if (i == MAX_KEYCODES) {
monitor_printf(mon, "too many keys\n");
return;
}
keyname_buf[keyname_len] = 0;
keycode = get_keycode(keyname_buf);
if (keycode < 0) {
monitor_printf(mon, "unknown key: '%s'\n", keyname_buf);
return;
}
keycodes[i++] = keycode;
}
if (!separator)
break;
string = separator + 1;
}
nb_pending_keycodes = i;
/* key down events */
for (i = 0; i < nb_pending_keycodes; i++) {
keycode = keycodes[i];
if (keycode & 0x80)
kbd_put_keycode(0xe0);
kbd_put_keycode(keycode & 0x7f);
}
/* delayed key up events */
qemu_mod_timer(key_timer, qemu_get_clock(vm_clock) +
muldiv64(get_ticks_per_sec(), hold_time, 1000));
}
static int mouse_button_state;
static void do_mouse_move(Monitor *mon, const QDict *qdict)
{
int dx, dy, dz;
const char *dx_str = qdict_get_str(qdict, "dx_str");
const char *dy_str = qdict_get_str(qdict, "dy_str");
const char *dz_str = qdict_get_try_str(qdict, "dz_str");
dx = strtol(dx_str, NULL, 0);
dy = strtol(dy_str, NULL, 0);
dz = 0;
if (dz_str)
dz = strtol(dz_str, NULL, 0);
kbd_mouse_event(dx, dy, dz, mouse_button_state);
}
static void do_mouse_button(Monitor *mon, const QDict *qdict)
{
int button_state = qdict_get_int(qdict, "button_state");
mouse_button_state = button_state;
kbd_mouse_event(0, 0, 0, mouse_button_state);
}
static void do_ioport_read(Monitor *mon, const QDict *qdict)
{
int size = qdict_get_int(qdict, "size");
int addr = qdict_get_int(qdict, "addr");
int has_index = qdict_haskey(qdict, "index");
uint32_t val;
int suffix;
if (has_index) {
int index = qdict_get_int(qdict, "index");
cpu_outb(addr & IOPORTS_MASK, index & 0xff);
addr++;
}
addr &= 0xffff;
switch(size) {
default:
case 1:
val = cpu_inb(addr);
suffix = 'b';
break;
case 2:
val = cpu_inw(addr);
suffix = 'w';
break;
case 4:
val = cpu_inl(addr);
suffix = 'l';
break;
}
monitor_printf(mon, "port%c[0x%04x] = %#0*x\n",
suffix, addr, size * 2, val);
}
static void do_ioport_write(Monitor *mon, const QDict *qdict)
{
int size = qdict_get_int(qdict, "size");
int addr = qdict_get_int(qdict, "addr");
int val = qdict_get_int(qdict, "val");
addr &= IOPORTS_MASK;
switch (size) {
default:
case 1:
cpu_outb(addr, val);
break;
case 2:
cpu_outw(addr, val);
break;
case 4:
cpu_outl(addr, val);
break;
}
}
static void do_boot_set(Monitor *mon, const QDict *qdict)
{
int res;
const char *bootdevice = qdict_get_str(qdict, "bootdevice");
res = qemu_boot_set(bootdevice);
if (res == 0) {
monitor_printf(mon, "boot device list now set to %s\n", bootdevice);
} else if (res > 0) {
monitor_printf(mon, "setting boot device list failed\n");
} else {
monitor_printf(mon, "no function defined to set boot device list for "
"this architecture\n");
}
}
/**
* do_system_reset(): Issue a machine reset
*/
static int do_system_reset(Monitor *mon, const QDict *qdict,
QObject **ret_data)
{
qemu_system_reset_request();
return 0;
}
/**
* do_system_powerdown(): Issue a machine powerdown
*/
static int do_system_powerdown(Monitor *mon, const QDict *qdict,
QObject **ret_data)
{
qemu_system_powerdown_request();
return 0;
}
#if defined(TARGET_I386)
static void print_pte(Monitor *mon, uint32_t addr, uint32_t pte, uint32_t mask)
{
monitor_printf(mon, "%08x: %08x %c%c%c%c%c%c%c%c\n",
addr,
pte & mask,
pte & PG_GLOBAL_MASK ? 'G' : '-',
pte & PG_PSE_MASK ? 'P' : '-',
pte & PG_DIRTY_MASK ? 'D' : '-',
pte & PG_ACCESSED_MASK ? 'A' : '-',
pte & PG_PCD_MASK ? 'C' : '-',
pte & PG_PWT_MASK ? 'T' : '-',
pte & PG_USER_MASK ? 'U' : '-',
pte & PG_RW_MASK ? 'W' : '-');
}
static void tlb_info(Monitor *mon)
{
CPUState *env;
int l1, l2;
uint32_t pgd, pde, pte;
env = mon_get_cpu();
if (!(env->cr[0] & CR0_PG_MASK)) {
monitor_printf(mon, "PG disabled\n");
return;
}
pgd = env->cr[3] & ~0xfff;
for(l1 = 0; l1 < 1024; l1++) {
cpu_physical_memory_read(pgd + l1 * 4, (uint8_t *)&pde, 4);
pde = le32_to_cpu(pde);
if (pde & PG_PRESENT_MASK) {
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
print_pte(mon, (l1 << 22), pde, ~((1 << 20) - 1));
} else {
for(l2 = 0; l2 < 1024; l2++) {
cpu_physical_memory_read((pde & ~0xfff) + l2 * 4,
(uint8_t *)&pte, 4);
pte = le32_to_cpu(pte);
if (pte & PG_PRESENT_MASK) {
print_pte(mon, (l1 << 22) + (l2 << 12),
pte & ~PG_PSE_MASK,
~0xfff);
}
}
}
}
}
}
static void mem_print(Monitor *mon, uint32_t *pstart, int *plast_prot,
uint32_t end, int prot)
{
int prot1;
prot1 = *plast_prot;
if (prot != prot1) {
if (*pstart != -1) {
monitor_printf(mon, "%08x-%08x %08x %c%c%c\n",
*pstart, end, end - *pstart,
prot1 & PG_USER_MASK ? 'u' : '-',
'r',
prot1 & PG_RW_MASK ? 'w' : '-');
}
if (prot != 0)
*pstart = end;
else
*pstart = -1;
*plast_prot = prot;
}
}
static void mem_info(Monitor *mon)
{
CPUState *env;
int l1, l2, prot, last_prot;
uint32_t pgd, pde, pte, start, end;
env = mon_get_cpu();
if (!(env->cr[0] & CR0_PG_MASK)) {
monitor_printf(mon, "PG disabled\n");
return;
}
pgd = env->cr[3] & ~0xfff;
last_prot = 0;
start = -1;
for(l1 = 0; l1 < 1024; l1++) {
cpu_physical_memory_read(pgd + l1 * 4, (uint8_t *)&pde, 4);
pde = le32_to_cpu(pde);
end = l1 << 22;
if (pde & PG_PRESENT_MASK) {
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
prot = pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK);
mem_print(mon, &start, &last_prot, end, prot);
} else {
for(l2 = 0; l2 < 1024; l2++) {
cpu_physical_memory_read((pde & ~0xfff) + l2 * 4,
(uint8_t *)&pte, 4);
pte = le32_to_cpu(pte);
end = (l1 << 22) + (l2 << 12);
if (pte & PG_PRESENT_MASK) {
prot = pte & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK);
} else {
prot = 0;
}
mem_print(mon, &start, &last_prot, end, prot);
}
}
} else {
prot = 0;
mem_print(mon, &start, &last_prot, end, prot);
}
}
}
#endif
#if defined(TARGET_SH4)
static void print_tlb(Monitor *mon, int idx, tlb_t *tlb)
{
monitor_printf(mon, " tlb%i:\t"
"asid=%hhu vpn=%x\tppn=%x\tsz=%hhu size=%u\t"
"v=%hhu shared=%hhu cached=%hhu prot=%hhu "
"dirty=%hhu writethrough=%hhu\n",
idx,
tlb->asid, tlb->vpn, tlb->ppn, tlb->sz, tlb->size,
tlb->v, tlb->sh, tlb->c, tlb->pr,
tlb->d, tlb->wt);
}
static void tlb_info(Monitor *mon)
{
CPUState *env = mon_get_cpu();
int i;
monitor_printf (mon, "ITLB:\n");
for (i = 0 ; i < ITLB_SIZE ; i++)
print_tlb (mon, i, &env->itlb[i]);
monitor_printf (mon, "UTLB:\n");
for (i = 0 ; i < UTLB_SIZE ; i++)
print_tlb (mon, i, &env->utlb[i]);
}
#endif
static void do_info_kvm_print(Monitor *mon, const QObject *data)
{
QDict *qdict;
qdict = qobject_to_qdict(data);
monitor_printf(mon, "kvm support: ");
if (qdict_get_bool(qdict, "present")) {
monitor_printf(mon, "%s\n", qdict_get_bool(qdict, "enabled") ?
