qemu-e2k/hw/input/tsc210x.c

1294 lines
34 KiB
C

/*
* TI TSC2102 (touchscreen/sensors/audio controller) emulator.
* TI TSC2301 (touchscreen/sensors/keypad).
*
* Copyright (c) 2006 Andrzej Zaborowski <balrog@zabor.org>
* Copyright (C) 2008 Nokia Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "hw/hw.h"
#include "audio/audio.h"
#include "qemu/timer.h"
#include "ui/console.h"
#include "hw/arm/omap.h" /* For I2SCodec and uWireSlave */
#include "hw/devices.h"
#define TSC_DATA_REGISTERS_PAGE 0x0
#define TSC_CONTROL_REGISTERS_PAGE 0x1
#define TSC_AUDIO_REGISTERS_PAGE 0x2
#define TSC_VERBOSE
#define TSC_CUT_RESOLUTION(value, p) ((value) >> (16 - resolution[p]))
typedef struct {
qemu_irq pint;
qemu_irq kbint;
qemu_irq davint;
QEMUTimer *timer;
QEMUSoundCard card;
uWireSlave chip;
I2SCodec codec;
uint8_t in_fifo[16384];
uint8_t out_fifo[16384];
uint16_t model;
int x, y;
int pressure;
int state, page, offset, irq;
uint16_t command, dav;
int busy;
int enabled;
int host_mode;
int function;
int nextfunction;
int precision;
int nextprecision;
int filter;
int pin_func;
int ref;
int timing;
int noise;
uint16_t audio_ctrl1;
uint16_t audio_ctrl2;
uint16_t audio_ctrl3;
uint16_t pll[3];
uint16_t volume;
int64_t volume_change;
int softstep;
uint16_t dac_power;
int64_t powerdown;
uint16_t filter_data[0x14];
const char *name;
SWVoiceIn *adc_voice[1];
SWVoiceOut *dac_voice[1];
int i2s_rx_rate;
int i2s_tx_rate;
int tr[8];
struct {
uint16_t down;
uint16_t mask;
int scan;
int debounce;
int mode;
int intr;
} kb;
} TSC210xState;
static const int resolution[4] = { 12, 8, 10, 12 };
#define TSC_MODE_NO_SCAN 0x0
#define TSC_MODE_XY_SCAN 0x1
#define TSC_MODE_XYZ_SCAN 0x2
#define TSC_MODE_X 0x3
#define TSC_MODE_Y 0x4
#define TSC_MODE_Z 0x5
#define TSC_MODE_BAT1 0x6
#define TSC_MODE_BAT2 0x7
#define TSC_MODE_AUX 0x8
#define TSC_MODE_AUX_SCAN 0x9
#define TSC_MODE_TEMP1 0xa
#define TSC_MODE_PORT_SCAN 0xb
#define TSC_MODE_TEMP2 0xc
#define TSC_MODE_XX_DRV 0xd
#define TSC_MODE_YY_DRV 0xe
#define TSC_MODE_YX_DRV 0xf
static const uint16_t mode_regs[16] = {
0x0000, /* No scan */
0x0600, /* X, Y scan */
0x0780, /* X, Y, Z scan */
0x0400, /* X */
0x0200, /* Y */
0x0180, /* Z */
0x0040, /* BAT1 */
0x0030, /* BAT2 */
0x0010, /* AUX */
0x0010, /* AUX scan */
0x0004, /* TEMP1 */
0x0070, /* Port scan */
0x0002, /* TEMP2 */
0x0000, /* X+, X- drivers */
0x0000, /* Y+, Y- drivers */
0x0000, /* Y+, X- drivers */
};
#define X_TRANSFORM(s) \
((s->y * s->tr[0] - s->x * s->tr[1]) / s->tr[2] + s->tr[3])
#define Y_TRANSFORM(s) \
((s->y * s->tr[4] - s->x * s->tr[5]) / s->tr[6] + s->tr[7])
#define Z1_TRANSFORM(s) \
((400 - ((s)->x >> 7) + ((s)->pressure << 10)) << 4)
#define Z2_TRANSFORM(s) \
((4000 + ((s)->y >> 7) - ((s)->pressure << 10)) << 4)
#define BAT1_VAL 0x8660
#define BAT2_VAL 0x0000
#define AUX1_VAL 0x35c0
#define AUX2_VAL 0xffff
#define TEMP1_VAL 0x8c70
#define TEMP2_VAL 0xa5b0
#define TSC_POWEROFF_DELAY 50
#define TSC_SOFTSTEP_DELAY 50
static void tsc210x_reset(TSC210xState *s)
{
s->state = 0;
s->pin_func = 2;
s->enabled = 0;
s->busy = 0;
s->nextfunction = 0;
s->ref = 0;
s->timing = 0;
s->irq = 0;
s->dav = 0;
s->audio_ctrl1 = 0x0000;
s->audio_ctrl2 = 0x4410;
s->audio_ctrl3 = 0x0000;
s->pll[0] = 0x1004;
s->pll[1] = 0x0000;
s->pll[2] = 0x1fff;
s->volume = 0xffff;
s->dac_power = 0x8540;
s->softstep = 1;
s->volume_change = 0;
s->powerdown = 0;
s->filter_data[0x00] = 0x6be3;
s->filter_data[0x01] = 0x9666;
s->filter_data[0x02] = 0x675d;
