429d0a3db8
Signed-off-by: Gleb Natapov <gleb@redhat.com> git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6288 c046a42c-6fe2-441c-8c8c-71466251a162
1735 lines
48 KiB
C
1735 lines
48 KiB
C
/*
|
|
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)tcp_input.c 8.5 (Berkeley) 4/10/94
|
|
* tcp_input.c,v 1.10 1994/10/13 18:36:32 wollman Exp
|
|
*/
|
|
|
|
/*
|
|
* Changes and additions relating to SLiRP
|
|
* Copyright (c) 1995 Danny Gasparovski.
|
|
*
|
|
* Please read the file COPYRIGHT for the
|
|
* terms and conditions of the copyright.
|
|
*/
|
|
|
|
#include <slirp.h>
|
|
#include "ip_icmp.h"
|
|
|
|
struct socket tcb;
|
|
|
|
#define TCPREXMTTHRESH 3
|
|
struct socket *tcp_last_so = &tcb;
|
|
|
|
tcp_seq tcp_iss; /* tcp initial send seq # */
|
|
|
|
#define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
|
|
|
|
/* for modulo comparisons of timestamps */
|
|
#define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
|
|
#define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
|
|
|
|
/*
|
|
* Insert segment ti into reassembly queue of tcp with
|
|
* control block tp. Return TH_FIN if reassembly now includes
|
|
* a segment with FIN. The macro form does the common case inline
|
|
* (segment is the next to be received on an established connection,
|
|
* and the queue is empty), avoiding linkage into and removal
|
|
* from the queue and repetition of various conversions.
|
|
* Set DELACK for segments received in order, but ack immediately
|
|
* when segments are out of order (so fast retransmit can work).
|
|
*/
|
|
#ifdef TCP_ACK_HACK
|
|
#define TCP_REASS(tp, ti, m, so, flags) {\
|
|
if ((ti)->ti_seq == (tp)->rcv_nxt && \
|
|
tcpfrag_list_empty(tp) && \
|
|
(tp)->t_state == TCPS_ESTABLISHED) {\
|
|
if (ti->ti_flags & TH_PUSH) \
|
|
tp->t_flags |= TF_ACKNOW; \
|
|
else \
|
|
tp->t_flags |= TF_DELACK; \
|
|
(tp)->rcv_nxt += (ti)->ti_len; \
|
|
flags = (ti)->ti_flags & TH_FIN; \
|
|
STAT(tcpstat.tcps_rcvpack++); \
|
|
STAT(tcpstat.tcps_rcvbyte += (ti)->ti_len); \
|
|
if (so->so_emu) { \
|
|
if (tcp_emu((so),(m))) sbappend((so), (m)); \
|
|
} else \
|
|
sbappend((so), (m)); \
|
|
/* sorwakeup(so); */ \
|
|
} else {\
|
|
(flags) = tcp_reass((tp), (ti), (m)); \
|
|
tp->t_flags |= TF_ACKNOW; \
|
|
} \
|
|
}
|
|
#else
|
|
#define TCP_REASS(tp, ti, m, so, flags) { \
|
|
if ((ti)->ti_seq == (tp)->rcv_nxt && \
|
|
tcpfrag_list_empty(tp) && \
|
|
(tp)->t_state == TCPS_ESTABLISHED) { \
|
|
tp->t_flags |= TF_DELACK; \
|
|
(tp)->rcv_nxt += (ti)->ti_len; \
|
|
flags = (ti)->ti_flags & TH_FIN; \
|
|
STAT(tcpstat.tcps_rcvpack++); \
|
|
STAT(tcpstat.tcps_rcvbyte += (ti)->ti_len); \
|
|
if (so->so_emu) { \
|
|
if (tcp_emu((so),(m))) sbappend(so, (m)); \
|
|
} else \
|
|
sbappend((so), (m)); \
|
|
/* sorwakeup(so); */ \
|
|
} else { \
|
|
(flags) = tcp_reass((tp), (ti), (m)); \
|
|
tp->t_flags |= TF_ACKNOW; \
|
|
} \
|
|
}
|
|
#endif
|
|
static void tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt,
|
|
struct tcpiphdr *ti);
|
|
static void tcp_xmit_timer(register struct tcpcb *tp, int rtt);
|
|
|
|
static int
|
|
tcp_reass(register struct tcpcb *tp, register struct tcpiphdr *ti,
|
|
struct mbuf *m)
|
|
{
|
|
register struct tcpiphdr *q;
|
|
struct socket *so = tp->t_socket;
|
|
int flags;
|
|
|
|
/*
|
|
* Call with ti==0 after become established to
|
|
* force pre-ESTABLISHED data up to user socket.
|
|
*/
|
|
if (ti == 0)
|
|
goto present;
|
|
|
|
/*
|
|
* Find a segment which begins after this one does.
|
|
*/
|
|
for (q = tcpfrag_list_first(tp); !tcpfrag_list_end(q, tp);
|
|
q = tcpiphdr_next(q))
|
|
if (SEQ_GT(q->ti_seq, ti->ti_seq))
|
|
break;
|
|
|
|
/*
|
|
* If there is a preceding segment, it may provide some of
|
|
* our data already. If so, drop the data from the incoming
|
|
* segment. If it provides all of our data, drop us.
|
|
*/
|
|
if (!tcpfrag_list_end(tcpiphdr_prev(q), tp)) {
|
|
register int i;
|
|
q = tcpiphdr_prev(q);
|
|
/* conversion to int (in i) handles seq wraparound */
|
|
i = q->ti_seq + q->ti_len - ti->ti_seq;
|
|
if (i > 0) {
|
|
if (i >= ti->ti_len) {
|
|
STAT(tcpstat.tcps_rcvduppack++);
|
|
STAT(tcpstat.tcps_rcvdupbyte += ti->ti_len);
|
|
m_freem(m);
|
|
/*
|
|
* Try to present any queued data
|
|
* at the left window edge to the user.
|
|
* This is needed after the 3-WHS
|
|
* completes.
|
|
*/
|
|
goto present; /* ??? */
|
|
}
|
|
m_adj(m, i);
|
|
ti->ti_len -= i;
|
|
ti->ti_seq += i;
|
|
}
|
|
q = tcpiphdr_next(q);
|
|
}
|
|
STAT(tcpstat.tcps_rcvoopack++);
|
|
STAT(tcpstat.tcps_rcvoobyte += ti->ti_len);
|
|
ti->ti_mbuf = m;
|
|
|
|
/*
|
|
* While we overlap succeeding segments trim them or,
|
|
* if they are completely covered, dequeue them.
|
|
*/
|
|
while (!tcpfrag_list_end(q, tp)) {
|
|
register int i = (ti->ti_seq + ti->ti_len) - q->ti_seq;
|
|
if (i <= 0)
|
|
break;
|
|
if (i < q->ti_len) {
|
|
q->ti_seq += i;
|
|
q->ti_len -= i;
|
|
m_adj(q->ti_mbuf, i);
|
|
break;
|
|
}
|
|
q = tcpiphdr_next(q);
|
|
m = tcpiphdr_prev(q)->ti_mbuf;
|
|
remque(tcpiphdr2qlink(tcpiphdr_prev(q)));
|
|
m_freem(m);
|
|
}
|
|
|
|
/*
|
|
* Stick new segment in its place.
|
|
*/
|
|
insque(tcpiphdr2qlink(ti), tcpiphdr2qlink(tcpiphdr_prev(q)));
|
|
|
|
present:
|
|
/*
|
|
* Present data to user, advancing rcv_nxt through
|
|
* completed sequence space.