"enabled" : "disabled");
} else {
monitor_printf(mon, "not compiled\n");
}
}
/**
* do_info_kvm(): Show KVM information
*
* Return a QDict with the following information:
*
* - "enabled": true if KVM support is enabled, false otherwise
* - "present": true if QEMU has KVM support, false otherwise
*
* Example:
*
* { "enabled": true, "present": true }
*/
static void do_info_kvm(Monitor *mon, QObject **ret_data)
{
#ifdef CONFIG_KVM
*ret_data = qobject_from_jsonf("{ 'enabled': %i, 'present': true }",
kvm_enabled());
#else
*ret_data = qobject_from_jsonf("{ 'enabled': false, 'present': false }");
#endif
}
static void do_info_numa(Monitor *mon)
{
int i;
CPUState *env;
monitor_printf(mon, "%d nodes\n", nb_numa_nodes);
for (i = 0; i < nb_numa_nodes; i++) {
monitor_printf(mon, "node %d cpus:", i);
for (env = first_cpu; env != NULL; env = env->next_cpu) {
if (env->numa_node == i) {
monitor_printf(mon, " %d", env->cpu_index);
}
}
monitor_printf(mon, "\n");
monitor_printf(mon, "node %d size: %" PRId64 " MB\n", i,
node_mem[i] >> 20);
}
}
#ifdef CONFIG_PROFILER
int64_t qemu_time;
int64_t dev_time;
static void do_info_profile(Monitor *mon)
{
int64_t total;
total = qemu_time;
if (total == 0)
total = 1;
monitor_printf(mon, "async time %" PRId64 " (%0.3f)\n",
dev_time, dev_time / (double)get_ticks_per_sec());
monitor_printf(mon, "qemu time %" PRId64 " (%0.3f)\n",
qemu_time, qemu_time / (double)get_ticks_per_sec());
qemu_time = 0;
dev_time = 0;
}
#else
static void do_info_profile(Monitor *mon)
{
monitor_printf(mon, "Internal profiler not compiled\n");
}
#endif
/* Capture support */
static QLIST_HEAD (capture_list_head, CaptureState) capture_head;
static void do_info_capture(Monitor *mon)
{
int i;
CaptureState *s;
for (s = capture_head.lh_first, i = 0; s; s = s->entries.le_next, ++i) {
monitor_printf(mon, "[%d]: ", i);
s->ops.info (s->opaque);
}
}
#ifdef HAS_AUDIO
static void do_stop_capture(Monitor *mon, const QDict *qdict)
{
int i;
int n = qdict_get_int(qdict, "n");
CaptureState *s;
for (s = capture_head.lh_first, i = 0; s; s = s->entries.le_next, ++i) {
if (i == n) {
s->ops.destroy (s->opaque);
QLIST_REMOVE (s, entries);
qemu_free (s);
return;
}
}
}
static void do_wav_capture(Monitor *mon, const QDict *qdict)
{
const char *path = qdict_get_str(qdict, "path");
int has_freq = qdict_haskey(qdict, "freq");
int freq = qdict_get_try_int(qdict, "freq", -1);
int has_bits = qdict_haskey(qdict, "bits");
int bits = qdict_get_try_int(qdict, "bits", -1);
int has_channels = qdict_haskey(qdict, "nchannels");
int nchannels = qdict_get_try_int(qdict, "nchannels", -1);
CaptureState *s;
s = qemu_mallocz (sizeof (*s));
freq = has_freq ? freq : 44100;
bits = has_bits ? bits : 16;
nchannels = has_channels ? nchannels : 2;
if (wav_start_capture (s, path, freq, bits, nchannels)) {
monitor_printf(mon, "Faied to add wave capture\n");
qemu_free (s);
}
QLIST_INSERT_HEAD (&capture_head, s, entries);
}
#endif
#if defined(TARGET_I386)
static void do_inject_nmi(Monitor *mon, const QDict *qdict)
{
CPUState *env;
int cpu_index = qdict_get_int(qdict, "cpu_index");
for (env = first_cpu; env != NULL; env = env->next_cpu)
if (env->cpu_index == cpu_index) {
cpu_interrupt(env, CPU_INTERRUPT_NMI);
break;
}
}
#endif
static void do_info_status_print(Monitor *mon, const QObject *data)
{
QDict *qdict;
qdict = qobject_to_qdict(data);
monitor_printf(mon, "VM status: ");
if (qdict_get_bool(qdict, "running")) {
monitor_printf(mon, "running");
if (qdict_get_bool(qdict, "singlestep")) {
monitor_printf(mon, " (single step mode)");
}
} else {
monitor_printf(mon, "paused");
}
monitor_printf(mon, "\n");
}
/**
* do_info_status(): VM status
*
* Return a QDict with the following information:
*
* - "running": true if the VM is running, or false if it is paused
* - "singlestep": true if the VM is in single step mode, false otherwise
*
* Example:
*
* { "running": true, "singlestep": false }
*/
static void do_info_status(Monitor *mon, QObject **ret_data)
{
*ret_data = qobject_from_jsonf("{ 'running': %i, 'singlestep': %i }",
vm_running, singlestep);
}
static void print_balloon_stat(const char *key, QObject *obj, void *opaque)
{
Monitor *mon = opaque;
if (strcmp(key, "actual"))
monitor_printf(mon, ",%s=%" PRId64, key,
qint_get_int(qobject_to_qint(obj)));
}
static void monitor_print_balloon(Monitor *mon, const QObject *data)
{
QDict *qdict;
qdict = qobject_to_qdict(data);
if (!qdict_haskey(qdict, "actual"))
return;
monitor_printf(mon, "balloon: actual=%" PRId64,
qdict_get_int(qdict, "actual") >> 20);
qdict_iter(qdict, print_balloon_stat, mon);
monitor_printf(mon, "\n");
}
/**
* do_info_balloon(): Balloon information
*
* Make an asynchronous request for balloon info. When the request completes
* a QDict will be returned according to the following specification:
*
* - "actual": current balloon value in bytes
* The following fields may or may not be present:
* - "mem_swapped_in": Amount of memory swapped in (bytes)
* - "mem_swapped_out": Amount of memory swapped out (bytes)
* - "major_page_faults": Number of major faults
* - "minor_page_faults": Number of minor faults
* - "free_mem": Total amount of free and unused memory (bytes)
* - "total_mem": Total amount of available memory (bytes)
*
* Example:
*
* { "actual": 1073741824, "mem_swapped_in": 0, "mem_swapped_out": 0,
* "major_page_faults": 142, "minor_page_faults": 239245,
* "free_mem": 1014185984, "total_mem": 1044668416 }
*/
static int do_info_balloon(Monitor *mon, MonitorCompletion cb, void *opaque)
{
int ret;
if (kvm_enabled() && !kvm_has_sync_mmu()) {
qemu_error_new(QERR_KVM_MISSING_CAP, "synchronous MMU", "balloon");
return -1;
}
ret = qemu_balloon_status(cb, opaque);
if (!ret) {
qemu_error_new(QERR_DEVICE_NOT_ACTIVE, "balloon");
return -1;
}
return 0;
}
/**
* do_balloon(): Request VM to change its memory allocation
*/
static int do_balloon(Monitor *mon, const QDict *params,
MonitorCompletion cb, void *opaque)
{
int ret;
if (kvm_enabled() && !kvm_has_sync_mmu()) {
qemu_error_new(QERR_KVM_MISSING_CAP, "synchronous MMU", "balloon");
return -1;
}
ret = qemu_balloon(qdict_get_int(params, "value"), cb, opaque);
if (ret == 0) {
qemu_error_new(QERR_DEVICE_NOT_ACTIVE, "balloon");
return -1;
}
cb(opaque, NULL);
return 0;
}
static qemu_acl *find_acl(Monitor *mon, const char *name)
{
qemu_acl *acl = qemu_acl_find(name);
if (!acl) {
monitor_printf(mon, "acl: unknown list '%s'\n", name);
}
return acl;
}
static void do_acl_show(Monitor *mon, const QDict *qdict)
{
const char *aclname = qdict_get_str(qdict, "aclname");
qemu_acl *acl = find_acl(mon, aclname);
qemu_acl_entry *entry;
int i = 0;
if (acl) {
monitor_printf(mon, "policy: %s\n",
acl->defaultDeny ? "deny" : "allow");
QTAILQ_FOREACH(entry, &acl->entries, next) {
i++;
monitor_printf(mon, "%d: %s %s\n", i,
entry->deny ? "deny" : "allow", entry->match);
}
}
}
static void do_acl_reset(Monitor *mon, const QDict *qdict)
{
const char *aclname = qdict_get_str(qdict, "aclname");
qemu_acl *acl = find_acl(mon, aclname);
if (acl) {
qemu_acl_reset(acl);
monitor_printf(mon, "acl: removed all rules\n");
}
}
static void do_acl_policy(Monitor *mon, const QDict *qdict)
{
const char *aclname = qdict_get_str(qdict, "aclname");
const char *policy = qdict_get_str(qdict, "policy");
qemu_acl *acl = find_acl(mon, aclname);
if (acl) {
if (strcmp(policy, "allow") == 0) {
acl->defaultDeny = 0;
monitor_printf(mon, "acl: policy set to 'allow'\n");
} else if (strcmp(policy, "deny") == 0) {
acl->defaultDeny = 1;
monitor_printf(mon, "acl: policy set to 'deny'\n");
} else {
monitor_printf(mon, "acl: unknown policy '%s', "
"expected 'deny' or 'allow'\n", policy);
}
}
}
static void do_acl_add(Monitor *mon, const QDict *qdict)
{
const char *aclname = qdict_get_str(qdict, "aclname");
const char *match = qdict_get_str(qdict, "match");
const char *policy = qdict_get_str(qdict, "policy");
int has_index = qdict_haskey(qdict, "index");
int index = qdict_get_try_int(qdict, "index", -1);