s->filter_data[0x03] = 0x6be3;
s->filter_data[0x04] = 0x9666;
s->filter_data[0x05] = 0x675d;
s->filter_data[0x06] = 0x7d83;
s->filter_data[0x07] = 0x84ee;
s->filter_data[0x08] = 0x7d83;
s->filter_data[0x09] = 0x84ee;
s->filter_data[0x0a] = 0x6be3;
s->filter_data[0x0b] = 0x9666;
s->filter_data[0x0c] = 0x675d;
s->filter_data[0x0d] = 0x6be3;
s->filter_data[0x0e] = 0x9666;
s->filter_data[0x0f] = 0x675d;
s->filter_data[0x10] = 0x7d83;
s->filter_data[0x11] = 0x84ee;
s->filter_data[0x12] = 0x7d83;
s->filter_data[0x13] = 0x84ee;
s->i2s_tx_rate = 0;
s->i2s_rx_rate = 0;
s->kb.scan = 1;
s->kb.debounce = 0;
s->kb.mask = 0x0000;
s->kb.mode = 3;
s->kb.intr = 0;
qemu_set_irq(s->pint, !s->irq);
qemu_set_irq(s->davint, !s->dav);
qemu_irq_raise(s->kbint);
}
typedef struct {
int rate;
int dsor;
int fsref;
} TSC210xRateInfo;
/* { rate, dsor, fsref } */
static const TSC210xRateInfo tsc2101_rates[] = {
/* Fsref / 6.0 */
{ 7350, 7, 1 },
{ 8000, 7, 0 },
/* Fsref / 5.5 */
{ 8018, 6, 1 },
{ 8727, 6, 0 },
/* Fsref / 5.0 */
{ 8820, 5, 1 },
{ 9600, 5, 0 },
/* Fsref / 4.0 */
{ 11025, 4, 1 },
{ 12000, 4, 0 },
/* Fsref / 3.0 */
{ 14700, 3, 1 },
{ 16000, 3, 0 },
/* Fsref / 2.0 */
{ 22050, 2, 1 },
{ 24000, 2, 0 },
/* Fsref / 1.5 */
{ 29400, 1, 1 },
{ 32000, 1, 0 },
/* Fsref */
{ 44100, 0, 1 },
{ 48000, 0, 0 },
{ 0, 0, 0 },
};
/* { rate, dsor, fsref } */
static const TSC210xRateInfo tsc2102_rates[] = {
/* Fsref / 6.0 */
{ 7350, 63, 1 },
{ 8000, 63, 0 },
/* Fsref / 6.0 */
{ 7350, 54, 1 },
{ 8000, 54, 0 },
/* Fsref / 5.0 */
{ 8820, 45, 1 },
{ 9600, 45, 0 },
/* Fsref / 4.0 */
{ 11025, 36, 1 },
{ 12000, 36, 0 },
/* Fsref / 3.0 */
{ 14700, 27, 1 },
{ 16000, 27, 0 },
/* Fsref / 2.0 */
{ 22050, 18, 1 },
{ 24000, 18, 0 },
/* Fsref / 1.5 */
{ 29400, 9, 1 },
{ 32000, 9, 0 },
/* Fsref */
{ 44100, 0, 1 },
{ 48000, 0, 0 },
{ 0, 0, 0 },
};
static inline void tsc210x_out_flush(TSC210xState *s, int len)
{
uint8_t *data = s->codec.out.fifo + s->codec.out.start;
uint8_t *end = data + len;
while (data < end)
data += AUD_write(s->dac_voice[0], data, end - data) ?: (end - data);
s->codec.out.len -= len;
if (s->codec.out.len)
memmove(s->codec.out.fifo, end, s->codec.out.len);
s->codec.out.start = 0;
}
static void tsc210x_audio_out_cb(TSC210xState *s, int free_b)
{
if (s->codec.out.len >= free_b) {
tsc210x_out_flush(s, free_b);
return;
}
s->codec.out.size = MIN(free_b, 16384);
qemu_irq_raise(s->codec.tx_start);
}
static void tsc2102_audio_rate_update(TSC210xState *s)
{
const TSC210xRateInfo *rate;
s->codec.tx_rate = 0;
s->codec.rx_rate = 0;
if (s->dac_power & (1 << 15)) /* PWDNC */
return;
for (rate = tsc2102_rates; rate->rate; rate ++)
if (rate->dsor == (s->audio_ctrl1 & 0x3f) && /* DACFS */
rate->fsref == ((s->audio_ctrl3 >> 13) & 1))/* REFFS */
break;
if (!rate->rate) {
printf("%s: unknown sampling rate configured\n", __FUNCTION__);
return;
}
s->codec.tx_rate = rate->rate;
}
static void tsc2102_audio_output_update(TSC210xState *s)
{
int enable;
struct audsettings fmt;
if (s->dac_voice[0]) {
tsc210x_out_flush(s, s->codec.out.len);
s->codec.out.size = 0;
AUD_set_active_out(s->dac_voice[0], 0);
AUD_close_out(&s->card, s->dac_voice[0]);
s->dac_voice[0] = NULL;
}
s->codec.cts = 0;
enable =
(~s->dac_power & (1 << 15)) && /* PWDNC */
(~s->dac_power & (1 << 10)); /* DAPWDN */
if (!enable || !s->codec.tx_rate)
return;
/* Force our own sampling rate even in slave DAC mode */
fmt.endianness = 0;
fmt.nchannels = 2;