|
|
*/
|
|
if (!TCPS_HAVEESTABLISHED(tp->t_state))
|
|
return (0);
|
|
ti = tcpfrag_list_first(tp);
|
|
if (tcpfrag_list_end(ti, tp) || ti->ti_seq != tp->rcv_nxt)
|
|
return (0);
|
|
if (tp->t_state == TCPS_SYN_RECEIVED && ti->ti_len)
|
|
return (0);
|
|
do {
|
|
tp->rcv_nxt += ti->ti_len;
|
|
flags = ti->ti_flags & TH_FIN;
|
|
remque(tcpiphdr2qlink(ti));
|
|
m = ti->ti_mbuf;
|
|
ti = tcpiphdr_next(ti);
|
|
/* if (so->so_state & SS_FCANTRCVMORE) */
|
|
if (so->so_state & SS_FCANTSENDMORE)
|
|
m_freem(m);
|
|
else {
|
|
if (so->so_emu) {
|
|
if (tcp_emu(so,m)) sbappend(so, m);
|
|
} else
|
|
sbappend(so, m);
|
|
}
|
|
} while (ti != (struct tcpiphdr *)tp && ti->ti_seq == tp->rcv_nxt);
|
|
/* sorwakeup(so); */
|
|
return (flags);
|
|
}
|
|
|
|
/*
|
|
* TCP input routine, follows pages 65-76 of the
|
|
* protocol specification dated September, 1981 very closely.
|
|
*/
|
|
void
|
|
tcp_input(m, iphlen, inso)
|
|
register struct mbuf *m;
|
|
int iphlen;
|
|
struct socket *inso;
|
|
{
|
|
struct ip save_ip, *ip;
|
|
register struct tcpiphdr *ti;
|
|
caddr_t optp = NULL;
|
|
int optlen = 0;
|
|
int len, tlen, off;
|
|
register struct tcpcb *tp = 0;
|
|
register int tiflags;
|
|
struct socket *so = 0;
|
|
int todrop, acked, ourfinisacked, needoutput = 0;
|
|
/* int dropsocket = 0; */
|
|
int iss = 0;
|
|
u_long tiwin;
|
|
int ret;
|
|
/* int ts_present = 0; */
|
|
struct ex_list *ex_ptr;
|
|
|
|
DEBUG_CALL("tcp_input");
|
|
DEBUG_ARGS((dfd," m = %8lx iphlen = %2d inso = %lx\n",
|
|
(long )m, iphlen, (long )inso ));
|
|
|
|
/*
|
|
* If called with m == 0, then we're continuing the connect
|
|
*/
|
|
if (m == NULL) {
|
|
so = inso;
|
|
|
|
/* Re-set a few variables */
|
|
tp = sototcpcb(so);
|
|
m = so->so_m;
|
|
so->so_m = 0;
|
|
ti = so->so_ti;
|
|
tiwin = ti->ti_win;
|
|
tiflags = ti->ti_flags;
|
|
|
|
goto cont_conn;
|
|
}
|
|
|
|
|
|
STAT(tcpstat.tcps_rcvtotal++);
|
|
/*
|
|
* Get IP and TCP header together in first mbuf.
|
|
* Note: IP leaves IP header in first mbuf.
|
|
*/
|
|
ti = mtod(m, struct tcpiphdr *);
|
|
if (iphlen > sizeof(struct ip )) {
|
|
ip_stripoptions(m, (struct mbuf *)0);
|
|
iphlen=sizeof(struct ip );
|
|
}
|
|
/* XXX Check if too short */
|
|
|
|
|
|
/*
|
|
* Save a copy of the IP header in case we want restore it
|
|
* for sending an ICMP error message in response.
|
|
*/
|
|
ip=mtod(m, struct ip *);
|
|
save_ip = *ip;
|
|
save_ip.ip_len+= iphlen;
|
|
|
|
/*
|
|
* Checksum extended TCP header and data.
|
|
*/
|
|
tlen = ((struct ip *)ti)->ip_len;
|
|
tcpiphdr2qlink(ti)->next = tcpiphdr2qlink(ti)->prev = 0;
|
|
memset(&ti->ti_i.ih_mbuf, 0 , sizeof(struct mbuf_ptr));
|
|
ti->ti_x1 = 0;
|
|
ti->ti_len = htons((u_int16_t)tlen);
|
|
len = sizeof(struct ip ) + tlen;
|
|
/* keep checksum for ICMP reply
|
|
* ti->ti_sum = cksum(m, len);
|
|
* if (ti->ti_sum) { */
|
|
if(cksum(m, len)) {
|
|
STAT(tcpstat.tcps_rcvbadsum++);
|
|
goto drop;
|
|
}
|
|
|
|
/*
|
|
* Check that TCP offset makes sense,
|
|
* pull out TCP options and adjust length. XXX
|
|
*/
|
|
off = ti->ti_off << 2;
|
|
if (off < sizeof (struct tcphdr) || off > tlen) {
|
|
STAT(tcpstat.tcps_rcvbadoff++);
|
|
goto drop;
|
|
}
|
|
tlen -= off;
|
|
ti->ti_len = tlen;
|
|
if (off > sizeof (struct tcphdr)) {
|
|
optlen = off - sizeof (struct tcphdr);
|
|
optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
|
|
|
|
/*
|
|
* Do quick retrieval of timestamp options ("options
|
|
* prediction?"). If timestamp is the only option and it's
|
|
* formatted as recommended in RFC 1323 appendix A, we
|
|
* quickly get the values now and not bother calling
|
|
* tcp_dooptions(), etc.
|
|
*/
|
|
/* if ((optlen == TCPOLEN_TSTAMP_APPA ||
|
|
* (optlen > TCPOLEN_TSTAMP_APPA &&
|
|
* optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
|
|
* *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
|
|
* (ti->ti_flags & TH_SYN) == 0) {
|
|
* ts_present = 1;
|
|
* ts_val = ntohl(*(u_int32_t *)(optp + 4));
|
|
* ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
|
|
* optp = NULL; / * we've parsed the options * /
|
|
* }
|
|
*/
|
|
}
|
|
tiflags = ti->ti_flags;
|
|
|
|
/*
|
|
* Convert TCP protocol specific fields to host format.
|
|
*/
|
|
NTOHL(ti->ti_seq);
|
|
NTOHL(ti->ti_ack);
|
|
NTOHS(ti->ti_win);
|
|
NTOHS(ti->ti_urp);
|
|
|
|
/*
|
|
* Drop TCP, IP headers and TCP options.
|
|
*/
|
|
m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
|
|
m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
|
|
|
|
if (slirp_restrict) {
|
|
for (ex_ptr = exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next)
|
|
if (ex_ptr->ex_fport == ti->ti_dport &&
|
|
(ntohl(ti->ti_dst.s_addr) & 0xff) == ex_ptr->ex_addr)
|
|
break;
|
|
|
|
if (!ex_ptr)
|
|
goto drop;
|
|
}
|
|
/*
|
|
* Locate pcb for segment.
|
|
*/
|
|
findso:
|
|
so = tcp_last_so;
|
|
if (so->so_fport != ti->ti_dport ||
|
|
so->so_lport != ti->ti_sport ||
|
|
so->so_laddr.s_addr != ti->ti_src.s_addr ||
|
|
so->so_faddr.s_addr != ti->ti_dst.s_addr) {
|
|
so = solookup(&tcb, ti->ti_src, ti->ti_sport,
|
|
ti->ti_dst, ti->ti_dport);
|
|
if (so)
|
|
tcp_last_so = so;
|
|
STAT(tcpstat.tcps_socachemiss++);
|
|
}
|
|
|
|
/*
|
|
* If the state is CLOSED (i.e., TCB does not exist) then
|
|
* all data in the incoming segment is discarded.
|
|
* If the TCB exists but is in CLOSED state, it is embryonic,
|
|
* but should either do a listen or a connect soon.
|
|
*
|
|
* state == CLOSED means we've done socreate() but haven't
|
|
* attached it to a protocol yet...
|
|
*
|
|
* XXX If a TCB does not exist, and the TH_SYN flag is
|
|
* the only flag set, then create a session, mark it
|
|
* as if it was LISTENING, and continue...
|
|
*/
|
|
if (so == 0) {
|
|
if ((tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) != TH_SYN)
|
|
goto dropwithreset;
|
|
|
|
if ((so = socreate()) == NULL)
|
|
goto dropwithreset;
|
|
if (tcp_attach(so) < 0) {
|
|
free(so); /* Not sofree (if it failed, it's not insqued) */
|
|
goto dropwithreset;
|
|
}
|
|
|
|
sbreserve(&so->so_snd, TCP_SNDSPACE);
|
|
sbreserve(&so->so_rcv, TCP_RCVSPACE);
|
|
|
|
/* tcp_last_so = so; */ /* XXX ? */
|
|
/* tp = sototcpcb(so); */
|
|
|
|
so->so_laddr = ti->ti_src;
|
|
so->so_lport = ti->ti_sport;
|
|
so->so_faddr = ti->ti_dst;
|
|
so->so_fport = ti->ti_dport;
|
|
|
|
if ((so->so_iptos = tcp_tos(so)) == 0)
|
|
so->so_iptos = ((struct ip *)ti)->ip_tos;
|
|
|
|
tp = sototcpcb(so);
|
|
tp->t_state = TCPS_LISTEN;
|
|
}
|
|
|
|
/*
|
|
* If this is a still-connecting socket, this probably
|
|
* a retransmit of the SYN. Whether it's a retransmit SYN
|
|
* or something else, we nuke it.