qemu_acl *acl = find_acl(mon, aclname);
int deny, ret;
if (acl) {
if (strcmp(policy, "allow") == 0) {
deny = 0;
} else if (strcmp(policy, "deny") == 0) {
deny = 1;
} else {
monitor_printf(mon, "acl: unknown policy '%s', "
"expected 'deny' or 'allow'\n", policy);
return;
}
if (has_index)
ret = qemu_acl_insert(acl, deny, match, index);
else
ret = qemu_acl_append(acl, deny, match);
if (ret < 0)
monitor_printf(mon, "acl: unable to add acl entry\n");
else
monitor_printf(mon, "acl: added rule at position %d\n", ret);
}
}
static void do_acl_remove(Monitor *mon, const QDict *qdict)
{
const char *aclname = qdict_get_str(qdict, "aclname");
const char *match = qdict_get_str(qdict, "match");
qemu_acl *acl = find_acl(mon, aclname);
int ret;
if (acl) {
ret = qemu_acl_remove(acl, match);
if (ret < 0)
monitor_printf(mon, "acl: no matching acl entry\n");
else
monitor_printf(mon, "acl: removed rule at position %d\n", ret);
}
}
#if defined(TARGET_I386)
static void do_inject_mce(Monitor *mon, const QDict *qdict)
{
CPUState *cenv;
int cpu_index = qdict_get_int(qdict, "cpu_index");
int bank = qdict_get_int(qdict, "bank");
uint64_t status = qdict_get_int(qdict, "status");
uint64_t mcg_status = qdict_get_int(qdict, "mcg_status");
uint64_t addr = qdict_get_int(qdict, "addr");
uint64_t misc = qdict_get_int(qdict, "misc");
for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu)
if (cenv->cpu_index == cpu_index && cenv->mcg_cap) {
cpu_inject_x86_mce(cenv, bank, status, mcg_status, addr, misc);
break;
}
}
#endif
static int do_getfd(Monitor *mon, const QDict *qdict, QObject **ret_data)
{
const char *fdname = qdict_get_str(qdict, "fdname");
mon_fd_t *monfd;
int fd;
fd = qemu_chr_get_msgfd(mon->chr);
if (fd == -1) {
qemu_error_new(QERR_FD_NOT_SUPPLIED);
return -1;
}
if (qemu_isdigit(fdname[0])) {
qemu_error_new(QERR_INVALID_PARAMETER, "fdname");
return -1;
}
fd = dup(fd);
if (fd == -1) {
if (errno == EMFILE)
qemu_error_new(QERR_TOO_MANY_FILES);
else
qemu_error_new(QERR_UNDEFINED_ERROR);
return -1;
}
QLIST_FOREACH(monfd, &mon->fds, next) {
if (strcmp(monfd->name, fdname) != 0) {
continue;
}
close(monfd->fd);
monfd->fd = fd;
return 0;
}
monfd = qemu_mallocz(sizeof(mon_fd_t));
monfd->name = qemu_strdup(fdname);
monfd->fd = fd;
QLIST_INSERT_HEAD(&mon->fds, monfd, next);
return 0;
}
static int do_closefd(Monitor *mon, const QDict *qdict, QObject **ret_data)
{
const char *fdname = qdict_get_str(qdict, "fdname");
mon_fd_t *monfd;
QLIST_FOREACH(monfd, &mon->fds, next) {
if (strcmp(monfd->name, fdname) != 0) {
continue;
}
QLIST_REMOVE(monfd, next);
close(monfd->fd);
qemu_free(monfd->name);
qemu_free(monfd);
return 0;
}
qemu_error_new(QERR_FD_NOT_FOUND, fdname);
return -1;
}
static void do_loadvm(Monitor *mon, const QDict *qdict)
{
int saved_vm_running = vm_running;
const char *name = qdict_get_str(qdict, "name");
vm_stop(0);
if (load_vmstate(mon, name) >= 0 && saved_vm_running)
vm_start();
}
int monitor_get_fd(Monitor *mon, const char *fdname)
{
mon_fd_t *monfd;
QLIST_FOREACH(monfd, &mon->fds, next) {
int fd;
if (strcmp(monfd->name, fdname) != 0) {
continue;
}
fd = monfd->fd;
/* caller takes ownership of fd */
QLIST_REMOVE(monfd, next);
qemu_free(monfd->name);
qemu_free(monfd);
return fd;
}
return -1;
}
static const mon_cmd_t mon_cmds[] = {
#include "qemu-monitor.h"
{ NULL, NULL, },
};
/* Please update qemu-monitor.hx when adding or changing commands */
static const mon_cmd_t info_cmds[] = {
{
.name = "version",
.args_type = "",
.params = "",
.help = "show the version of QEMU",
.user_print = do_info_version_print,
.mhandler.info_new = do_info_version,
},
{
.name = "commands",
.args_type = "",
.params = "",
.help = "list QMP available commands",
.user_print = monitor_user_noop,
.mhandler.info_new = do_info_commands,
},
{
.name = "network",
.args_type = "",
.params = "",
.help = "show the network state",
.mhandler.info = do_info_network,
},
{
.name = "chardev",
.args_type = "",
.params = "",
.help = "show the character devices",
.user_print = qemu_chr_info_print,
.mhandler.info_new = qemu_chr_info,
},
{
.name = "block",
.args_type = "",
.params = "",
.help = "show the block devices",
.user_print = bdrv_info_print,
.mhandler.info_new = bdrv_info,
},
{
.name = "blockstats",
.args_type = "",
.params = "",
.help = "show block device statistics",
.user_print = bdrv_stats_print,
.mhandler.info_new = bdrv_info_stats,
},
{
.name = "registers",
.args_type = "",
.params = "",
.help = "show the cpu registers",
.mhandler.info = do_info_registers,
},
{
.name = "cpus",
.args_type = "",
.params = "",
.help = "show infos for each CPU",
.user_print = monitor_print_cpus,
.mhandler.info_new = do_info_cpus,
},
{
.name = "history",
.args_type = "",
.params = "",
.help = "show the command line history",
.mhandler.info = do_info_history,
},
{
.name = "irq",
.args_type = "",
.params = "",
.help = "show the interrupts statistics (if available)",
.mhandler.info = irq_info,
},
{
.name = "pic",
.args_type = "",
.params = "",
.help = "show i8259 (PIC) state",
.mhandler.info = pic_info,
},
{
.name = "pci",
.args_type = "",
.params = "",
.help = "show PCI info",
.user_print = do_pci_info_print,
.mhandler.info_new = do_pci_info,
},
#if defined(TARGET_I386) || defined(TARGET_SH4)
{
.name = "tlb",
.args_type = "",
.params = "",
.help = "show virtual to physical memory mappings",
.mhandler.info = tlb_info,
},
#endif
#if defined(TARGET_I386)
{
.name = "mem",
.args_type = "",
.params = "",
.help = "show the active virtual memory mappings",
.mhandler.info = mem_info,
},
{
.name = "hpet",
.args_type = "",
.params = "",
.help = "show state of HPET",
.user_print = do_info_hpet_print,
.mhandler.info_new = do_info_hpet,
},
#endif
{
.name = "jit",
.args_type = "",
.params = "",
.help = "show dynamic compiler info",
.mhandler.info = do_info_jit,
},
{
.name = "kvm",
.args_type = "",
.params = "",
.help = "show KVM information",
.user_print = do_info_kvm_print,
.mhandler.info_new = do_info_kvm,
},
{
.name = "numa",
.args_type = "",
.params = "",
.help = "show NUMA information",
.mhandler.info = do_info_numa,
},
{
.name = "usb",
.args_type = "",
.params = "",
.help = "show guest USB devices",
.mhandler.info = usb_info,
},
{
.name = "usbhost",
.args_type = "",
.params = "",
.help = "show host USB devices",
.mhandler.info = usb_host_info,
},
{
.name = "profile",
.args_type = "",
.params = "",
.help = "show profiling information",
.mhandler.info = do_info_profile,
},
{
.name = "capture",
.args_type = "",
.params = "",
.help = "show capture information",
.mhandler.info = do_info_capture,
},
{
.name = "snapshots",
.args_type = "",
.params = "",
.help = "show the currently saved VM snapshots",
.mhandler.info = do_info_snapshots,
},
{
.name = "status",
.args_type = "",
.params = "",
.help = "show the current VM status (running|paused)",
.user_print = do_info_status_print,
.mhandler.info_new = do_info_status,
},
{
.name = "pcmcia",
.args_type = "",
.params = "",
.help = "show guest PCMCIA status",
.mhandler.info = pcmcia_info,
},
{
.name = "mice",
.args_type = "",
.params = "",
.help = "show which guest mouse is receiving events",
.user_print = do_info_mice_print,
.mhandler.info_new = do_info_mice,
},
{
.name = "vnc",
.args_type = "",
.params = "",
.help = "show the vnc server status",
.user_print = do_info_vnc_print,
.mhandler.info_new = do_info_vnc,
},
{
.name = "name",
.args_type = "",
.params = "",
.help = "show the current VM name",
.user_print = do_info_name_print,
.mhandler.info_new = do_info_name,
},
{
.name = "uuid",
.args_type = "",
.params = "",
.help = "show the current VM UUID",
.user_print = do_info_uuid_print,
.mhandler.info_new = do_info_uuid,
},
#if defined(TARGET_PPC)
{
.name = "cpustats",
.args_type = "",
.params = "",
.help = "show CPU statistics",
.mhandler.info = do_info_cpu_stats,
},
#endif
#if defined(CONFIG_SLIRP)
{
.name = "usernet",
.args_type = "",
.params = "",
.help = "show user network stack connection states",