fmt.freq = s->codec.tx_rate;
fmt.fmt = AUD_FMT_S16;
s->dac_voice[0] = AUD_open_out(&s->card, s->dac_voice[0],
"tsc2102.sink", s, (void *) tsc210x_audio_out_cb, &fmt);
if (s->dac_voice[0]) {
s->codec.cts = 1;
AUD_set_active_out(s->dac_voice[0], 1);
}
}
static uint16_t tsc2102_data_register_read(TSC210xState *s, int reg)
{
switch (reg) {
case 0x00: /* X */
s->dav &= 0xfbff;
return TSC_CUT_RESOLUTION(X_TRANSFORM(s), s->precision) +
(s->noise & 3);
case 0x01: /* Y */
s->noise ++;
s->dav &= 0xfdff;
return TSC_CUT_RESOLUTION(Y_TRANSFORM(s), s->precision) ^
(s->noise & 3);
case 0x02: /* Z1 */
s->dav &= 0xfeff;
return TSC_CUT_RESOLUTION(Z1_TRANSFORM(s), s->precision) -
(s->noise & 3);
case 0x03: /* Z2 */
s->dav &= 0xff7f;
return TSC_CUT_RESOLUTION(Z2_TRANSFORM(s), s->precision) |
(s->noise & 3);
case 0x04: /* KPData */
if ((s->model & 0xff00) == 0x2300) {
if (s->kb.intr && (s->kb.mode & 2)) {
s->kb.intr = 0;
qemu_irq_raise(s->kbint);
}
return s->kb.down;
}
return 0xffff;
case 0x05: /* BAT1 */
s->dav &= 0xffbf;
return TSC_CUT_RESOLUTION(BAT1_VAL, s->precision) +
(s->noise & 6);
case 0x06: /* BAT2 */
s->dav &= 0xffdf;
return TSC_CUT_RESOLUTION(BAT2_VAL, s->precision);
case 0x07: /* AUX1 */
s->dav &= 0xffef;
return TSC_CUT_RESOLUTION(AUX1_VAL, s->precision);
case 0x08: /* AUX2 */
s->dav &= 0xfff7;
return 0xffff;
case 0x09: /* TEMP1 */
s->dav &= 0xfffb;
return TSC_CUT_RESOLUTION(TEMP1_VAL, s->precision) -
(s->noise & 5);
case 0x0a: /* TEMP2 */
s->dav &= 0xfffd;
return TSC_CUT_RESOLUTION(TEMP2_VAL, s->precision) ^
(s->noise & 3);
case 0x0b: /* DAC */
s->dav &= 0xfffe;
return 0xffff;
default:
#ifdef TSC_VERBOSE
fprintf(stderr, "tsc2102_data_register_read: "
"no such register: 0x%02x\n", reg);
#endif
return 0xffff;
}
}
static uint16_t tsc2102_control_register_read(
TSC210xState *s, int reg)
{
switch (reg) {
case 0x00: /* TSC ADC */
return (s->pressure << 15) | ((!s->busy) << 14) |
(s->nextfunction << 10) | (s->nextprecision << 8) | s->filter;
case 0x01: /* Status / Keypad Control */
if ((s->model & 0xff00) == 0x2100)
return (s->pin_func << 14) | ((!s->enabled) << 13) |
(s->host_mode << 12) | ((!!s->dav) << 11) | s->dav;
else
return (s->kb.intr << 15) | ((s->kb.scan || !s->kb.down) << 14) |
(s->kb.debounce << 11);
case 0x02: /* DAC Control */
if ((s->model & 0xff00) == 0x2300)
return s->dac_power & 0x8000;
else
goto bad_reg;
case 0x03: /* Reference */
return s->ref;
case 0x04: /* Reset */
return 0xffff;
case 0x05: /* Configuration */
return s->timing;
case 0x06: /* Secondary configuration */
if ((s->model & 0xff00) == 0x2100)
goto bad_reg;
return ((!s->dav) << 15) | ((s->kb.mode & 1) << 14) | s->pll[2];
case 0x10: /* Keypad Mask */
if ((s->model & 0xff00) == 0x2100)
goto bad_reg;
return s->kb.mask;
default:
bad_reg:
#ifdef TSC_VERBOSE
fprintf(stderr, "tsc2102_control_register_read: "
"no such register: 0x%02x\n", reg);
#endif
return 0xffff;
}
}
static uint16_t tsc2102_audio_register_read(TSC210xState *s, int reg)
{
int l_ch, r_ch;
uint16_t val;
switch (reg) {
case 0x00: /* Audio Control 1 */
return s->audio_ctrl1;
case 0x01:
return 0xff00;
case 0x02: /* DAC Volume Control */
return s->volume;
case 0x03:
return 0x8b00;
case 0x04: /* Audio Control 2 */
l_ch = 1;
r_ch = 1;
if (s->softstep && !(s->dac_power & (1 << 10))) {
l_ch = (qemu_get_clock_ns(vm_clock) >
s->volume_change + TSC_SOFTSTEP_DELAY);
r_ch = (qemu_get_clock_ns(vm_clock) >
s->volume_change + TSC_SOFTSTEP_DELAY);
}