|
|
*/
|
|
if (so->so_state & SS_ISFCONNECTING)
|
|
goto drop;
|
|
|
|
tp = sototcpcb(so);
|
|
|
|
/* XXX Should never fail */
|
|
if (tp == 0)
|
|
goto dropwithreset;
|
|
if (tp->t_state == TCPS_CLOSED)
|
|
goto drop;
|
|
|
|
/* Unscale the window into a 32-bit value. */
|
|
/* if ((tiflags & TH_SYN) == 0)
|
|
* tiwin = ti->ti_win << tp->snd_scale;
|
|
* else
|
|
*/
|
|
tiwin = ti->ti_win;
|
|
|
|
/*
|
|
* Segment received on connection.
|
|
* Reset idle time and keep-alive timer.
|
|
*/
|
|
tp->t_idle = 0;
|
|
if (SO_OPTIONS)
|
|
tp->t_timer[TCPT_KEEP] = TCPTV_KEEPINTVL;
|
|
else
|
|
tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_IDLE;
|
|
|
|
/*
|
|
* Process options if not in LISTEN state,
|
|
* else do it below (after getting remote address).
|
|
*/
|
|
if (optp && tp->t_state != TCPS_LISTEN)
|
|
tcp_dooptions(tp, (u_char *)optp, optlen, ti);
|
|
/* , */
|
|
/* &ts_present, &ts_val, &ts_ecr); */
|
|
|
|
/*
|
|
* Header prediction: check for the two common cases
|
|
* of a uni-directional data xfer. If the packet has
|
|
* no control flags, is in-sequence, the window didn't
|
|
* change and we're not retransmitting, it's a
|
|
* candidate. If the length is zero and the ack moved
|
|
* forward, we're the sender side of the xfer. Just
|
|
* free the data acked & wake any higher level process
|
|
* that was blocked waiting for space. If the length
|
|
* is non-zero and the ack didn't move, we're the
|
|
* receiver side. If we're getting packets in-order
|
|
* (the reassembly queue is empty), add the data to
|
|
* the socket buffer and note that we need a delayed ack.
|
|
*
|
|
* XXX Some of these tests are not needed
|
|
* eg: the tiwin == tp->snd_wnd prevents many more
|
|
* predictions.. with no *real* advantage..
|
|
*/
|
|
if (tp->t_state == TCPS_ESTABLISHED &&
|
|
(tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
|
|
/* (!ts_present || TSTMP_GEQ(ts_val, tp->ts_recent)) && */
|
|
ti->ti_seq == tp->rcv_nxt &&
|
|
tiwin && tiwin == tp->snd_wnd &&
|
|
tp->snd_nxt == tp->snd_max) {
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers,
|
|
* record the timestamp.
|
|
*/
|
|
/* if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
|
|
* SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
|
|
* tp->ts_recent_age = tcp_now;
|
|
* tp->ts_recent = ts_val;
|
|
* }
|
|
*/
|
|
if (ti->ti_len == 0) {
|
|
if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
|
|
SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
|
|
tp->snd_cwnd >= tp->snd_wnd) {
|
|
/*
|
|
* this is a pure ack for outstanding data.
|
|
*/
|
|
STAT(tcpstat.tcps_predack++);
|
|
/* if (ts_present)
|
|
* tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
|
|
* else
|
|
*/ if (tp->t_rtt &&
|
|
SEQ_GT(ti->ti_ack, tp->t_rtseq))
|
|
tcp_xmit_timer(tp, tp->t_rtt);
|
|
acked = ti->ti_ack - tp->snd_una;
|
|
STAT(tcpstat.tcps_rcvackpack++);
|
|
STAT(tcpstat.tcps_rcvackbyte += acked);
|
|
sbdrop(&so->so_snd, acked);
|
|
tp->snd_una = ti->ti_ack;
|
|
m_freem(m);
|
|
|
|
/*
|
|
* If all outstanding data are acked, stop
|
|
* retransmit timer, otherwise restart timer
|
|
* using current (possibly backed-off) value.
|
|
* If process is waiting for space,
|
|
* wakeup/selwakeup/signal. If data
|
|
* are ready to send, let tcp_output
|
|
* decide between more output or persist.
|
|
*/
|
|
if (tp->snd_una == tp->snd_max)
|
|
tp->t_timer[TCPT_REXMT] = 0;
|
|
else if (tp->t_timer[TCPT_PERSIST] == 0)
|
|
tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
|
|
|
|
/*
|
|
* There's room in so_snd, sowwakup will read()
|
|
* from the socket if we can
|
|
*/
|
|
/* if (so->so_snd.sb_flags & SB_NOTIFY)
|
|
* sowwakeup(so);
|
|
*/
|
|
/*
|
|
* This is called because sowwakeup might have
|
|
* put data into so_snd. Since we don't so sowwakeup,
|
|
* we don't need this.. XXX???
|
|
*/
|
|
if (so->so_snd.sb_cc)
|
|
(void) tcp_output(tp);
|
|
|
|
return;
|
|
}
|
|
} else if (ti->ti_ack == tp->snd_una &&
|
|
tcpfrag_list_empty(tp) &&
|
|
ti->ti_len <= sbspace(&so->so_rcv)) {
|
|
/*
|
|
* this is a pure, in-sequence data packet
|
|
* with nothing on the reassembly queue and
|
|
* we have enough buffer space to take it.
|
|
*/
|
|
STAT(tcpstat.tcps_preddat++);
|
|
tp->rcv_nxt += ti->ti_len;
|
|
STAT(tcpstat.tcps_rcvpack++);
|
|
STAT(tcpstat.tcps_rcvbyte += ti->ti_len);
|
|
/*
|
|
* Add data to socket buffer.
|
|
*/
|
|
if (so->so_emu) {
|
|
if (tcp_emu(so,m)) sbappend(so, m);
|
|
} else
|
|
sbappend(so, m);
|
|
|
|
/*
|
|
* XXX This is called when data arrives. Later, check
|
|
* if we can actually write() to the socket
|
|
* XXX Need to check? It's be NON_BLOCKING
|
|
*/
|
|
/* sorwakeup(so); */
|
|
|
|
/*
|
|
* If this is a short packet, then ACK now - with Nagel
|
|
* congestion avoidance sender won't send more until
|
|
* he gets an ACK.
|
|
*
|
|
* It is better to not delay acks at all to maximize
|
|
* TCP throughput. See RFC 2581.
|
|
*/
|
|
tp->t_flags |= TF_ACKNOW;
|
|
tcp_output(tp);
|
|
return;
|
|
}
|
|
} /* header prediction */
|
|
/*
|
|
* Calculate amount of space in receive window,
|
|
* and then do TCP input processing.
|
|
* Receive window is amount of space in rcv queue,
|
|
* but not less than advertised window.
|
|
*/
|
|
{ int win;
|
|
win = sbspace(&so->so_rcv);
|
|
if (win < 0)
|
|
win = 0;
|
|
tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt));
|
|
}
|
|
|
|
switch (tp->t_state) {
|
|
|
|
/*
|
|
* If the state is LISTEN then ignore segment if it contains an RST.
|
|
* If the segment contains an ACK then it is bad and send a RST.
|
|
* If it does not contain a SYN then it is not interesting; drop it.
|
|
* Don't bother responding if the destination was a broadcast.
|
|
* Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
|
|
* tp->iss, and send a segment:
|
|
* <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
|
|
* Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
|
|
* Fill in remote peer address fields if not previously specified.
|
|
* Enter SYN_RECEIVED state, and process any other fields of this
|
|
* segment in this state.