.mhandler.info = do_info_usernet,
},
#endif
{
.name = "migrate",
.args_type = "",
.params = "",
.help = "show migration status",
.user_print = do_info_migrate_print,
.mhandler.info_new = do_info_migrate,
},
{
.name = "balloon",
.args_type = "",
.params = "",
.help = "show balloon information",
.user_print = monitor_print_balloon,
.mhandler.info_async = do_info_balloon,
.async = 1,
},
{
.name = "qtree",
.args_type = "",
.params = "",
.help = "show device tree",
.mhandler.info = do_info_qtree,
},
{
.name = "qdm",
.args_type = "",
.params = "",
.help = "show qdev device model list",
.mhandler.info = do_info_qdm,
},
{
.name = "roms",
.args_type = "",
.params = "",
.help = "show roms",
.mhandler.info = do_info_roms,
},
{
.name = NULL,
},
};
/*******************************************************************/
static const char *pch;
static jmp_buf expr_env;
#define MD_TLONG 0
#define MD_I32 1
typedef struct MonitorDef {
const char *name;
int offset;
target_long (*get_value)(const struct MonitorDef *md, int val);
int type;
} MonitorDef;
#if defined(TARGET_I386)
static target_long monitor_get_pc (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
return env->eip + env->segs[R_CS].base;
}
#endif
#if defined(TARGET_PPC)
static target_long monitor_get_ccr (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
unsigned int u;
int i;
u = 0;
for (i = 0; i < 8; i++)
u |= env->crf[i] << (32 - (4 * i));
return u;
}
static target_long monitor_get_msr (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
return env->msr;
}
static target_long monitor_get_xer (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
return env->xer;
}
static target_long monitor_get_decr (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
return cpu_ppc_load_decr(env);
}
static target_long monitor_get_tbu (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
return cpu_ppc_load_tbu(env);
}
static target_long monitor_get_tbl (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
return cpu_ppc_load_tbl(env);
}
#endif
#if defined(TARGET_SPARC)
#ifndef TARGET_SPARC64
static target_long monitor_get_psr (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
return GET_PSR(env);
}
#endif
static target_long monitor_get_reg(const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
return env->regwptr[val];
}
#endif
static const MonitorDef monitor_defs[] = {
#ifdef TARGET_I386
#define SEG(name, seg) \
{ name, offsetof(CPUState, segs[seg].selector), NULL, MD_I32 },\
{ name ".base", offsetof(CPUState, segs[seg].base) },\
{ name ".limit", offsetof(CPUState, segs[seg].limit), NULL, MD_I32 },
{ "eax", offsetof(CPUState, regs[0]) },
{ "ecx", offsetof(CPUState, regs[1]) },
{ "edx", offsetof(CPUState, regs[2]) },
{ "ebx", offsetof(CPUState, regs[3]) },
{ "esp|sp", offsetof(CPUState, regs[4]) },
{ "ebp|fp", offsetof(CPUState, regs[5]) },
{ "esi", offsetof(CPUState, regs[6]) },
{ "edi", offsetof(CPUState, regs[7]) },
#ifdef TARGET_X86_64
{ "r8", offsetof(CPUState, regs[8]) },
{ "r9", offsetof(CPUState, regs[9]) },
{ "r10", offsetof(CPUState, regs[10]) },
{ "r11", offsetof(CPUState, regs[11]) },
{ "r12", offsetof(CPUState, regs[12]) },
{ "r13", offsetof(CPUState, regs[13]) },
{ "r14", offsetof(CPUState, regs[14]) },
{ "r15", offsetof(CPUState, regs[15]) },
#endif
{ "eflags", offsetof(CPUState, eflags) },
{ "eip", offsetof(CPUState, eip) },
SEG("cs", R_CS)
SEG("ds", R_DS)
SEG("es", R_ES)
SEG("ss", R_SS)
SEG("fs", R_FS)
SEG("gs", R_GS)
{ "pc", 0, monitor_get_pc, },
#elif defined(TARGET_PPC)
/* General purpose registers */
{ "r0", offsetof(CPUState, gpr[0]) },
{ "r1", offsetof(CPUState, gpr[1]) },
{ "r2", offsetof(CPUState, gpr[2]) },
{ "r3", offsetof(CPUState, gpr[3]) },
{ "r4", offsetof(CPUState, gpr[4]) },
{ "r5", offsetof(CPUState, gpr[5]) },
{ "r6", offsetof(CPUState, gpr[6]) },
{ "r7", offsetof(CPUState, gpr[7]) },
{ "r8", offsetof(CPUState, gpr[8]) },
{ "r9", offsetof(CPUState, gpr[9]) },
{ "r10", offsetof(CPUState, gpr[10]) },
{ "r11", offsetof(CPUState, gpr[11]) },
{ "r12", offsetof(CPUState, gpr[12]) },
{ "r13", offsetof(CPUState, gpr[13]) },
{ "r14", offsetof(CPUState, gpr[14]) },
{ "r15", offsetof(CPUState, gpr[15]) },
{ "r16", offsetof(CPUState, gpr[16]) },
{ "r17", offsetof(CPUState, gpr[17]) },
{ "r18", offsetof(CPUState, gpr[18]) },
{ "r19", offsetof(CPUState, gpr[19]) },
{ "r20", offsetof(CPUState, gpr[20]) },
{ "r21", offsetof(CPUState, gpr[21]) },
{ "r22", offsetof(CPUState, gpr[22]) },
{ "r23", offsetof(CPUState, gpr[23]) },
{ "r24", offsetof(CPUState, gpr[24]) },
{ "r25", offsetof(CPUState, gpr[25]) },
{ "r26", offsetof(CPUState, gpr[26]) },
{ "r27", offsetof(CPUState, gpr[27]) },
{ "r28", offsetof(CPUState, gpr[28]) },
{ "r29", offsetof(CPUState, gpr[29]) },
{ "r30", offsetof(CPUState, gpr[30]) },
{ "r31", offsetof(CPUState, gpr[31]) },
/* Floating point registers */
{ "f0", offsetof(CPUState, fpr[0]) },
{ "f1", offsetof(CPUState, fpr[1]) },
{ "f2", offsetof(CPUState, fpr[2]) },
{ "f3", offsetof(CPUState, fpr[3]) },
{ "f4", offsetof(CPUState, fpr[4]) },
{ "f5", offsetof(CPUState, fpr[5]) },
{ "f6", offsetof(CPUState, fpr[6]) },
{ "f7", offsetof(CPUState, fpr[7]) },
{ "f8", offsetof(CPUState, fpr[8]) },
{ "f9", offsetof(CPUState, fpr[9]) },
{ "f10", offsetof(CPUState, fpr[10]) },
{ "f11", offsetof(CPUState, fpr[11]) },
{ "f12", offsetof(CPUState, fpr[12]) },
{ "f13", offsetof(CPUState, fpr[13]) },
{ "f14", offsetof(CPUState, fpr[14]) },
{ "f15", offsetof(CPUState, fpr[15]) },
{ "f16", offsetof(CPUState, fpr[16]) },
{ "f17", offsetof(CPUState, fpr[17]) },
{ "f18", offsetof(CPUState, fpr[18]) },
{ "f19", offsetof(CPUState, fpr[19]) },
{ "f20", offsetof(CPUState, fpr[20]) },
{ "f21", offsetof(CPUState, fpr[21]) },
{ "f22", offsetof(CPUState, fpr[22]) },
{ "f23", offsetof(CPUState, fpr[23]) },
{ "f24", offsetof(CPUState, fpr[24]) },
{ "f25", offsetof(CPUState, fpr[25]) },
{ "f26", offsetof(CPUState, fpr[26]) },
{ "f27", offsetof(CPUState, fpr[27]) },
{ "f28", offsetof(CPUState, fpr[28]) },
{ "f29", offsetof(CPUState, fpr[29]) },
{ "f30", offsetof(CPUState, fpr[30]) },
{ "f31", offsetof(CPUState, fpr[31]) },
{ "fpscr", offsetof(CPUState, fpscr) },
/* Next instruction pointer */
{ "nip|pc", offsetof(CPUState, nip) },
{ "lr", offsetof(CPUState, lr) },
{ "ctr", offsetof(CPUState, ctr) },
{ "decr", 0, &monitor_get_decr, },
{ "ccr", 0, &monitor_get_ccr, },
/* Machine state register */
{ "msr", 0, &monitor_get_msr, },
{ "xer", 0, &monitor_get_xer, },
{ "tbu", 0, &monitor_get_tbu, },
{ "tbl", 0, &monitor_get_tbl, },
#if defined(TARGET_PPC64)
/* Address space register */
{ "asr", offsetof(CPUState, asr) },
#endif
/* Segment registers */
{ "sdr1", offsetof(CPUState, sdr1) },
{ "sr0", offsetof(CPUState, sr[0]) },
{ "sr1", offsetof(CPUState, sr[1]) },
{ "sr2", offsetof(CPUState, sr[2]) },
{ "sr3", offsetof(CPUState, sr[3]) },
{ "sr4", offsetof(CPUState, sr[4]) },
{ "sr5", offsetof(CPUState, sr[5]) },
{ "sr6", offsetof(CPUState, sr[6]) },
{ "sr7", offsetof(CPUState, sr[7]) },
{ "sr8", offsetof(CPUState, sr[8]) },
{ "sr9", offsetof(CPUState, sr[9]) },
{ "sr10", offsetof(CPUState, sr[10]) },
{ "sr11", offsetof(CPUState, sr[11]) },
{ "sr12", offsetof(CPUState, sr[12]) },
{ "sr13", offsetof(CPUState, sr[13]) },
{ "sr14", offsetof(CPUState, sr[14]) },
{ "sr15", offsetof(CPUState, sr[15]) },
/* Too lazy to put BATs and SPRs ... */
#elif defined(TARGET_SPARC)
{ "g0", offsetof(CPUState, gregs[0]) },
{ "g1", offsetof(CPUState, gregs[1]) },
{ "g2", offsetof(CPUState, gregs[2]) },
{ "g3", offsetof(CPUState, gregs[3]) },
{ "g4", offsetof(CPUState, gregs[4]) },
{ "g5", offsetof(CPUState, gregs[5]) },
{ "g6", offsetof(CPUState, gregs[6]) },
{ "g7", offsetof(CPUState, gregs[7]) },
{ "o0", 0, monitor_get_reg },
{ "o1", 1, monitor_get_reg },
{ "o2", 2, monitor_get_reg },
{ "o3", 3, monitor_get_reg },
{ "o4", 4, monitor_get_reg },
{ "o5", 5, monitor_get_reg },
{ "o6", 6, monitor_get_reg },
{ "o7", 7, monitor_get_reg },