return s->audio_ctrl2 | (l_ch << 3) | (r_ch << 2);
case 0x05: /* Stereo DAC Power Control */
return 0x2aa0 | s->dac_power |
(((s->dac_power & (1 << 10)) &&
(qemu_get_clock_ns(vm_clock) >
s->powerdown + TSC_POWEROFF_DELAY)) << 6);
case 0x06: /* Audio Control 3 */
val = s->audio_ctrl3 | 0x0001;
s->audio_ctrl3 &= 0xff3f;
return val;
case 0x07: /* LCH_BASS_BOOST_N0 */
case 0x08: /* LCH_BASS_BOOST_N1 */
case 0x09: /* LCH_BASS_BOOST_N2 */
case 0x0a: /* LCH_BASS_BOOST_N3 */
case 0x0b: /* LCH_BASS_BOOST_N4 */
case 0x0c: /* LCH_BASS_BOOST_N5 */
case 0x0d: /* LCH_BASS_BOOST_D1 */
case 0x0e: /* LCH_BASS_BOOST_D2 */
case 0x0f: /* LCH_BASS_BOOST_D4 */
case 0x10: /* LCH_BASS_BOOST_D5 */
case 0x11: /* RCH_BASS_BOOST_N0 */
case 0x12: /* RCH_BASS_BOOST_N1 */
case 0x13: /* RCH_BASS_BOOST_N2 */
case 0x14: /* RCH_BASS_BOOST_N3 */
case 0x15: /* RCH_BASS_BOOST_N4 */
case 0x16: /* RCH_BASS_BOOST_N5 */
case 0x17: /* RCH_BASS_BOOST_D1 */
case 0x18: /* RCH_BASS_BOOST_D2 */
case 0x19: /* RCH_BASS_BOOST_D4 */
case 0x1a: /* RCH_BASS_BOOST_D5 */
return s->filter_data[reg - 0x07];
case 0x1b: /* PLL Programmability 1 */
return s->pll[0];
case 0x1c: /* PLL Programmability 2 */
return s->pll[1];
case 0x1d: /* Audio Control 4 */
return (!s->softstep) << 14;
default:
#ifdef TSC_VERBOSE
fprintf(stderr, "tsc2102_audio_register_read: "
"no such register: 0x%02x\n", reg);
#endif
return 0xffff;
}
}
static void tsc2102_data_register_write(
TSC210xState *s, int reg, uint16_t value)
{
switch (reg) {
case 0x00: /* X */
case 0x01: /* Y */
case 0x02: /* Z1 */
case 0x03: /* Z2 */
case 0x05: /* BAT1 */
case 0x06: /* BAT2 */
case 0x07: /* AUX1 */
case 0x08: /* AUX2 */
case 0x09: /* TEMP1 */
case 0x0a: /* TEMP2 */
return;
default:
#ifdef TSC_VERBOSE
fprintf(stderr, "tsc2102_data_register_write: "
"no such register: 0x%02x\n", reg);
#endif
}
}
static void tsc2102_control_register_write(
TSC210xState *s, int reg, uint16_t value)
{
switch (reg) {
case 0x00: /* TSC ADC */
s->host_mode = value >> 15;
s->enabled = !(value & 0x4000);
if (s->busy && !s->enabled)
qemu_del_timer(s->timer);
s->busy &= s->enabled;
s->nextfunction = (value >> 10) & 0xf;
s->nextprecision = (value >> 8) & 3;
s->filter = value & 0xff;
return;
case 0x01: /* Status / Keypad Control */
if ((s->model & 0xff00) == 0x2100)
s->pin_func = value >> 14;
else {
s->kb.scan = (value >> 14) & 1;
s->kb.debounce = (value >> 11) & 7;
if (s->kb.intr && s->kb.scan) {
s->kb.intr = 0;
qemu_irq_raise(s->kbint);
}
}
return;
case 0x02: /* DAC Control */
if ((s->model & 0xff00) == 0x2300) {
s->dac_power &= 0x7fff;
s->dac_power |= 0x8000 & value;
} else
goto bad_reg;
break;
case 0x03: /* Reference */
s->ref = value & 0x1f;
return;
case 0x04: /* Reset */
if (value == 0xbb00) {
if (s->busy)
qemu_del_timer(s->timer);
tsc210x_reset(s);
#ifdef TSC_VERBOSE
} else {
fprintf(stderr, "tsc2102_control_register_write: "
"wrong value written into RESET\n");
#endif
}
return;
case 0x05: /* Configuration */
s->timing = value & 0x3f;
#ifdef TSC_VERBOSE
if (value & ~0x3f)
fprintf(stderr, "tsc2102_control_register_write: "
"wrong value written into CONFIG\n");
#endif
return;
case 0x06: /* Secondary configuration */
if ((s->model & 0xff00) == 0x2100)
goto bad_reg;
s->kb.mode = value >> 14;
s->pll[2] = value & 0x3ffff;
return;
case 0x10: /* Keypad Mask */
if ((s->model & 0xff00) == 0x2100)
goto bad_reg;
s->kb.mask = value;
return;
default:
bad_reg:
#ifdef TSC_VERBOSE
fprintf(stderr, "tsc2102_control_register_write: "