|
|
*/
|
|
case TCPS_LISTEN: {
|
|
|
|
if (tiflags & TH_RST)
|
|
goto drop;
|
|
if (tiflags & TH_ACK)
|
|
goto dropwithreset;
|
|
if ((tiflags & TH_SYN) == 0)
|
|
goto drop;
|
|
|
|
/*
|
|
* This has way too many gotos...
|
|
* But a bit of spaghetti code never hurt anybody :)
|
|
*/
|
|
|
|
/*
|
|
* If this is destined for the control address, then flag to
|
|
* tcp_ctl once connected, otherwise connect
|
|
*/
|
|
if ((so->so_faddr.s_addr&htonl(0xffffff00)) == special_addr.s_addr) {
|
|
int lastbyte=ntohl(so->so_faddr.s_addr) & 0xff;
|
|
if (lastbyte!=CTL_ALIAS && lastbyte!=CTL_DNS) {
|
|
#if 0
|
|
if(lastbyte==CTL_CMD || lastbyte==CTL_EXEC) {
|
|
/* Command or exec adress */
|
|
so->so_state |= SS_CTL;
|
|
} else
|
|
#endif
|
|
{
|
|
/* May be an add exec */
|
|
for(ex_ptr = exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) {
|
|
if(ex_ptr->ex_fport == so->so_fport &&
|
|
lastbyte == ex_ptr->ex_addr) {
|
|
so->so_state |= SS_CTL;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if(so->so_state & SS_CTL) goto cont_input;
|
|
}
|
|
/* CTL_ALIAS: Do nothing, tcp_fconnect will be called on it */
|
|
}
|
|
|
|
if (so->so_emu & EMU_NOCONNECT) {
|
|
so->so_emu &= ~EMU_NOCONNECT;
|
|
goto cont_input;
|
|
}
|
|
|
|
if((tcp_fconnect(so) == -1) && (errno != EINPROGRESS) && (errno != EWOULDBLOCK)) {
|
|
u_char code=ICMP_UNREACH_NET;
|
|
DEBUG_MISC((dfd," tcp fconnect errno = %d-%s\n",
|
|
errno,strerror(errno)));
|
|
if(errno == ECONNREFUSED) {
|
|
/* ACK the SYN, send RST to refuse the connection */
|
|
tcp_respond(tp, ti, m, ti->ti_seq+1, (tcp_seq)0,
|
|
TH_RST|TH_ACK);
|
|
} else {
|
|
if(errno == EHOSTUNREACH) code=ICMP_UNREACH_HOST;
|
|
HTONL(ti->ti_seq); /* restore tcp header */
|
|
HTONL(ti->ti_ack);
|
|
HTONS(ti->ti_win);
|
|
HTONS(ti->ti_urp);
|
|
m->m_data -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
|
|
m->m_len += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
|
|
*ip=save_ip;
|
|
icmp_error(m, ICMP_UNREACH,code, 0,strerror(errno));
|
|
}
|
|
tp = tcp_close(tp);
|
|
m_free(m);
|
|
} else {
|
|
/*
|
|
* Haven't connected yet, save the current mbuf
|
|
* and ti, and return
|
|
* XXX Some OS's don't tell us whether the connect()
|
|
* succeeded or not. So we must time it out.
|
|
*/
|
|
so->so_m = m;
|
|
so->so_ti = ti;
|
|
tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
|
|
tp->t_state = TCPS_SYN_RECEIVED;
|
|
}
|
|
return;
|
|
|
|
cont_conn:
|
|
/* m==NULL
|
|
* Check if the connect succeeded
|
|
*/
|
|
if (so->so_state & SS_NOFDREF) {
|
|
tp = tcp_close(tp);
|
|
goto dropwithreset;
|
|
}
|
|
cont_input:
|
|
tcp_template(tp);
|
|
|
|
if (optp)
|
|
tcp_dooptions(tp, (u_char *)optp, optlen, ti);
|
|
/* , */
|
|
/* &ts_present, &ts_val, &ts_ecr); */
|
|
|
|
if (iss)
|
|
tp->iss = iss;
|
|
else
|
|
tp->iss = tcp_iss;
|
|
tcp_iss += TCP_ISSINCR/2;
|
|
tp->irs = ti->ti_seq;
|
|
tcp_sendseqinit(tp);
|
|
tcp_rcvseqinit(tp);
|
|
tp->t_flags |= TF_ACKNOW;
|
|
tp->t_state = TCPS_SYN_RECEIVED;
|
|
tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
|
|
STAT(tcpstat.tcps_accepts++);
|
|
goto trimthenstep6;
|
|
} /* case TCPS_LISTEN */
|
|
|
|
/*
|
|
* If the state is SYN_SENT:
|
|
* if seg contains an ACK, but not for our SYN, drop the input.
|
|
* if seg contains a RST, then drop the connection.
|
|
* if seg does not contain SYN, then drop it.
|
|
* Otherwise this is an acceptable SYN segment
|
|
* initialize tp->rcv_nxt and tp->irs
|
|
* if seg contains ack then advance tp->snd_una
|
|
* if SYN has been acked change to ESTABLISHED else SYN_RCVD state
|
|
* arrange for segment to be acked (eventually)
|
|
* continue processing rest of data/controls, beginning with URG
|
|
*/
|
|
case TCPS_SYN_SENT:
|
|
if ((tiflags & TH_ACK) &&
|
|
(SEQ_LEQ(ti->ti_ack, tp->iss) ||
|
|
SEQ_GT(ti->ti_ack, tp->snd_max)))
|
|
goto dropwithreset;
|
|
|
|
if (tiflags & TH_RST) {
|
|
if (tiflags & TH_ACK)
|
|
tp = tcp_drop(tp,0); /* XXX Check t_softerror! */
|
|
goto drop;
|
|
}
|
|
|
|
if ((tiflags & TH_SYN) == 0)
|
|
goto drop;
|
|
if (tiflags & TH_ACK) {
|
|
tp->snd_una = ti->ti_ack;
|
|
if (SEQ_LT(tp->snd_nxt, tp->snd_una))
|
|
tp->snd_nxt = tp->snd_una;
|
|
}
|
|
|
|
tp->t_timer[TCPT_REXMT] = 0;
|
|
tp->irs = ti->ti_seq;
|
|
tcp_rcvseqinit(tp);
|
|
tp->t_flags |= TF_ACKNOW;
|
|
if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
|
|
STAT(tcpstat.tcps_connects++);
|
|
soisfconnected(so);
|
|
tp->t_state = TCPS_ESTABLISHED;
|
|
|
|
/* Do window scaling on this connection? */
|
|
/* if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
|
|
* (TF_RCVD_SCALE|TF_REQ_SCALE)) {
|
|
* tp->snd_scale = tp->requested_s_scale;
|
|
* tp->rcv_scale = tp->request_r_scale;
|
|
* }
|
|
*/
|
|
(void) tcp_reass(tp, (struct tcpiphdr *)0,
|
|
(struct mbuf *)0);
|
|
/*
|
|
* if we didn't have to retransmit the SYN,
|
|
* use its rtt as our initial srtt & rtt var.
|
|
*/
|
|
if (tp->t_rtt)
|
|
tcp_xmit_timer(tp, tp->t_rtt);
|
|
} else
|
|
tp->t_state = TCPS_SYN_RECEIVED;
|
|
|
|
trimthenstep6:
|
|
/*
|
|
* Advance ti->ti_seq to correspond to first data byte.
|
|
* If data, trim to stay within window,
|
|
* dropping FIN if necessary.
|
|
*/
|
|
ti->ti_seq++;
|
|
if (ti->ti_len > tp->rcv_wnd) {
|
|
todrop = ti->ti_len - tp->rcv_wnd;
|
|
m_adj(m, -todrop);
|
|
ti->ti_len = tp->rcv_wnd;
|
|
tiflags &= ~TH_FIN;
|
|
STAT(tcpstat.tcps_rcvpackafterwin++);
|
|
STAT(tcpstat.tcps_rcvbyteafterwin += todrop);
|
|
}
|
|
tp->snd_wl1 = ti->ti_seq - 1;
|
|
tp->rcv_up = ti->ti_seq;
|
|
goto step6;
|
|
} /* switch tp->t_state */
|
|
/*
|
|
* States other than LISTEN or SYN_SENT.