{ "l0", 8, monitor_get_reg },
{ "l1", 9, monitor_get_reg },
{ "l2", 10, monitor_get_reg },
{ "l3", 11, monitor_get_reg },
{ "l4", 12, monitor_get_reg },
{ "l5", 13, monitor_get_reg },
{ "l6", 14, monitor_get_reg },
{ "l7", 15, monitor_get_reg },
{ "i0", 16, monitor_get_reg },
{ "i1", 17, monitor_get_reg },
{ "i2", 18, monitor_get_reg },
{ "i3", 19, monitor_get_reg },
{ "i4", 20, monitor_get_reg },
{ "i5", 21, monitor_get_reg },
{ "i6", 22, monitor_get_reg },
{ "i7", 23, monitor_get_reg },
{ "pc", offsetof(CPUState, pc) },
{ "npc", offsetof(CPUState, npc) },
{ "y", offsetof(CPUState, y) },
#ifndef TARGET_SPARC64
{ "psr", 0, &monitor_get_psr, },
{ "wim", offsetof(CPUState, wim) },
#endif
{ "tbr", offsetof(CPUState, tbr) },
{ "fsr", offsetof(CPUState, fsr) },
{ "f0", offsetof(CPUState, fpr[0]) },
{ "f1", offsetof(CPUState, fpr[1]) },
{ "f2", offsetof(CPUState, fpr[2]) },
{ "f3", offsetof(CPUState, fpr[3]) },
{ "f4", offsetof(CPUState, fpr[4]) },
{ "f5", offsetof(CPUState, fpr[5]) },
{ "f6", offsetof(CPUState, fpr[6]) },
{ "f7", offsetof(CPUState, fpr[7]) },
{ "f8", offsetof(CPUState, fpr[8]) },
{ "f9", offsetof(CPUState, fpr[9]) },
{ "f10", offsetof(CPUState, fpr[10]) },
{ "f11", offsetof(CPUState, fpr[11]) },
{ "f12", offsetof(CPUState, fpr[12]) },
{ "f13", offsetof(CPUState, fpr[13]) },
{ "f14", offsetof(CPUState, fpr[14]) },
{ "f15", offsetof(CPUState, fpr[15]) },
{ "f16", offsetof(CPUState, fpr[16]) },
{ "f17", offsetof(CPUState, fpr[17]) },
{ "f18", offsetof(CPUState, fpr[18]) },
{ "f19", offsetof(CPUState, fpr[19]) },
{ "f20", offsetof(CPUState, fpr[20]) },
{ "f21", offsetof(CPUState, fpr[21]) },
{ "f22", offsetof(CPUState, fpr[22]) },
{ "f23", offsetof(CPUState, fpr[23]) },
{ "f24", offsetof(CPUState, fpr[24]) },
{ "f25", offsetof(CPUState, fpr[25]) },
{ "f26", offsetof(CPUState, fpr[26]) },
{ "f27", offsetof(CPUState, fpr[27]) },
{ "f28", offsetof(CPUState, fpr[28]) },
{ "f29", offsetof(CPUState, fpr[29]) },
{ "f30", offsetof(CPUState, fpr[30]) },
{ "f31", offsetof(CPUState, fpr[31]) },
#ifdef TARGET_SPARC64
{ "f32", offsetof(CPUState, fpr[32]) },
{ "f34", offsetof(CPUState, fpr[34]) },
{ "f36", offsetof(CPUState, fpr[36]) },
{ "f38", offsetof(CPUState, fpr[38]) },
{ "f40", offsetof(CPUState, fpr[40]) },
{ "f42", offsetof(CPUState, fpr[42]) },
{ "f44", offsetof(CPUState, fpr[44]) },
{ "f46", offsetof(CPUState, fpr[46]) },
{ "f48", offsetof(CPUState, fpr[48]) },
{ "f50", offsetof(CPUState, fpr[50]) },
{ "f52", offsetof(CPUState, fpr[52]) },
{ "f54", offsetof(CPUState, fpr[54]) },
{ "f56", offsetof(CPUState, fpr[56]) },
{ "f58", offsetof(CPUState, fpr[58]) },
{ "f60", offsetof(CPUState, fpr[60]) },
{ "f62", offsetof(CPUState, fpr[62]) },
{ "asi", offsetof(CPUState, asi) },
{ "pstate", offsetof(CPUState, pstate) },
{ "cansave", offsetof(CPUState, cansave) },
{ "canrestore", offsetof(CPUState, canrestore) },
{ "otherwin", offsetof(CPUState, otherwin) },
{ "wstate", offsetof(CPUState, wstate) },
{ "cleanwin", offsetof(CPUState, cleanwin) },
{ "fprs", offsetof(CPUState, fprs) },
#endif
#endif
{ NULL },
};
static void expr_error(Monitor *mon, const char *msg)
{
monitor_printf(mon, "%s\n", msg);
longjmp(expr_env, 1);
}
/* return 0 if OK, -1 if not found */
static int get_monitor_def(target_long *pval, const char *name)
{
const MonitorDef *md;
void *ptr;
for(md = monitor_defs; md->name != NULL; md++) {
if (compare_cmd(name, md->name)) {
if (md->get_value) {
*pval = md->get_value(md, md->offset);
} else {
CPUState *env = mon_get_cpu();
ptr = (uint8_t *)env + md->offset;
switch(md->type) {
case MD_I32:
*pval = *(int32_t *)ptr;
break;
case MD_TLONG:
*pval = *(target_long *)ptr;
break;
default:
*pval = 0;
break;
}
}
return 0;
}
}
return -1;
}
static void next(void)
{
if (*pch != '\0') {
pch++;
while (qemu_isspace(*pch))
pch++;
}
}
static int64_t expr_sum(Monitor *mon);
static int64_t expr_unary(Monitor *mon)
{
int64_t n;
char *p;
int ret;
switch(*pch) {
case '+':
next();
n = expr_unary(mon);
break;
case '-':
next();
n = -expr_unary(mon);
break;
case '~':
next();
n = ~expr_unary(mon);
break;
case '(':
next();
n = expr_sum(mon);
if (*pch != ')') {
expr_error(mon, "')' expected");
}
next();
break;
case '\'':
pch++;
if (*pch == '\0')
expr_error(mon, "character constant expected");
n = *pch;
pch++;
if (*pch != '\'')
expr_error(mon, "missing terminating \' character");
next();
break;
case '$':
{
char buf[128], *q;
target_long reg=0;
pch++;
q = buf;
while ((*pch >= 'a' && *pch <= 'z') ||
(*pch >= 'A' && *pch <= 'Z') ||
(*pch >= '0' && *pch <= '9') ||
*pch == '_' || *pch == '.') {
if ((q - buf) < sizeof(buf) - 1)
*q++ = *pch;
pch++;
}
while (qemu_isspace(*pch))
pch++;
*q = 0;
ret = get_monitor_def(&reg, buf);
if (ret < 0)
expr_error(mon, "unknown register");
n = reg;
}
break;
case '\0':
expr_error(mon, "unexpected end of expression");
n = 0;
break;
default:
#if TARGET_PHYS_ADDR_BITS > 32
n = strtoull(pch, &p, 0);
#else
n = strtoul(pch, &p, 0);
#endif
if (pch == p) {
expr_error(mon, "invalid char in expression");
}
pch = p;
while (qemu_isspace(*pch))
pch++;
break;
}
return n;
}
static int64_t expr_prod(Monitor *mon)
{
int64_t val, val2;
int op;
val = expr_unary(mon);
for(;;) {
op = *pch;
if (op != '*' && op != '/' && op != '%')
break;
next();
val2 = expr_unary(mon);
switch(op) {
default:
case '*':
val *= val2;
break;
case '/':
case '%':
if (val2 == 0)
expr_error(mon, "division by zero");
if (op == '/')
val /= val2;
else
val %= val2;
break;
}
}
return val;
}
static int64_t expr_logic(Monitor *mon)
{
int64_t val, val2;
int op;
val = expr_prod(mon);
for(;;) {
op = *pch;
if (op != '&' && op != '|' && op != '^')
break;
next();
val2 = expr_prod(mon);
switch(op) {
default:
case '&':
val &= val2;
break;
case '|':
val |= val2;
break;
case '^':
val ^= val2;
break;
}
}
return val;
}
static int64_t expr_sum(Monitor *mon)
{
int64_t val, val2;
int op;
val = expr_logic(mon);
for(;;) {
op = *pch;
if (op != '+' && op != '-')
break;
next();
val2 = expr_logic(mon);
if (op == '+')
val += val2;
else
val -= val2;
}
return val;
}
static int get_expr(Monitor *mon, int64_t *pval, const char **pp)
{
pch = *pp;
if (setjmp(expr_env)) {
*pp = pch;
return -1;
}
while (qemu_isspace(*pch))
pch++;
*pval = expr_sum(mon);
*pp = pch;
return 0;
}
static int get_double(Monitor *mon, double *pval, const char **pp)
{
const char *p = *pp;
char *tailp;
double d;
d = strtod(p, &tailp);
if (tailp == p) {
monitor_printf(mon, "Number expected\n");
return -1;
}
if (d != d || d - d != 0) {
/* NaN or infinity */
monitor_printf(mon, "Bad number\n");
return -1;
}
*pval = d;
*pp = tailp;
return 0;
}
static int get_str(char *buf, int buf_size, const char **pp)
{
const char *p;
char *q;
int c;
q = buf;
p = *pp;
while (qemu_isspace(*p))
p++;
if (*p == '\0') {
fail:
*q = '\0';
*pp = p;
return -1;
}
if (*p == '\"') {
p++;
while (*p != '\0' && *p != '\"') {
if (*p == '\\') {
p++;
c = *p++;
switch(c) {
case 'n':
c = '\n';
break;
case 'r':
c = '\r';
break;
case '\\':
case '\'':
case '\"':
break;
default:
qemu_printf("unsupported escape code: '\\%c'\n", c);
goto fail;
}
if ((q - buf) < buf_size - 1) {
*q++ = c;
}
} else {
if ((q - buf) < buf_size - 1) {
*q++ = *p;
}
p++;
}
}
if (*p != '\"') {
qemu_printf("unterminated string\n");
goto fail;
}
p++;
} else {
while (*p != '\0' && !qemu_isspace(*p)) {
if ((q - buf) < buf_size - 1) {
*q++ = *p;
}
p++;
}
}
*q = '\0';
*pp = p;
return 0;
}
/*
* Store the command-name in cmdname, and return a pointer to
* the remaining of the command string.
*/
static const char *get_command_name(const char *cmdline,
char *cmdname, size_t nlen)
{
size_t len;
const char *p, *pstart;
p = cmdline;
while (qemu_isspace(*p))
p++;
if (*p == '\0')
return NULL;
pstart = p;
while (*p != '\0' && *p != '/' && !qemu_isspace(*p))
p++;
len = p - pstart;
if (len > nlen - 1)
len = nlen - 1;
memcpy(cmdname, pstart, len);
cmdname[len] = '\0';
return p;
}
/**
* Read key of 'type' into 'key' and return the current
* 'type' pointer.