"no such register: 0x%02x\n", reg);
#endif
}
}
static void tsc2102_audio_register_write(
TSC210xState *s, int reg, uint16_t value)
{
switch (reg) {
case 0x00: /* Audio Control 1 */
s->audio_ctrl1 = value & 0x0f3f;
#ifdef TSC_VERBOSE
if ((value & ~0x0f3f) || ((value & 7) != ((value >> 3) & 7)))
fprintf(stderr, "tsc2102_audio_register_write: "
"wrong value written into Audio 1\n");
#endif
tsc2102_audio_rate_update(s);
tsc2102_audio_output_update(s);
return;
case 0x01:
#ifdef TSC_VERBOSE
if (value != 0xff00)
fprintf(stderr, "tsc2102_audio_register_write: "
"wrong value written into reg 0x01\n");
#endif
return;
case 0x02: /* DAC Volume Control */
s->volume = value;
s->volume_change = qemu_get_clock_ns(vm_clock);
return;
case 0x03:
#ifdef TSC_VERBOSE
if (value != 0x8b00)
fprintf(stderr, "tsc2102_audio_register_write: "
"wrong value written into reg 0x03\n");
#endif
return;
case 0x04: /* Audio Control 2 */
s->audio_ctrl2 = value & 0xf7f2;
#ifdef TSC_VERBOSE
if (value & ~0xf7fd)
fprintf(stderr, "tsc2102_audio_register_write: "
"wrong value written into Audio 2\n");
#endif
return;
case 0x05: /* Stereo DAC Power Control */
if ((value & ~s->dac_power) & (1 << 10))
s->powerdown = qemu_get_clock_ns(vm_clock);
s->dac_power = value & 0x9543;
#ifdef TSC_VERBOSE
if ((value & ~0x9543) != 0x2aa0)
fprintf(stderr, "tsc2102_audio_register_write: "
"wrong value written into Power\n");
#endif
tsc2102_audio_rate_update(s);
tsc2102_audio_output_update(s);
return;
case 0x06: /* Audio Control 3 */
s->audio_ctrl3 &= 0x00c0;
s->audio_ctrl3 |= value & 0xf800;
#ifdef TSC_VERBOSE
if (value & ~0xf8c7)
fprintf(stderr, "tsc2102_audio_register_write: "
"wrong value written into Audio 3\n");
#endif
tsc2102_audio_output_update(s);
return;
case 0x07: /* LCH_BASS_BOOST_N0 */
case 0x08: /* LCH_BASS_BOOST_N1 */
case 0x09: /* LCH_BASS_BOOST_N2 */
case 0x0a: /* LCH_BASS_BOOST_N3 */
case 0x0b: /* LCH_BASS_BOOST_N4 */
case 0x0c: /* LCH_BASS_BOOST_N5 */
case 0x0d: /* LCH_BASS_BOOST_D1 */
case 0x0e: /* LCH_BASS_BOOST_D2 */
case 0x0f: /* LCH_BASS_BOOST_D4 */
case 0x10: /* LCH_BASS_BOOST_D5 */
case 0x11: /* RCH_BASS_BOOST_N0 */
case 0x12: /* RCH_BASS_BOOST_N1 */
case 0x13: /* RCH_BASS_BOOST_N2 */
case 0x14: /* RCH_BASS_BOOST_N3 */
case 0x15: /* RCH_BASS_BOOST_N4 */
case 0x16: /* RCH_BASS_BOOST_N5 */
case 0x17: /* RCH_BASS_BOOST_D1 */
case 0x18: /* RCH_BASS_BOOST_D2 */
case 0x19: /* RCH_BASS_BOOST_D4 */
case 0x1a: /* RCH_BASS_BOOST_D5 */
s->filter_data[reg - 0x07] = value;
return;
case 0x1b: /* PLL Programmability 1 */
s->pll[0] = value & 0xfffc;
#ifdef TSC_VERBOSE
if (value & ~0xfffc)
fprintf(stderr, "tsc2102_audio_register_write: "
"wrong value written into PLL 1\n");
#endif
return;
case 0x1c: /* PLL Programmability 2 */
s->pll[1] = value & 0xfffc;
#ifdef TSC_VERBOSE
if (value & ~0xfffc)
fprintf(stderr, "tsc2102_audio_register_write: "
"wrong value written into PLL 2\n");
#endif
return;
case 0x1d: /* Audio Control 4 */
s->softstep = !(value & 0x4000);
#ifdef TSC_VERBOSE
if (value & ~0x4000)
fprintf(stderr, "tsc2102_audio_register_write: "
"wrong value written into Audio 4\n");
#endif
return;
default:
#ifdef TSC_VERBOSE
fprintf(stderr, "tsc2102_audio_register_write: "
"no such register: 0x%02x\n", reg);
#endif
}
}
/* This handles most of the chip logic. */
static void tsc210x_pin_update(TSC210xState *s)
{
int64_t expires;
int pin_state;
switch (s->pin_func) {
case 0:
pin_state = s->pressure;
break;
case 1:
pin_state = !!s->dav;