|
|
* First check timestamp, if present.
|
|
* Then check that at least some bytes of segment are within
|
|
* receive window. If segment begins before rcv_nxt,
|
|
* drop leading data (and SYN); if nothing left, just ack.
|
|
*
|
|
* RFC 1323 PAWS: If we have a timestamp reply on this segment
|
|
* and it's less than ts_recent, drop it.
|
|
*/
|
|
/* if (ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
|
|
* TSTMP_LT(ts_val, tp->ts_recent)) {
|
|
*
|
|
*/ /* Check to see if ts_recent is over 24 days old. */
|
|
/* if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
|
|
*/ /*
|
|
* * Invalidate ts_recent. If this segment updates
|
|
* * ts_recent, the age will be reset later and ts_recent
|
|
* * will get a valid value. If it does not, setting
|
|
* * ts_recent to zero will at least satisfy the
|
|
* * requirement that zero be placed in the timestamp
|
|
* * echo reply when ts_recent isn't valid. The
|
|
* * age isn't reset until we get a valid ts_recent
|
|
* * because we don't want out-of-order segments to be
|
|
* * dropped when ts_recent is old.
|
|
* */
|
|
/* tp->ts_recent = 0;
|
|
* } else {
|
|
* tcpstat.tcps_rcvduppack++;
|
|
* tcpstat.tcps_rcvdupbyte += ti->ti_len;
|
|
* tcpstat.tcps_pawsdrop++;
|
|
* goto dropafterack;
|
|
* }
|
|
* }
|
|
*/
|
|
|
|
todrop = tp->rcv_nxt - ti->ti_seq;
|
|
if (todrop > 0) {
|
|
if (tiflags & TH_SYN) {
|
|
tiflags &= ~TH_SYN;
|
|
ti->ti_seq++;
|
|
if (ti->ti_urp > 1)
|
|
ti->ti_urp--;
|
|
else
|
|
tiflags &= ~TH_URG;
|
|
todrop--;
|
|
}
|
|
/*
|
|
* Following if statement from Stevens, vol. 2, p. 960.
|
|
*/
|
|
if (todrop > ti->ti_len
|
|
|| (todrop == ti->ti_len && (tiflags & TH_FIN) == 0)) {
|
|
/*
|
|
* Any valid FIN must be to the left of the window.
|
|
* At this point the FIN must be a duplicate or out
|
|
* of sequence; drop it.
|
|
*/
|
|
tiflags &= ~TH_FIN;
|
|
|
|
/*
|
|
* Send an ACK to resynchronize and drop any data.
|
|
* But keep on processing for RST or ACK.
|
|
*/
|
|
tp->t_flags |= TF_ACKNOW;
|
|
todrop = ti->ti_len;
|
|
STAT(tcpstat.tcps_rcvduppack++);
|
|
STAT(tcpstat.tcps_rcvdupbyte += todrop);
|
|
} else {
|
|
STAT(tcpstat.tcps_rcvpartduppack++);
|
|
STAT(tcpstat.tcps_rcvpartdupbyte += todrop);
|
|
}
|
|
m_adj(m, todrop);
|
|
ti->ti_seq += todrop;
|
|
ti->ti_len -= todrop;
|
|
if (ti->ti_urp > todrop)
|
|
ti->ti_urp -= todrop;
|
|
else {
|
|
tiflags &= ~TH_URG;
|
|
ti->ti_urp = 0;
|
|
}
|
|
}
|
|
/*
|
|
* If new data are received on a connection after the
|
|
* user processes are gone, then RST the other end.
|
|
*/
|
|
if ((so->so_state & SS_NOFDREF) &&
|
|
tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
|
|
tp = tcp_close(tp);
|
|
STAT(tcpstat.tcps_rcvafterclose++);
|
|
goto dropwithreset;
|
|
}
|
|
|
|
/*
|
|
* If segment ends after window, drop trailing data
|
|
* (and PUSH and FIN); if nothing left, just ACK.
|
|
*/
|
|
todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
|
|
if (todrop > 0) {
|
|
STAT(tcpstat.tcps_rcvpackafterwin++);
|
|
if (todrop >= ti->ti_len) {
|
|
STAT(tcpstat.tcps_rcvbyteafterwin += ti->ti_len);
|
|
/*
|
|
* If a new connection request is received
|
|
* while in TIME_WAIT, drop the old connection
|
|
* and start over if the sequence numbers
|
|
* are above the previous ones.
|
|
*/
|
|
if (tiflags & TH_SYN &&
|
|
tp->t_state == TCPS_TIME_WAIT &&
|
|
SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
|
|
iss = tp->rcv_nxt + TCP_ISSINCR;
|
|
tp = tcp_close(tp);
|
|
goto findso;
|
|
}
|
|
/*
|
|
* If window is closed can only take segments at
|
|
* window edge, and have to drop data and PUSH from
|
|
* incoming segments. Continue processing, but
|
|
* remember to ack. Otherwise, drop segment
|
|
* and ack.
|
|
*/
|
|
if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
|
|
tp->t_flags |= TF_ACKNOW;
|
|
STAT(tcpstat.tcps_rcvwinprobe++);
|
|
} else
|
|
goto dropafterack;
|
|
} else
|
|
STAT(tcpstat.tcps_rcvbyteafterwin += todrop);
|
|
m_adj(m, -todrop);
|
|
ti->ti_len -= todrop;
|
|
tiflags &= ~(TH_PUSH|TH_FIN);
|
|
}
|
|
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers,
|
|
* record its timestamp.
|
|
*/
|
|
/* if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
|
|
* SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
|
|
* ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
|
|
* tp->ts_recent_age = tcp_now;
|
|
* tp->ts_recent = ts_val;
|
|
* }
|
|
*/
|
|
|
|
/*
|
|
* If the RST bit is set examine the state:
|
|
* SYN_RECEIVED STATE:
|
|
* If passive open, return to LISTEN state.
|
|
* If active open, inform user that connection was refused.
|
|
* ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
|
|
* Inform user that connection was reset, and close tcb.
|
|
* CLOSING, LAST_ACK, TIME_WAIT STATES
|
|
* Close the tcb.
|
|
*/
|
|
if (tiflags&TH_RST) switch (tp->t_state) {
|
|
|
|
case TCPS_SYN_RECEIVED:
|
|
/* so->so_error = ECONNREFUSED; */
|
|
goto close;
|
|
|
|
case TCPS_ESTABLISHED:
|
|
case TCPS_FIN_WAIT_1:
|
|
case TCPS_FIN_WAIT_2:
|
|
case TCPS_CLOSE_WAIT:
|
|
/* so->so_error = ECONNRESET; */
|
|
close:
|
|
tp->t_state = TCPS_CLOSED;
|
|
STAT(tcpstat.tcps_drops++);
|
|
tp = tcp_close(tp);
|
|
goto drop;
|
|
|
|
case TCPS_CLOSING:
|
|
case TCPS_LAST_ACK:
|
|
case TCPS_TIME_WAIT:
|
|
tp = tcp_close(tp);
|
|
goto drop;
|
|
}
|
|
|
|
/*
|
|
* If a SYN is in the window, then this is an
|
|
* error and we send an RST and drop the connection.
|
|
*/
|
|
if (tiflags & TH_SYN) {
|
|
tp = tcp_drop(tp,0);
|
|
goto dropwithreset;
|
|
}
|
|
|
|
/*
|
|
* If the ACK bit is off we drop the segment and return.
|
|
*/
|
|
if ((tiflags & TH_ACK) == 0) goto drop;
|
|
|
|
/*
|
|
* Ack processing.
|
|
*/
|
|
switch (tp->t_state) {
|
|
/*
|
|
* In SYN_RECEIVED state if the ack ACKs our SYN then enter
|
|
* ESTABLISHED state and continue processing, otherwise
|
|
* send an RST. una<=ack<=max
|
|
*/
|
|
case TCPS_SYN_RECEIVED:
|
|
|
|
if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
|
|
SEQ_GT(ti->ti_ack, tp->snd_max))
|
|
goto dropwithreset;
|
|
STAT(tcpstat.tcps_connects++);
|
|
tp->t_state = TCPS_ESTABLISHED;
|
|
/*
|
|
* The sent SYN is ack'ed with our sequence number +1
|
|
* The first data byte already in the buffer will get
|
|
* lost if no correction is made. This is only needed for
|
|
* SS_CTL since the buffer is empty otherwise.