*/
static char *key_get_info(const char *type, char **key)
{
size_t len;
char *p, *str;
if (*type == ',')
type++;
p = strchr(type, ':');
if (!p) {
*key = NULL;
return NULL;
}
len = p - type;
str = qemu_malloc(len + 1);
memcpy(str, type, len);
str[len] = '\0';
*key = str;
return ++p;
}
static int default_fmt_format = 'x';
static int default_fmt_size = 4;
#define MAX_ARGS 16
static int is_valid_option(const char *c, const char *typestr)
{
char option[3];
option[0] = '-';
option[1] = *c;
option[2] = '\0';
typestr = strstr(typestr, option);
return (typestr != NULL);
}
static const mon_cmd_t *monitor_find_command(const char *cmdname)
{
const mon_cmd_t *cmd;
for (cmd = mon_cmds; cmd->name != NULL; cmd++) {
if (compare_cmd(cmdname, cmd->name)) {
return cmd;
}
}
return NULL;
}
static const mon_cmd_t *monitor_parse_command(Monitor *mon,
const char *cmdline,
QDict *qdict)
{
const char *p, *typestr;
int c;
const mon_cmd_t *cmd;
char cmdname[256];
char buf[1024];
char *key;
#ifdef DEBUG
monitor_printf(mon, "command='%s'\n", cmdline);
#endif
/* extract the command name */
p = get_command_name(cmdline, cmdname, sizeof(cmdname));
if (!p)
return NULL;
cmd = monitor_find_command(cmdname);
if (!cmd) {
monitor_printf(mon, "unknown command: '%s'\n", cmdname);
return NULL;
}
/* parse the parameters */
typestr = cmd->args_type;
for(;;) {
typestr = key_get_info(typestr, &key);
if (!typestr)
break;
c = *typestr;
typestr++;
switch(c) {
case 'F':
case 'B':
case 's':
{
int ret;
while (qemu_isspace(*p))
p++;
if (*typestr == '?') {
typestr++;
if (*p == '\0') {
/* no optional string: NULL argument */
break;
}
}
ret = get_str(buf, sizeof(buf), &p);
if (ret < 0) {
switch(c) {
case 'F':
monitor_printf(mon, "%s: filename expected\n",
cmdname);
break;
case 'B':
monitor_printf(mon, "%s: block device name expected\n",
cmdname);
break;
default:
monitor_printf(mon, "%s: string expected\n", cmdname);
break;
}
goto fail;
}
qdict_put(qdict, key, qstring_from_str(buf));
}
break;
case '/':
{
int count, format, size;
while (qemu_isspace(*p))
p++;
if (*p == '/') {
/* format found */
p++;
count = 1;
if (qemu_isdigit(*p)) {
count = 0;
while (qemu_isdigit(*p)) {
count = count * 10 + (*p - '0');
p++;
}
}
size = -1;
format = -1;
for(;;) {
switch(*p) {
case 'o':
case 'd':
case 'u':
case 'x':
case 'i':
case 'c':
format = *p++;
break;
case 'b':
size = 1;
p++;
break;
case 'h':
size = 2;
p++;
break;
case 'w':
size = 4;
p++;
break;
case 'g':
case 'L':
size = 8;
p++;
break;
default:
goto next;
}
}
next:
if (*p != '\0' && !qemu_isspace(*p)) {
monitor_printf(mon, "invalid char in format: '%c'\n",
*p);
goto fail;
}
if (format < 0)
format = default_fmt_format;
if (format != 'i') {
/* for 'i', not specifying a size gives -1 as size */
if (size < 0)
size = default_fmt_size;
default_fmt_size = size;
}
default_fmt_format = format;
} else {
count = 1;
format = default_fmt_format;
if (format != 'i') {
size = default_fmt_size;
} else {
size = -1;
}
}
qdict_put(qdict, "count", qint_from_int(count));
qdict_put(qdict, "format", qint_from_int(format));
qdict_put(qdict, "size", qint_from_int(size));
}
break;
case 'i':
case 'l':
case 'M':
{
int64_t val;
while (qemu_isspace(*p))
p++;
if (*typestr == '?' || *typestr == '.') {
if (*typestr == '?') {
if (*p == '\0') {
typestr++;
break;
}
} else {
if (*p == '.') {
p++;
while (qemu_isspace(*p))
p++;
} else {
typestr++;
break;
}
}
typestr++;
}
if (get_expr(mon, &val, &p))
goto fail;
/* Check if 'i' is greater than 32-bit */
if ((c == 'i') && ((val >> 32) & 0xffffffff)) {
monitor_printf(mon, "\'%s\' has failed: ", cmdname);
monitor_printf(mon, "integer is for 32-bit values\n");
goto fail;
} else if (c == 'M') {
val <<= 20;
}
qdict_put(qdict, key, qint_from_int(val));
}
break;
case 'b':
case 'T':
{
double val;
while (qemu_isspace(*p))
p++;
if (*typestr == '?') {
typestr++;
if (*p == '\0') {
break;
}
}
if (get_double(mon, &val, &p) < 0) {
goto fail;
}
if (c == 'b' && *p) {
switch (*p) {
case 'K': case 'k':
val *= 1 << 10; p++; break;
case 'M': case 'm':
val *= 1 << 20; p++; break;
case 'G': case 'g':
val *= 1 << 30; p++; break;
}
}
if (c == 'T' && p[0] && p[1] == 's') {
switch (*p) {
case 'm':
val /= 1e3; p += 2; break;
case 'u':
val /= 1e6; p += 2; break;
case 'n':
val /= 1e9; p += 2; break;
}
}
if (*p && !qemu_isspace(*p)) {
monitor_printf(mon, "Unknown unit suffix\n");
goto fail;
}
qdict_put(qdict, key, qfloat_from_double(val));
}
break;
case '-':
{
const char *tmp = p;
int has_option, skip_key = 0;
/* option */
c = *typestr++;
if (c == '\0')
goto bad_type;
while (qemu_isspace(*p))
p++;
has_option = 0;
if (*p == '-') {
p++;
if(c != *p) {
if(!is_valid_option(p, typestr)) {
monitor_printf(mon, "%s: unsupported option -%c\n",
cmdname, *p);
goto fail;
} else {
skip_key = 1;
}
}
if(skip_key) {
p = tmp;
} else {
p++;
has_option = 1;
}
}
qdict_put(qdict, key, qint_from_int(has_option));
}
break;
default:
bad_type:
monitor_printf(mon, "%s: unknown type '%c'\n", cmdname, c);
goto fail;
}
qemu_free(key);
key = NULL;
}
/* check that all arguments were parsed */
while (qemu_isspace(*p))
p++;
if (*p != '\0') {
monitor_printf(mon, "%s: extraneous characters at the end of line\n",
cmdname);
goto fail;
}
return cmd;
fail:
qemu_free(key);
return NULL;
}
static void monitor_print_error(Monitor *mon)
{
qerror_print(mon->error);
QDECREF(mon->error);
mon->error = NULL;
}
static int is_async_return(const QObject *data)
{
if (data && qobject_type(data) == QTYPE_QDICT) {
return qdict_haskey(qobject_to_qdict(data), "__mon_async");
}
return 0;
}
static void handler_audit(Monitor *mon, const mon_cmd_t *cmd, int ret)
{
if (ret && !monitor_has_error(mon)) {
/*
* If it returns failure, it must have passed on error.
*
* Action: Report an internal error to the client if in QMP.
*/
if (monitor_ctrl_mode(mon)) {
qemu_error_new(QERR_UNDEFINED_ERROR);
}
MON_DEBUG("command '%s' returned failure but did not pass an error\n",
cmd->name);
}
#ifdef CONFIG_DEBUG_MONITOR
if (!ret && monitor_has_error(mon)) {
/*
* If it returns success, it must not have passed an error.
*
* Action: Report the passed error to the client.
*/
MON_DEBUG("command '%s' returned success but passed an error\n",
cmd->name);
}
if (mon_print_count_get(mon) > 0 && strcmp(cmd->name, "info") != 0) {
/*
* Handlers should not call Monitor print functions.
*
* Action: Ignore them in QMP.
*
* (XXX: we don't check any 'info' or 'query' command here
* because the user print function _is_ called by do_info(), hence
* we will trigger this check. This problem will go away when we
* make 'query' commands real and kill do_info())
*/
MON_DEBUG("command '%s' called print functions %d time(s)\n",
cmd->name, mon_print_count_get(mon));
}
#endif
}
static void monitor_call_handler(Monitor *mon, const mon_cmd_t *cmd,
const QDict *params)
{
int ret;
QObject *data = NULL;
mon_print_count_init(mon);
ret = cmd->mhandler.cmd_new(mon, params, &data);
handler_audit(mon, cmd, ret);
if (is_async_return(data)) {
/*
* Asynchronous commands have no initial return data but they can
* generate errors. Data is returned via the async completion handler.
*/
if (monitor_ctrl_mode(mon) && monitor_has_error(mon)) {
monitor_protocol_emitter(mon, NULL);
}
} else if (monitor_ctrl_mode(mon)) {
/* Monitor Protocol */
monitor_protocol_emitter(mon, data);
} else {
/* User Protocol */
if (data)
cmd->user_print(mon, data);
}
qobject_decref(data);
}
static void handle_user_command(Monitor *mon, const char *cmdline)
{
QDict *qdict;
const mon_cmd_t *cmd;
qdict = qdict_new();
cmd = monitor_parse_command(mon, cmdline, qdict);
if (!cmd)
goto out;
qemu_errors_to_mon(mon);
if (monitor_handler_is_async(cmd)) {
user_async_cmd_handler(mon, cmd, qdict);
} else if (monitor_handler_ported(cmd)) {
monitor_call_handler(mon, cmd, qdict);
} else {
cmd->mhandler.cmd(mon, qdict);
}
if (monitor_has_error(mon))
monitor_print_error(mon);
qemu_errors_to_previous();
out:
QDECREF(qdict);
}
static void cmd_completion(const char *name, const char *list)
{
const char *p, *pstart;
char cmd[128];
int len;
p = list;
for(;;) {
pstart = p;
p = strchr(p, '|');
if (!p)
p = pstart + strlen(pstart);
len = p - pstart;
if (len > sizeof(cmd) - 2)
len = sizeof(cmd) - 2;
memcpy(cmd, pstart, len);
cmd[len] = '\0';
if (name[0] == '\0' || !strncmp(name, cmd, strlen(name))) {
readline_add_completion(cur_mon->rs, cmd);
}
if (*p == '\0')
break;
p++;
}
}
static void file_completion(const char *input)
{
DIR *ffs;
struct dirent *d;
char path[1024];
char file[1024], file_prefix[1024];
int input_path_len;
const char *p;
p = strrchr(input, '/');
if (!p) {
input_path_len = 0;
pstrcpy(file_prefix, sizeof(file_prefix), input);
pstrcpy(path, sizeof(path), ".");
} else {
input_path_len = p - input + 1;
memcpy(path, input, input_path_len);
if (input_path_len > sizeof(path) - 1)
input_path_len = sizeof(path) - 1;
path[input_path_len] = '\0';
pstrcpy(file_prefix, sizeof(file_prefix), p + 1);
}
#ifdef DEBUG_COMPLETION
monitor_printf(cur_mon, "input='%s' path='%s' prefix='%s'\n",
input, path, file_prefix);
#endif
ffs = opendir(path);
if (!ffs)
return;
for(;;) {
struct stat sb;
d = readdir(ffs);
if (!d)
break;
if (strstart(d->d_name, file_prefix, NULL)) {
memcpy(file, input, input_path_len);
if (input_path_len < sizeof(file))
pstrcpy(file + input_path_len, sizeof(file) - input_path_len,
d->d_name);
/* stat the file to find out if it's a directory.