break;
case 2:
default:
pin_state = s->pressure && !s->dav;
}
if (!s->enabled)
pin_state = 0;
if (pin_state != s->irq) {
s->irq = pin_state;
qemu_set_irq(s->pint, !s->irq);
}
switch (s->nextfunction) {
case TSC_MODE_XY_SCAN:
case TSC_MODE_XYZ_SCAN:
if (!s->pressure)
return;
break;
case TSC_MODE_X:
case TSC_MODE_Y:
case TSC_MODE_Z:
if (!s->pressure)
return;
/* Fall through */
case TSC_MODE_BAT1:
case TSC_MODE_BAT2:
case TSC_MODE_AUX:
case TSC_MODE_TEMP1:
case TSC_MODE_TEMP2:
if (s->dav)
s->enabled = 0;
break;
case TSC_MODE_AUX_SCAN:
case TSC_MODE_PORT_SCAN:
break;
case TSC_MODE_NO_SCAN:
case TSC_MODE_XX_DRV:
case TSC_MODE_YY_DRV:
case TSC_MODE_YX_DRV:
default:
return;
}
if (!s->enabled || s->busy || s->dav)
return;
s->busy = 1;
s->precision = s->nextprecision;
s->function = s->nextfunction;
expires = qemu_get_clock_ns(vm_clock) + (get_ticks_per_sec() >> 10);
qemu_mod_timer(s->timer, expires);
}
static uint16_t tsc210x_read(TSC210xState *s)
{
uint16_t ret = 0x0000;
if (!s->command)
fprintf(stderr, "tsc210x_read: SPI underrun!\n");
switch (s->page) {
case TSC_DATA_REGISTERS_PAGE:
ret = tsc2102_data_register_read(s, s->offset);
if (!s->dav)
qemu_irq_raise(s->davint);
break;
case TSC_CONTROL_REGISTERS_PAGE:
ret = tsc2102_control_register_read(s, s->offset);
break;
case TSC_AUDIO_REGISTERS_PAGE:
ret = tsc2102_audio_register_read(s, s->offset);
break;
default:
hw_error("tsc210x_read: wrong memory page\n");
}
tsc210x_pin_update(s);
/* Allow sequential reads. */
s->offset ++;
s->state = 0;
return ret;
}
static void tsc210x_write(TSC210xState *s, uint16_t value)
{
/*
* This is a two-state state machine for reading
* command and data every second time.
*/
if (!s->state) {
s->command = value >> 15;
s->page = (value >> 11) & 0x0f;
s->offset = (value >> 5) & 0x3f;
s->state = 1;
} else {
if (s->command)
fprintf(stderr, "tsc210x_write: SPI overrun!\n");
else
switch (s->page) {
case TSC_DATA_REGISTERS_PAGE:
tsc2102_data_register_write(s, s->offset, value);
break;
case TSC_CONTROL_REGISTERS_PAGE:
tsc2102_control_register_write(s, s->offset, value);
break;
case TSC_AUDIO_REGISTERS_PAGE:
tsc2102_audio_register_write(s, s->offset, value);
break;
default:
hw_error("tsc210x_write: wrong memory page\n");
}
tsc210x_pin_update(s);
s->state = 0;
}
}
uint32_t tsc210x_txrx(void *opaque, uint32_t value, int len)
{
TSC210xState *s = opaque;
uint32_t ret = 0;
if (len != 16)
hw_error("%s: FIXME: bad SPI word width %i\n", __FUNCTION__, len);
/* TODO: sequential reads etc - how do we make sure the host doesn't
* unintentionally read out a conversion result from a register while
* transmitting the command word of the next command? */
if (!value || (s->state && s->command))
ret = tsc210x_read(s);
if (value || (s->state && !s->command))
tsc210x_write(s, value);
return ret;
}
static void tsc210x_timer_tick(void *opaque)
{
TSC210xState *s = opaque;
/* Timer ticked -- a set of conversions has been finished. */
if (!s->busy)
return;
s->busy = 0;
s->dav |= mode_regs[s->function];
tsc210x_pin_update(s);
qemu_irq_lower(s->davint);
}
static void tsc210x_touchscreen_event(void *opaque,
int x, int y, int z, int buttons_state)
{
TSC210xState *s = opaque;
int p = s->pressure;
if (buttons_state) {
s->x = x;
s->y = y;
}
s->pressure = !!buttons_state;
/*
* Note: We would get better responsiveness in the guest by
* signaling TS events immediately, but for now we simulate
* the first conversion delay for sake of correctness.