|
|
* tp->snd_una++; or:
|
|
*/
|
|
tp->snd_una=ti->ti_ack;
|
|
if (so->so_state & SS_CTL) {
|
|
/* So tcp_ctl reports the right state */
|
|
ret = tcp_ctl(so);
|
|
if (ret == 1) {
|
|
soisfconnected(so);
|
|
so->so_state &= ~SS_CTL; /* success XXX */
|
|
} else if (ret == 2) {
|
|
so->so_state = SS_NOFDREF; /* CTL_CMD */
|
|
} else {
|
|
needoutput = 1;
|
|
tp->t_state = TCPS_FIN_WAIT_1;
|
|
}
|
|
} else {
|
|
soisfconnected(so);
|
|
}
|
|
|
|
/* Do window scaling? */
|
|
/* if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
|
|
* (TF_RCVD_SCALE|TF_REQ_SCALE)) {
|
|
* tp->snd_scale = tp->requested_s_scale;
|
|
* tp->rcv_scale = tp->request_r_scale;
|
|
* }
|
|
*/
|
|
(void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
|
|
tp->snd_wl1 = ti->ti_seq - 1;
|
|
/* Avoid ack processing; snd_una==ti_ack => dup ack */
|
|
goto synrx_to_est;
|
|
/* fall into ... */
|
|
|
|
/*
|
|
* In ESTABLISHED state: drop duplicate ACKs; ACK out of range
|
|
* ACKs. If the ack is in the range
|
|
* tp->snd_una < ti->ti_ack <= tp->snd_max
|
|
* then advance tp->snd_una to ti->ti_ack and drop
|
|
* data from the retransmission queue. If this ACK reflects
|
|
* more up to date window information we update our window information.
|
|
*/
|
|
case TCPS_ESTABLISHED:
|
|
case TCPS_FIN_WAIT_1:
|
|
case TCPS_FIN_WAIT_2:
|
|
case TCPS_CLOSE_WAIT:
|
|
case TCPS_CLOSING:
|
|
case TCPS_LAST_ACK:
|
|
case TCPS_TIME_WAIT:
|
|
|
|
if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
|
|
if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
|
|
STAT(tcpstat.tcps_rcvdupack++);
|
|
DEBUG_MISC((dfd," dup ack m = %lx so = %lx \n",
|
|
(long )m, (long )so));
|
|
/*
|
|
* If we have outstanding data (other than
|
|
* a window probe), this is a completely
|
|
* duplicate ack (ie, window info didn't
|
|
* change), the ack is the biggest we've
|
|
* seen and we've seen exactly our rexmt
|
|
* threshold of them, assume a packet
|
|
* has been dropped and retransmit it.
|
|
* Kludge snd_nxt & the congestion
|
|
* window so we send only this one
|
|
* packet.
|
|
*
|
|
* We know we're losing at the current
|
|
* window size so do congestion avoidance
|
|
* (set ssthresh to half the current window
|
|
* and pull our congestion window back to
|
|
* the new ssthresh).
|
|
*
|
|
* Dup acks mean that packets have left the
|
|
* network (they're now cached at the receiver)
|
|
* so bump cwnd by the amount in the receiver
|
|
* to keep a constant cwnd packets in the
|
|
* network.
|
|
*/
|
|
if (tp->t_timer[TCPT_REXMT] == 0 ||
|
|
ti->ti_ack != tp->snd_una)
|
|
tp->t_dupacks = 0;
|
|
else if (++tp->t_dupacks == TCPREXMTTHRESH) {
|
|
tcp_seq onxt = tp->snd_nxt;
|
|
u_int win =
|
|
min(tp->snd_wnd, tp->snd_cwnd) / 2 /
|
|
tp->t_maxseg;
|
|
|
|
if (win < 2)
|
|
win = 2;
|
|
tp->snd_ssthresh = win * tp->t_maxseg;
|
|
tp->t_timer[TCPT_REXMT] = 0;
|
|
tp->t_rtt = 0;
|
|
tp->snd_nxt = ti->ti_ack;
|
|
tp->snd_cwnd = tp->t_maxseg;
|
|
(void) tcp_output(tp);
|
|
tp->snd_cwnd = tp->snd_ssthresh +
|
|
tp->t_maxseg * tp->t_dupacks;
|
|
if (SEQ_GT(onxt, tp->snd_nxt))
|
|
tp->snd_nxt = onxt;
|
|
goto drop;
|
|
} else if (tp->t_dupacks > TCPREXMTTHRESH) {
|
|
tp->snd_cwnd += tp->t_maxseg;
|
|
(void) tcp_output(tp);
|
|
goto drop;
|
|
}
|
|
} else
|
|
tp->t_dupacks = 0;
|
|
break;
|
|
}
|
|
synrx_to_est:
|
|
/*
|
|
* If the congestion window was inflated to account
|
|
* for the other side's cached packets, retract it.
|
|
*/
|
|
if (tp->t_dupacks > TCPREXMTTHRESH &&
|
|
tp->snd_cwnd > tp->snd_ssthresh)
|
|
tp->snd_cwnd = tp->snd_ssthresh;
|
|
tp->t_dupacks = 0;
|
|
if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
|
|
STAT(tcpstat.tcps_rcvacktoomuch++);
|
|
goto dropafterack;
|
|
}
|
|
acked = ti->ti_ack - tp->snd_una;
|
|
STAT(tcpstat.tcps_rcvackpack++);
|
|
STAT(tcpstat.tcps_rcvackbyte += acked);
|
|
|
|
/*
|
|
* If we have a timestamp reply, update smoothed
|
|
* round trip time. If no timestamp is present but
|
|
* transmit timer is running and timed sequence
|
|
* number was acked, update smoothed round trip time.
|
|
* Since we now have an rtt measurement, cancel the
|
|
* timer backoff (cf., Phil Karn's retransmit alg.).
|
|
* Recompute the initial retransmit timer.
|
|
*/
|
|
/* if (ts_present)
|
|
* tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
|
|
* else
|
|
*/
|
|
if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
|
|
tcp_xmit_timer(tp,tp->t_rtt);
|
|
|
|
/*
|
|
* If all outstanding data is acked, stop retransmit
|
|
* timer and remember to restart (more output or persist).
|
|
* If there is more data to be acked, restart retransmit
|
|
* timer, using current (possibly backed-off) value.
|
|
*/
|
|
if (ti->ti_ack == tp->snd_max) {
|
|
tp->t_timer[TCPT_REXMT] = 0;
|
|
needoutput = 1;
|
|
} else if (tp->t_timer[TCPT_PERSIST] == 0)
|
|
tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
|
|
/*
|
|
* When new data is acked, open the congestion window.
|
|
* If the window gives us less than ssthresh packets
|
|
* in flight, open exponentially (maxseg per packet).
|
|
* Otherwise open linearly: maxseg per window
|
|
* (maxseg^2 / cwnd per packet).
|
|
*/
|
|
{
|
|
register u_int cw = tp->snd_cwnd;
|
|
register u_int incr = tp->t_maxseg;
|
|
|
|
if (cw > tp->snd_ssthresh)
|
|
incr = incr * incr / cw;
|
|
tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
|
|
}
|
|
if (acked > so->so_snd.sb_cc) {
|
|
tp->snd_wnd -= so->so_snd.sb_cc;
|
|
sbdrop(&so->so_snd, (int )so->so_snd.sb_cc);
|
|
ourfinisacked = 1;
|
|
} else {
|
|
sbdrop(&so->so_snd, acked);
|
|
tp->snd_wnd -= acked;
|
|
ourfinisacked = 0;
|
|
}
|
|
/*
|
|
* XXX sowwakup is called when data is acked and there's room for
|
|
* for more data... it should read() the socket
|
|
*/
|
|
/* if (so->so_snd.sb_flags & SB_NOTIFY)
|
|
* sowwakeup(so);
|
|
*/
|
|
tp->snd_una = ti->ti_ack;
|
|
if (SEQ_LT(tp->snd_nxt, tp->snd_una))
|
|
tp->snd_nxt = tp->snd_una;
|
|
|
|
switch (tp->t_state) {
|
|
|
|
/*
|
|
* In FIN_WAIT_1 STATE in addition to the processing
|
|
* for the ESTABLISHED state if our FIN is now acknowledged
|
|
* then enter FIN_WAIT_2.