* In that case add a slash to speed up typing long paths
*/
stat(file, &sb);
if(S_ISDIR(sb.st_mode))
pstrcat(file, sizeof(file), "/");
readline_add_completion(cur_mon->rs, file);
}
}
closedir(ffs);
}
static void block_completion_it(void *opaque, BlockDriverState *bs)
{
const char *name = bdrv_get_device_name(bs);
const char *input = opaque;
if (input[0] == '\0' ||
!strncmp(name, (char *)input, strlen(input))) {
readline_add_completion(cur_mon->rs, name);
}
}
/* NOTE: this parser is an approximate form of the real command parser */
static void parse_cmdline(const char *cmdline,
int *pnb_args, char **args)
{
const char *p;
int nb_args, ret;
char buf[1024];
p = cmdline;
nb_args = 0;
for(;;) {
while (qemu_isspace(*p))
p++;
if (*p == '\0')
break;
if (nb_args >= MAX_ARGS)
break;
ret = get_str(buf, sizeof(buf), &p);
args[nb_args] = qemu_strdup(buf);
nb_args++;
if (ret < 0)
break;
}
*pnb_args = nb_args;
}
static const char *next_arg_type(const char *typestr)
{
const char *p = strchr(typestr, ':');
return (p != NULL ? ++p : typestr);
}
static void monitor_find_completion(const char *cmdline)
{
const char *cmdname;
char *args[MAX_ARGS];
int nb_args, i, len;
const char *ptype, *str;
const mon_cmd_t *cmd;
const KeyDef *key;
parse_cmdline(cmdline, &nb_args, args);
#ifdef DEBUG_COMPLETION
for(i = 0; i < nb_args; i++) {
monitor_printf(cur_mon, "arg%d = '%s'\n", i, (char *)args[i]);
}
#endif
/* if the line ends with a space, it means we want to complete the
next arg */
len = strlen(cmdline);
if (len > 0 && qemu_isspace(cmdline[len - 1])) {
if (nb_args >= MAX_ARGS)
return;
args[nb_args++] = qemu_strdup("");
}
if (nb_args <= 1) {
/* command completion */
if (nb_args == 0)
cmdname = "";
else
cmdname = args[0];
readline_set_completion_index(cur_mon->rs, strlen(cmdname));
for(cmd = mon_cmds; cmd->name != NULL; cmd++) {
cmd_completion(cmdname, cmd->name);
}
} else {
/* find the command */
for(cmd = mon_cmds; cmd->name != NULL; cmd++) {
if (compare_cmd(args[0], cmd->name))
goto found;
}
return;
found:
ptype = next_arg_type(cmd->args_type);
for(i = 0; i < nb_args - 2; i++) {
if (*ptype != '\0') {
ptype = next_arg_type(ptype);
while (*ptype == '?')
ptype = next_arg_type(ptype);
}
}
str = args[nb_args - 1];
if (*ptype == '-' && ptype[1] != '\0') {
ptype += 2;
}
switch(*ptype) {
case 'F':
/* file completion */
readline_set_completion_index(cur_mon->rs, strlen(str));
file_completion(str);
break;
case 'B':
/* block device name completion */
readline_set_completion_index(cur_mon->rs, strlen(str));
bdrv_iterate(block_completion_it, (void *)str);
break;
case 's':
/* XXX: more generic ? */
if (!strcmp(cmd->name, "info")) {
readline_set_completion_index(cur_mon->rs, strlen(str));
for(cmd = info_cmds; cmd->name != NULL; cmd++) {
cmd_completion(str, cmd->name);
}
} else if (!strcmp(cmd->name, "sendkey")) {
char *sep = strrchr(str, '-');
if (sep)
str = sep + 1;
readline_set_completion_index(cur_mon->rs, strlen(str));
for(key = key_defs; key->name != NULL; key++) {
cmd_completion(str, key->name);
}
} else if (!strcmp(cmd->name, "help|?")) {
readline_set_completion_index(cur_mon->rs, strlen(str));
for (cmd = mon_cmds; cmd->name != NULL; cmd++) {
cmd_completion(str, cmd->name);
}
}
break;
default:
break;
}
}
for(i = 0; i < nb_args; i++)
qemu_free(args[i]);
}
static int monitor_can_read(void *opaque)
{
Monitor *mon = opaque;
return (mon->suspend_cnt == 0) ? 1 : 0;
}
typedef struct CmdArgs {
QString *name;
int type;
int flag;
int optional;
} CmdArgs;
static int check_opt(const CmdArgs *cmd_args, const char *name, QDict *args)
{
if (!cmd_args->optional) {
qemu_error_new(QERR_MISSING_PARAMETER, name);
return -1;
}
if (cmd_args->type == '-') {
/* handlers expect a value, they need to be changed */
qdict_put(args, name, qint_from_int(0));
}
return 0;
}
static int check_arg(const CmdArgs *cmd_args, QDict *args)
{
QObject *value;
const char *name;
name = qstring_get_str(cmd_args->name);
if (!args) {
return check_opt(cmd_args, name, args);
}
value = qdict_get(args, name);
if (!value) {
return check_opt(cmd_args, name, args);
}
switch (cmd_args->type) {
case 'F':
case 'B':
case 's':
if (qobject_type(value) != QTYPE_QSTRING) {
qemu_error_new(QERR_INVALID_PARAMETER_TYPE, name, "string");
return -1;
}
break;
case '/': {
int i;
const char *keys[] = { "count", "format", "size", NULL };
for (i = 0; keys[i]; i++) {
QObject *obj = qdict_get(args, keys[i]);
if (!obj) {
qemu_error_new(QERR_MISSING_PARAMETER, name);
return -1;
}
if (qobject_type(obj) != QTYPE_QINT) {
qemu_error_new(QERR_INVALID_PARAMETER_TYPE, name, "int");
return -1;
}
}
break;
}
case 'i':
case 'l':
case 'M':
if (qobject_type(value) != QTYPE_QINT) {
qemu_error_new(QERR_INVALID_PARAMETER_TYPE, name, "int");
return -1;
}
break;
case 'b':
case 'T':
if (qobject_type(value) != QTYPE_QINT && qobject_type(value) != QTYPE_QFLOAT) {
qemu_error_new(QERR_INVALID_PARAMETER_TYPE, name, "number");
return -1;
}
break;
case '-':
if (qobject_type(value) != QTYPE_QINT &&
qobject_type(value) != QTYPE_QBOOL) {
qemu_error_new(QERR_INVALID_PARAMETER_TYPE, name, "bool");
return -1;
}
if (qobject_type(value) == QTYPE_QBOOL) {
/* handlers expect a QInt, they need to be changed */
qdict_put(args, name,
qint_from_int(qbool_get_int(qobject_to_qbool(value))));
}
break;
default:
/* impossible */
abort();
}
return 0;
}
static void cmd_args_init(CmdArgs *cmd_args)
{
cmd_args->name = qstring_new();
cmd_args->type = cmd_args->flag = cmd_args->optional = 0;
}
/*
* This is not trivial, we have to parse Monitor command's argument
* type syntax to be able to check the arguments provided by clients.
*
* In the near future we will be using an array for that and will be
* able to drop all this parsing...