*/
if (p != s->pressure)
tsc210x_pin_update(s);
}
static void tsc210x_i2s_swallow(TSC210xState *s)
{
if (s->dac_voice[0])
tsc210x_out_flush(s, s->codec.out.len);
else
s->codec.out.len = 0;
}
static void tsc210x_i2s_set_rate(TSC210xState *s, int in, int out)
{
s->i2s_tx_rate = out;
s->i2s_rx_rate = in;
}
static void tsc210x_save(QEMUFile *f, void *opaque)
{
TSC210xState *s = (TSC210xState *) opaque;
int64_t now = qemu_get_clock_ns(vm_clock);
int i;
qemu_put_be16(f, s->x);
qemu_put_be16(f, s->y);
qemu_put_byte(f, s->pressure);
qemu_put_byte(f, s->state);
qemu_put_byte(f, s->page);
qemu_put_byte(f, s->offset);
qemu_put_byte(f, s->command);
qemu_put_byte(f, s->irq);
qemu_put_be16s(f, &s->dav);
qemu_put_timer(f, s->timer);
qemu_put_byte(f, s->enabled);
qemu_put_byte(f, s->host_mode);
qemu_put_byte(f, s->function);
qemu_put_byte(f, s->nextfunction);
qemu_put_byte(f, s->precision);
qemu_put_byte(f, s->nextprecision);
qemu_put_byte(f, s->filter);
qemu_put_byte(f, s->pin_func);
qemu_put_byte(f, s->ref);
qemu_put_byte(f, s->timing);
qemu_put_be32(f, s->noise);
qemu_put_be16s(f, &s->audio_ctrl1);
qemu_put_be16s(f, &s->audio_ctrl2);
qemu_put_be16s(f, &s->audio_ctrl3);
qemu_put_be16s(f, &s->pll[0]);
qemu_put_be16s(f, &s->pll[1]);
qemu_put_be16s(f, &s->volume);
qemu_put_sbe64(f, (s->volume_change - now));
qemu_put_sbe64(f, (s->powerdown - now));
qemu_put_byte(f, s->softstep);
qemu_put_be16s(f, &s->dac_power);
for (i = 0; i < 0x14; i ++)
qemu_put_be16s(f, &s->filter_data[i]);
}
static int tsc210x_load(QEMUFile *f, void *opaque, int version_id)
{
TSC210xState *s = (TSC210xState *) opaque;
int64_t now = qemu_get_clock_ns(vm_clock);
int i;
s->x = qemu_get_be16(f);
s->y = qemu_get_be16(f);
s->pressure = qemu_get_byte(f);
s->state = qemu_get_byte(f);
s->page = qemu_get_byte(f);
s->offset = qemu_get_byte(f);
s->command = qemu_get_byte(f);
s->irq = qemu_get_byte(f);
qemu_get_be16s(f, &s->dav);
qemu_get_timer(f, s->timer);
s->enabled = qemu_get_byte(f);
s->host_mode = qemu_get_byte(f);
s->function = qemu_get_byte(f);
s->nextfunction = qemu_get_byte(f);
s->precision = qemu_get_byte(f);
s->nextprecision = qemu_get_byte(f);
s->filter = qemu_get_byte(f);
s->pin_func = qemu_get_byte(f);
s->ref = qemu_get_byte(f);
s->timing = qemu_get_byte(f);
s->noise = qemu_get_be32(f);
qemu_get_be16s(f, &s->audio_ctrl1);
qemu_get_be16s(f, &s->audio_ctrl2);
qemu_get_be16s(f, &s->audio_ctrl3);
qemu_get_be16s(f, &s->pll[0]);
qemu_get_be16s(f, &s->pll[1]);
qemu_get_be16s(f, &s->volume);
s->volume_change = qemu_get_sbe64(f) + now;
s->powerdown = qemu_get_sbe64(f) + now;
s->softstep = qemu_get_byte(f);
qemu_get_be16s(f, &s->dac_power);
for (i = 0; i < 0x14; i ++)
qemu_get_be16s(f, &s->filter_data[i]);
s->busy = qemu_timer_pending(s->timer);
qemu_set_irq(s->pint, !s->irq);
qemu_set_irq(s->davint, !s->dav);
return 0;
}
uWireSlave *tsc2102_init(qemu_irq pint)
{
TSC210xState *s;
s = (TSC210xState *)
g_malloc0(sizeof(TSC210xState));
memset(s, 0, sizeof(TSC210xState));
s->x = 160;
s->y = 160;
s->pressure = 0;
s->precision = s->nextprecision = 0;
s->timer = qemu_new_timer_ns(vm_clock, tsc210x_timer_tick, s);
s->pint = pint;
s->model = 0x2102;
s->name = "tsc2102";
s->tr[0] = 0;
s->tr[1] = 1;
s->tr[2] = 1;
s->tr[3] = 0;
s->tr[4] = 1;
s->tr[5] = 0;
s->tr[6] = 1;
s->tr[7] = 0;
s->chip.opaque = s;
s->chip.send = (void *) tsc210x_write;
s->chip.receive = (void *) tsc210x_read;
s->codec.opaque = s;
s->codec.tx_swallow = (void *) tsc210x_i2s_swallow;
s->codec.set_rate = (void *) tsc210x_i2s_set_rate;
s->codec.in.fifo = s->in_fifo;
s->codec.out.fifo = s->out_fifo;
tsc210x_reset(s);
qemu_add_mouse_event_handler(tsc210x_touchscreen_event, s, 1,