|
|
*/
|
|
case TCPS_FIN_WAIT_1:
|
|
if (ourfinisacked) {
|
|
/*
|
|
* If we can't receive any more
|
|
* data, then closing user can proceed.
|
|
* Starting the timer is contrary to the
|
|
* specification, but if we don't get a FIN
|
|
* we'll hang forever.
|
|
*/
|
|
if (so->so_state & SS_FCANTRCVMORE) {
|
|
soisfdisconnected(so);
|
|
tp->t_timer[TCPT_2MSL] = TCP_MAXIDLE;
|
|
}
|
|
tp->t_state = TCPS_FIN_WAIT_2;
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* In CLOSING STATE in addition to the processing for
|
|
* the ESTABLISHED state if the ACK acknowledges our FIN
|
|
* then enter the TIME-WAIT state, otherwise ignore
|
|
* the segment.
|
|
*/
|
|
case TCPS_CLOSING:
|
|
if (ourfinisacked) {
|
|
tp->t_state = TCPS_TIME_WAIT;
|
|
tcp_canceltimers(tp);
|
|
tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
|
|
soisfdisconnected(so);
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* In LAST_ACK, we may still be waiting for data to drain
|
|
* and/or to be acked, as well as for the ack of our FIN.
|
|
* If our FIN is now acknowledged, delete the TCB,
|
|
* enter the closed state and return.
|
|
*/
|
|
case TCPS_LAST_ACK:
|
|
if (ourfinisacked) {
|
|
tp = tcp_close(tp);
|
|
goto drop;
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* In TIME_WAIT state the only thing that should arrive
|
|
* is a retransmission of the remote FIN. Acknowledge
|
|
* it and restart the finack timer.
|
|
*/
|
|
case TCPS_TIME_WAIT:
|
|
tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
|
|
goto dropafterack;
|
|
}
|
|
} /* switch(tp->t_state) */
|
|
|
|
step6:
|
|
/*
|
|
* Update window information.
|
|
* Don't look at window if no ACK: TAC's send garbage on first SYN.
|
|
*/
|
|
if ((tiflags & TH_ACK) &&
|
|
(SEQ_LT(tp->snd_wl1, ti->ti_seq) ||
|
|
(tp->snd_wl1 == ti->ti_seq && (SEQ_LT(tp->snd_wl2, ti->ti_ack) ||
|
|
(tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd))))) {
|
|
/* keep track of pure window updates */
|
|
if (ti->ti_len == 0 &&
|
|
tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
|
|
STAT(tcpstat.tcps_rcvwinupd++);
|
|
tp->snd_wnd = tiwin;
|
|
tp->snd_wl1 = ti->ti_seq;
|
|
tp->snd_wl2 = ti->ti_ack;
|
|
if (tp->snd_wnd > tp->max_sndwnd)
|
|
tp->max_sndwnd = tp->snd_wnd;
|
|
needoutput = 1;
|
|
}
|
|
|
|
/*
|
|
* Process segments with URG.
|
|
*/
|
|
if ((tiflags & TH_URG) && ti->ti_urp &&
|
|
TCPS_HAVERCVDFIN(tp->t_state) == 0) {
|
|
/*
|
|
* This is a kludge, but if we receive and accept
|
|
* random urgent pointers, we'll crash in
|
|
* soreceive. It's hard to imagine someone
|
|
* actually wanting to send this much urgent data.
|
|
*/
|
|
if (ti->ti_urp + so->so_rcv.sb_cc > so->so_rcv.sb_datalen) {
|
|
ti->ti_urp = 0;
|
|
tiflags &= ~TH_URG;
|
|
goto dodata;
|
|
}
|
|
/*
|
|
* If this segment advances the known urgent pointer,
|
|
* then mark the data stream. This should not happen
|
|
* in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
|
|
* a FIN has been received from the remote side.
|
|
* In these states we ignore the URG.
|
|
*
|
|
* According to RFC961 (Assigned Protocols),
|
|
* the urgent pointer points to the last octet
|
|
* of urgent data. We continue, however,
|
|
* to consider it to indicate the first octet
|
|
* of data past the urgent section as the original
|
|
* spec states (in one of two places).
|
|
*/
|
|
if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
|
|
tp->rcv_up = ti->ti_seq + ti->ti_urp;
|
|
so->so_urgc = so->so_rcv.sb_cc +
|
|
(tp->rcv_up - tp->rcv_nxt); /* -1; */
|
|
tp->rcv_up = ti->ti_seq + ti->ti_urp;
|
|
|
|
}
|
|
} else
|
|
/*
|
|
* If no out of band data is expected,
|
|
* pull receive urgent pointer along
|
|
* with the receive window.
|
|
*/
|
|
if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
|
|
tp->rcv_up = tp->rcv_nxt;
|
|
dodata:
|
|
|
|
/*
|
|
* Process the segment text, merging it into the TCP sequencing queue,
|
|
* and arranging for acknowledgment of receipt if necessary.
|
|
* This process logically involves adjusting tp->rcv_wnd as data
|
|
* is presented to the user (this happens in tcp_usrreq.c,
|
|
* case PRU_RCVD). If a FIN has already been received on this
|
|
* connection then we just ignore the text.
|
|
*/
|
|
if ((ti->ti_len || (tiflags&TH_FIN)) &&
|
|
TCPS_HAVERCVDFIN(tp->t_state) == 0) {
|
|
TCP_REASS(tp, ti, m, so, tiflags);
|
|
/*
|
|
* Note the amount of data that peer has sent into
|
|
* our window, in order to estimate the sender's
|
|
* buffer size.
|
|
*/
|
|
len = so->so_rcv.sb_datalen - (tp->rcv_adv - tp->rcv_nxt);
|
|
} else {
|
|
m_free(m);
|
|
tiflags &= ~TH_FIN;
|
|
}
|
|
|
|
/*
|
|
* If FIN is received ACK the FIN and let the user know
|
|
* that the connection is closing.
|
|
*/
|
|
if (tiflags & TH_FIN) {
|
|
if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
|
|
/*
|
|
* If we receive a FIN we can't send more data,
|
|
* set it SS_FDRAIN
|
|
* Shutdown the socket if there is no rx data in the
|
|
* buffer.
|
|
* soread() is called on completion of shutdown() and
|
|
* will got to TCPS_LAST_ACK, and use tcp_output()
|
|
* to send the FIN.
|
|
*/
|
|
/* sofcantrcvmore(so); */
|
|
sofwdrain(so);
|
|
|
|
tp->t_flags |= TF_ACKNOW;
|
|
tp->rcv_nxt++;
|
|
}
|
|
switch (tp->t_state) {
|
|
|
|
/*
|
|
* In SYN_RECEIVED and ESTABLISHED STATES
|
|
* enter the CLOSE_WAIT state.
|
|
*/
|
|
case TCPS_SYN_RECEIVED:
|
|
case TCPS_ESTABLISHED:
|
|
if(so->so_emu == EMU_CTL) /* no shutdown on socket */
|
|
tp->t_state = TCPS_LAST_ACK;
|
|
else
|
|
tp->t_state = TCPS_CLOSE_WAIT;
|
|
break;
|
|
|
|
/*
|
|
* If still in FIN_WAIT_1 STATE FIN has not been acked so
|
|
* enter the CLOSING state.
|
|
*/
|
|
case TCPS_FIN_WAIT_1:
|
|
tp->t_state = TCPS_CLOSING;
|
|
break;
|
|
|
|
/*
|
|
* In FIN_WAIT_2 state enter the TIME_WAIT state,
|
|
* starting the time-wait timer, turning off the other
|
|
* standard timers.
|
|
*/
|
|
case TCPS_FIN_WAIT_2:
|
|
tp->t_state = TCPS_TIME_WAIT;
|
|
tcp_canceltimers(tp);
|
|
tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
|
|
soisfdisconnected(so);
|
|
break;
|
|
|
|
/*
|
|
* In TIME_WAIT state restart the 2 MSL time_wait timer.