*/
static int monitor_check_qmp_args(const mon_cmd_t *cmd, QDict *args)
{
int err;
const char *p;
CmdArgs cmd_args;
if (cmd->args_type == NULL) {
return (qdict_size(args) == 0 ? 0 : -1);
}
err = 0;
cmd_args_init(&cmd_args);
for (p = cmd->args_type;; p++) {
if (*p == ':') {
cmd_args.type = *++p;
p++;
if (cmd_args.type == '-') {
cmd_args.flag = *p++;
cmd_args.optional = 1;
} else if (*p == '?') {
cmd_args.optional = 1;
p++;
}
assert(*p == ',' || *p == '\0');
err = check_arg(&cmd_args, args);
QDECREF(cmd_args.name);
cmd_args_init(&cmd_args);
if (err < 0) {
break;
}
} else {
qstring_append_chr(cmd_args.name, *p);
}
if (*p == '\0') {
break;
}
}
QDECREF(cmd_args.name);
return err;
}
static int invalid_qmp_mode(const Monitor *mon, const char *cmd_name)
{
int is_cap = compare_cmd(cmd_name, "qmp_capabilities");
return (qmp_cmd_mode(mon) ? is_cap : !is_cap);
}
static void handle_qmp_command(JSONMessageParser *parser, QList *tokens)
{
int err;
QObject *obj;
QDict *input, *args;
const mon_cmd_t *cmd;
Monitor *mon = cur_mon;
const char *cmd_name, *info_item;
args = NULL;
qemu_errors_to_mon(mon);
obj = json_parser_parse(tokens, NULL);
if (!obj) {
// FIXME: should be triggered in json_parser_parse()
qemu_error_new(QERR_JSON_PARSING);
goto err_out;
} else if (qobject_type(obj) != QTYPE_QDICT) {
qemu_error_new(QERR_QMP_BAD_INPUT_OBJECT, "object");
qobject_decref(obj);
goto err_out;
}
input = qobject_to_qdict(obj);
mon->mc->id = qdict_get(input, "id");
qobject_incref(mon->mc->id);
obj = qdict_get(input, "execute");
if (!obj) {
qemu_error_new(QERR_QMP_BAD_INPUT_OBJECT, "execute");
goto err_input;
} else if (qobject_type(obj) != QTYPE_QSTRING) {
qemu_error_new(QERR_QMP_BAD_INPUT_OBJECT, "string");
goto err_input;
}
cmd_name = qstring_get_str(qobject_to_qstring(obj));
if (invalid_qmp_mode(mon, cmd_name)) {
qemu_error_new(QERR_COMMAND_NOT_FOUND, cmd_name);
goto err_input;
}
/*
* XXX: We need this special case until we get info handlers
* converted into 'query-' commands
*/
if (compare_cmd(cmd_name, "info")) {
qemu_error_new(QERR_COMMAND_NOT_FOUND, cmd_name);
goto err_input;
} else if (strstart(cmd_name, "query-", &info_item)) {
cmd = monitor_find_command("info");
qdict_put_obj(input, "arguments",
qobject_from_jsonf("{ 'item': %s }", info_item));
} else {
cmd = monitor_find_command(cmd_name);
if (!cmd || !monitor_handler_ported(cmd)) {
qemu_error_new(QERR_COMMAND_NOT_FOUND, cmd_name);
goto err_input;
}
}
obj = qdict_get(input, "arguments");
if (!obj) {
args = qdict_new();
} else {
args = qobject_to_qdict(obj);
QINCREF(args);
}
QDECREF(input);
err = monitor_check_qmp_args(cmd, args);
if (err < 0) {
goto err_out;
}
if (monitor_handler_is_async(cmd)) {
qmp_async_cmd_handler(mon, cmd, args);
} else {
monitor_call_handler(mon, cmd, args);
}
goto out;
err_input:
QDECREF(input);
err_out:
monitor_protocol_emitter(mon, NULL);
out:
QDECREF(args);
qemu_errors_to_previous();
}
/**
* monitor_control_read(): Read and handle QMP input
*/
static void monitor_control_read(void *opaque, const uint8_t *buf, int size)
{
Monitor *old_mon = cur_mon;
cur_mon = opaque;
json_message_parser_feed(&cur_mon->mc->parser, (const char *) buf, size);
cur_mon = old_mon;
}
static void monitor_read(void *opaque, const uint8_t *buf, int size)
{
Monitor *old_mon = cur_mon;
int i;
cur_mon = opaque;
if (cur_mon->rs) {
for (i = 0; i < size; i++)
readline_handle_byte(cur_mon->rs, buf[i]);
} else {
if (size == 0 || buf[size - 1] != 0)
monitor_printf(cur_mon, "corrupted command\n");
else
handle_user_command(cur_mon, (char *)buf);
}
cur_mon = old_mon;
}
static void monitor_command_cb(Monitor *mon, const char *cmdline, void *opaque)
{
monitor_suspend(mon);
handle_user_command(mon, cmdline);
monitor_resume(mon);
}
int monitor_suspend(Monitor *mon)
{
if (!mon->rs)
return -ENOTTY;
mon->suspend_cnt++;
return 0;
}
void monitor_resume(Monitor *mon)
{
if (!mon->rs)
return;
if (--mon->suspend_cnt == 0)
readline_show_prompt(mon->rs);
}
static QObject *get_qmp_greeting(void)
{
QObject *ver;
do_info_version(NULL, &ver);
return qobject_from_jsonf("{'QMP':{'version': %p,'capabilities': []}}",ver);
}
/**
* monitor_control_event(): Print QMP gretting
*/
static void monitor_control_event(void *opaque, int event)
{
QObject *data;
Monitor *mon = opaque;
switch (event) {
case CHR_EVENT_OPENED:
mon->mc->command_mode = 0;
json_message_parser_init(&mon->mc->parser, handle_qmp_command);
data = get_qmp_greeting();
monitor_json_emitter(mon, data);
qobject_decref(data);
break;
case CHR_EVENT_CLOSED:
json_message_parser_destroy(&mon->mc->parser);
break;
}
}
static void monitor_event(void *opaque, int event)
{
Monitor *mon = opaque;
switch (event) {
case CHR_EVENT_MUX_IN:
mon->mux_out = 0;
if (mon->reset_seen) {
readline_restart(mon->rs);
monitor_resume(mon);
monitor_flush(mon);
} else {
mon->suspend_cnt = 0;
}
break;
case CHR_EVENT_MUX_OUT:
if (mon->reset_seen) {
if (mon->suspend_cnt == 0) {
monitor_printf(mon, "\n");
}
monitor_flush(mon);
monitor_suspend(mon);
} else {
mon->suspend_cnt++;
}
mon->mux_out = 1;
break;
case CHR_EVENT_OPENED:
monitor_printf(mon, "QEMU %s monitor - type 'help' for more "
"information\n", QEMU_VERSION);
if (!mon->mux_out) {
readline_show_prompt(mon->rs);
}
mon->reset_seen = 1;
break;
}
}
/*
* Local variables:
* c-indent-level: 4
* c-basic-offset: 4
* tab-width: 8
* End:
*/
void monitor_init(CharDriverState *chr, int flags)
{
static int is_first_init = 1;
Monitor *mon;
if (is_first_init) {
key_timer = qemu_new_timer(vm_clock, release_keys, NULL);
is_first_init = 0;
}
mon = qemu_mallocz(sizeof(*mon));
mon->chr = chr;
mon->flags = flags;
if (flags & MONITOR_USE_READLINE) {
mon->rs = readline_init(mon, monitor_find_completion);
monitor_read_command(mon, 0);
}
if (monitor_ctrl_mode(mon)) {
mon->mc = qemu_mallocz(sizeof(MonitorControl));
/* Control mode requires special handlers */
qemu_chr_add_handlers(chr, monitor_can_read, monitor_control_read,
monitor_control_event, mon);
} else {
qemu_chr_add_handlers(chr, monitor_can_read, monitor_read,
monitor_event, mon);
}
QLIST_INSERT_HEAD(&mon_list, mon, entry);
if (!cur_mon || (flags & MONITOR_IS_DEFAULT))
cur_mon = mon;
}
static void bdrv_password_cb(Monitor *mon, const char *password, void *opaque)
{
BlockDriverState *bs = opaque;
int ret = 0;
if (bdrv_set_key(bs, password) != 0) {
monitor_printf(mon, "invalid password\n");
ret = -EPERM;
}
if (mon->password_completion_cb)
mon->password_completion_cb(mon->password_opaque, ret);
monitor_read_command(mon, 1);
}
int monitor_read_bdrv_key_start(Monitor *mon, BlockDriverState *bs,
BlockDriverCompletionFunc *completion_cb,
void *opaque)
{
int err;
if (!bdrv_key_required(bs)) {
if (completion_cb)
completion_cb(opaque, 0);
return 0;
}
if (monitor_ctrl_mode(mon)) {
qemu_error_new(QERR_DEVICE_ENCRYPTED, bdrv_get_device_name(bs));
return -1;
}
monitor_printf(mon, "%s (%s) is encrypted.\n", bdrv_get_device_name(bs),
bdrv_get_encrypted_filename(bs));
mon->password_completion_cb = completion_cb;
mon->password_opaque = opaque;
err = monitor_read_password(mon, bdrv_password_cb, bs);
if (err && completion_cb)
completion_cb(opaque, err);
return err;
}
typedef struct QemuErrorSink QemuErrorSink;
struct QemuErrorSink {
enum {
ERR_SINK_FILE,
ERR_SINK_MONITOR,
} dest;
union {
FILE *fp;
Monitor *mon;
};
QemuErrorSink *previous;
};
static QemuErrorSink *qemu_error_sink;
void qemu_errors_to_file(FILE *fp)
{
QemuErrorSink *sink;
sink = qemu_mallocz(sizeof(*sink));
sink->dest = ERR_SINK_FILE;
sink->fp = fp;
sink->previous = qemu_error_sink;
qemu_error_sink = sink;
}
void qemu_errors_to_mon(Monitor *mon)
{
QemuErrorSink *sink;
sink = qemu_mallocz(sizeof(*sink));
sink->dest = ERR_SINK_MONITOR;
sink->mon = mon;
sink->previous = qemu_error_sink;
qemu_error_sink = sink;
}
void qemu_errors_to_previous(void)
{
QemuErrorSink *sink;
assert(qemu_error_sink != NULL);
sink = qemu_error_sink;
qemu_error_sink = sink->previous;
qemu_free(sink);
}
void qemu_error(const char *fmt, ...)
{
va_list args;
assert(qemu_error_sink != NULL);
switch (qemu_error_sink->dest) {
case ERR_SINK_FILE:
va_start(args, fmt);
vfprintf(qemu_error_sink->fp, fmt, args);
va_end(args);
break;
case ERR_SINK_MONITOR:
va_start(args, fmt);
monitor_vprintf(qemu_error_sink->mon, fmt, args);
va_end(args);
break;
}
}
void qemu_error_internal(const char *file, int linenr, const char *func,
const char *fmt, ...)
{
va_list va;
QError *qerror;
assert(qemu_error_sink != NULL);
va_start(va, fmt);
qerror = qerror_from_info(file, linenr, func, fmt, &va);
va_end(va);
switch (qemu_error_sink->dest) {
case ERR_SINK_FILE:
qerror_print(qerror);
QDECREF(qerror);
break;
case ERR_SINK_MONITOR:
/* report only the first error */
if (!qemu_error_sink->mon->error) {
qemu_error_sink->mon->error = qerror;
} else {
MON_DEBUG("Additional error report at %s:%d\n", qerror->file,
qerror->linenr);
QDECREF(qerror);
}
break;
}
}