"QEMU TSC2102-driven Touchscreen");
AUD_register_card(s->name, &s->card);
qemu_register_reset((void *) tsc210x_reset, s);
register_savevm(NULL, s->name, -1, 0,
tsc210x_save, tsc210x_load, s);
return &s->chip;
}
uWireSlave *tsc2301_init(qemu_irq penirq, qemu_irq kbirq, qemu_irq dav)
{
TSC210xState *s;
s = (TSC210xState *)
g_malloc0(sizeof(TSC210xState));
memset(s, 0, sizeof(TSC210xState));
s->x = 400;
s->y = 240;
s->pressure = 0;
s->precision = s->nextprecision = 0;
s->timer = qemu_new_timer_ns(vm_clock, tsc210x_timer_tick, s);
s->pint = penirq;
s->kbint = kbirq;
s->davint = dav;
s->model = 0x2301;
s->name = "tsc2301";
s->tr[0] = 0;
s->tr[1] = 1;
s->tr[2] = 1;
s->tr[3] = 0;
s->tr[4] = 1;
s->tr[5] = 0;
s->tr[6] = 1;
s->tr[7] = 0;
s->chip.opaque = s;
s->chip.send = (void *) tsc210x_write;
s->chip.receive = (void *) tsc210x_read;
s->codec.opaque = s;
s->codec.tx_swallow = (void *) tsc210x_i2s_swallow;
s->codec.set_rate = (void *) tsc210x_i2s_set_rate;
s->codec.in.fifo = s->in_fifo;
s->codec.out.fifo = s->out_fifo;
tsc210x_reset(s);
qemu_add_mouse_event_handler(tsc210x_touchscreen_event, s, 1,
"QEMU TSC2301-driven Touchscreen");
AUD_register_card(s->name, &s->card);
qemu_register_reset((void *) tsc210x_reset, s);
register_savevm(NULL, s->name, -1, 0, tsc210x_save, tsc210x_load, s);
return &s->chip;
}
I2SCodec *tsc210x_codec(uWireSlave *chip)
{
TSC210xState *s = (TSC210xState *) chip->opaque;
return &s->codec;
}
/*
* Use tslib generated calibration data to generate ADC input values
* from the touchscreen. Assuming 12-bit precision was used during
* tslib calibration.
*/
void tsc210x_set_transform(uWireSlave *chip,
MouseTransformInfo *info)
{
TSC210xState *s = (TSC210xState *) chip->opaque;
#if 0
int64_t ltr[8];
ltr[0] = (int64_t) info->a[1] * info->y;
ltr[1] = (int64_t) info->a[4] * info->x;
ltr[2] = (int64_t) info->a[1] * info->a[3] -
(int64_t) info->a[4] * info->a[0];
ltr[3] = (int64_t) info->a[2] * info->a[4] -
(int64_t) info->a[5] * info->a[1];
ltr[4] = (int64_t) info->a[0] * info->y;
ltr[5] = (int64_t) info->a[3] * info->x;
ltr[6] = (int64_t) info->a[4] * info->a[0] -
(int64_t) info->a[1] * info->a[3];
ltr[7] = (int64_t) info->a[2] * info->a[3] -
(int64_t) info->a[5] * info->a[0];
/* Avoid integer overflow */
s->tr[0] = ltr[0] >> 11;
s->tr[1] = ltr[1] >> 11;
s->tr[2] = muldiv64(ltr[2], 1, info->a[6]);
s->tr[3] = muldiv64(ltr[3], 1 << 4, ltr[2]);
s->tr[4] = ltr[4] >> 11;
s->tr[5] = ltr[5] >> 11;
s->tr[6] = muldiv64(ltr[6], 1, info->a[6]);
s->tr[7] = muldiv64(ltr[7], 1 << 4, ltr[6]);
#else
/* This version assumes touchscreen X & Y axis are parallel or
* perpendicular to LCD's X & Y axis in some way. */
if (abs(info->a[0]) > abs(info->a[1])) {
s->tr[0] = 0;
s->tr[1] = -info->a[6] * info->x;
s->tr[2] = info->a[0];
s->tr[3] = -info->a[2] / info->a[0];
s->tr[4] = info->a[6] * info->y;
s->tr[5] = 0;
s->tr[6] = info->a[4];
s->tr[7] = -info->a[5] / info->a[4];
} else {
s->tr[0] = info->a[6] * info->y;
s->tr[1] = 0;
s->tr[2] = info->a[1];
s->tr[3] = -info->a[2] / info->a[1];
s->tr[4] = 0;
s->tr[5] = -info->a[6] * info->x;
s->tr[6] = info->a[3];
s->tr[7] = -info->a[5] / info->a[3];
}
s->tr[0] >>= 11;
s->tr[1] >>= 11;
s->tr[3] <<= 4;
s->tr[4] >>= 11;
s->tr[5] >>= 11;
s->tr[7] <<= 4;
#endif
}
void tsc210x_key_event(uWireSlave *chip, int key, int down)
{
TSC210xState *s = (TSC210xState *) chip->opaque;
if (down)
s->kb.down |= 1 << key;
else
s->kb.down &= ~(1 << key);
if (down && (s->kb.down & ~s->kb.mask) && !s->kb.intr) {
s->kb.intr = 1;
qemu_irq_lower(s->kbint);
} else if (s->kb.intr && !(s->kb.down & ~s->kb.mask) &&
!(s->kb.mode & 1)) {
s->kb.intr = 0;
qemu_irq_raise(s->kbint);
}
}