|
|
*/
|
|
case TCPS_TIME_WAIT:
|
|
tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this is a small packet, then ACK now - with Nagel
|
|
* congestion avoidance sender won't send more until
|
|
* he gets an ACK.
|
|
*
|
|
* See above.
|
|
*/
|
|
/* if (ti->ti_len && (unsigned)ti->ti_len < tp->t_maxseg) {
|
|
*/
|
|
/* if ((ti->ti_len && (unsigned)ti->ti_len < tp->t_maxseg &&
|
|
* (so->so_iptos & IPTOS_LOWDELAY) == 0) ||
|
|
* ((so->so_iptos & IPTOS_LOWDELAY) &&
|
|
* ((struct tcpiphdr_2 *)ti)->first_char == (char)27)) {
|
|
*/
|
|
if (ti->ti_len && (unsigned)ti->ti_len <= 5 &&
|
|
((struct tcpiphdr_2 *)ti)->first_char == (char)27) {
|
|
tp->t_flags |= TF_ACKNOW;
|
|
}
|
|
|
|
/*
|
|
* Return any desired output.
|
|
*/
|
|
if (needoutput || (tp->t_flags & TF_ACKNOW)) {
|
|
(void) tcp_output(tp);
|
|
}
|
|
return;
|
|
|
|
dropafterack:
|
|
/*
|
|
* Generate an ACK dropping incoming segment if it occupies
|
|
* sequence space, where the ACK reflects our state.
|
|
*/
|
|
if (tiflags & TH_RST)
|
|
goto drop;
|
|
m_freem(m);
|
|
tp->t_flags |= TF_ACKNOW;
|
|
(void) tcp_output(tp);
|
|
return;
|
|
|
|
dropwithreset:
|
|
/* reuses m if m!=NULL, m_free() unnecessary */
|
|
if (tiflags & TH_ACK)
|
|
tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
|
|
else {
|
|
if (tiflags & TH_SYN) ti->ti_len++;
|
|
tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
|
|
TH_RST|TH_ACK);
|
|
}
|
|
|
|
return;
|
|
|
|
drop:
|
|
/*
|
|
* Drop space held by incoming segment and return.
|
|
*/
|
|
m_free(m);
|
|
|
|
return;
|
|
}
|
|
|
|
/* , ts_present, ts_val, ts_ecr) */
|
|
/* int *ts_present;
|
|
* u_int32_t *ts_val, *ts_ecr;
|
|
*/
|
|
static void
|
|
tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcpiphdr *ti)
|
|
{
|
|
u_int16_t mss;
|
|
int opt, optlen;
|
|
|
|
DEBUG_CALL("tcp_dooptions");
|
|
DEBUG_ARGS((dfd," tp = %lx cnt=%i \n", (long )tp, cnt));
|
|
|
|
for (; cnt > 0; cnt -= optlen, cp += optlen) {
|
|
opt = cp[0];
|
|
if (opt == TCPOPT_EOL)
|
|
break;
|
|
if (opt == TCPOPT_NOP)
|
|
optlen = 1;
|
|
else {
|
|
optlen = cp[1];
|
|
if (optlen <= 0)
|
|
break;
|
|
}
|
|
switch (opt) {
|
|
|
|
default:
|
|
continue;
|
|
|
|
case TCPOPT_MAXSEG:
|
|
if (optlen != TCPOLEN_MAXSEG)
|
|
continue;
|
|
if (!(ti->ti_flags & TH_SYN))
|
|
continue;
|
|
memcpy((char *) &mss, (char *) cp + 2, sizeof(mss));
|
|
NTOHS(mss);
|
|
(void) tcp_mss(tp, mss); /* sets t_maxseg */
|
|
break;
|
|
|
|
/* case TCPOPT_WINDOW:
|
|
* if (optlen != TCPOLEN_WINDOW)
|
|
* continue;
|
|
* if (!(ti->ti_flags & TH_SYN))
|
|
* continue;
|
|
* tp->t_flags |= TF_RCVD_SCALE;
|
|
* tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
|
|
* break;
|
|
*/
|
|
/* case TCPOPT_TIMESTAMP:
|
|
* if (optlen != TCPOLEN_TIMESTAMP)
|
|
* continue;
|
|
* *ts_present = 1;
|
|
* memcpy((char *) ts_val, (char *)cp + 2, sizeof(*ts_val));
|
|
* NTOHL(*ts_val);
|
|
* memcpy((char *) ts_ecr, (char *)cp + 6, sizeof(*ts_ecr));
|
|
* NTOHL(*ts_ecr);
|
|
*
|
|
*/ /*
|
|
* * A timestamp received in a SYN makes
|
|
* * it ok to send timestamp requests and replies.
|
|
* */
|
|
/* if (ti->ti_flags & TH_SYN) {
|
|
* tp->t_flags |= TF_RCVD_TSTMP;
|
|
* tp->ts_recent = *ts_val;
|
|
* tp->ts_recent_age = tcp_now;
|
|
* }
|
|
*/ break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Pull out of band byte out of a segment so
|
|
* it doesn't appear in the user's data queue.
|
|
* It is still reflected in the segment length for
|
|
* sequencing purposes.
|
|
*/
|
|
|
|
#ifdef notdef
|
|
|
|
void
|
|
tcp_pulloutofband(so, ti, m)
|
|
struct socket *so;
|
|
struct tcpiphdr *ti;
|
|
register struct mbuf *m;
|
|
{
|
|
int cnt = ti->ti_urp - 1;
|
|
|
|
while (cnt >= 0) {
|
|
if (m->m_len > cnt) {
|
|
char *cp = mtod(m, caddr_t) + cnt;
|
|
struct tcpcb *tp = sototcpcb(so);
|
|
|
|
tp->t_iobc = *cp;
|
|
tp->t_oobflags |= TCPOOB_HAVEDATA;
|
|
memcpy(sp, cp+1, (unsigned)(m->m_len - cnt - 1));
|
|
m->m_len--;
|
|
return;
|
|
}
|
|
cnt -= m->m_len;
|
|
m = m->m_next; /* XXX WRONG! Fix it! */
|
|
if (m == 0)
|
|
break;
|
|
}
|
|
panic("tcp_pulloutofband");
|
|
}
|
|
|
|
#endif /* notdef */
|
|
|
|
/*
|
|
* Collect new round-trip time estimate
|
|
* and update averages and current timeout.
|
|
*/
|
|
|
|
static void
|
|
tcp_xmit_timer(register struct tcpcb *tp, int rtt)
|
|
{
|
|
register short delta;
|
|
|
|
DEBUG_CALL("tcp_xmit_timer");
|
|
DEBUG_ARG("tp = %lx", (long)tp);
|
|
DEBUG_ARG("rtt = %d", rtt);
|
|
|
|
STAT(tcpstat.tcps_rttupdated++);
|
|
if (tp->t_srtt != 0) {
|
|
/*
|
|
* srtt is stored as fixed point with 3 bits after the
|
|
* binary point (i.e., scaled by 8). The following magic
|
|
* is equivalent to the smoothing algorithm in rfc793 with
|
|
* an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
|
|
* point). Adjust rtt to origin 0.
|
|
*/
|
|
delta = rtt - 1 - (tp->t_srtt >> TCP_RTT_SHIFT);
|
|
if ((tp->t_srtt += delta) <= 0)
|
|
tp->t_srtt = 1;
|
|
/*
|
|
* We accumulate a smoothed rtt variance (actually, a
|
|
* smoothed mean difference), then set the retransmit
|
|
* timer to smoothed rtt + 4 times the smoothed variance.
|
|
* rttvar is stored as fixed point with 2 bits after the
|
|
* binary point (scaled by 4). The following is
|
|
* equivalent to rfc793 smoothing with an alpha of .75
|
|
* (rttvar = rttvar*3/4 + |delta| / 4). This replaces
|
|
* rfc793's wired-in beta.
|
|
*/
|
|
if (delta < 0)
|
|
delta = -delta;
|
|
delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
|
|
if ((tp->t_rttvar += delta) <= 0)
|
|
tp->t_rttvar = 1;
|
|
} else {
|
|
/*
|
|
* No rtt measurement yet - use the unsmoothed rtt.
|
|
* Set the variance to half the rtt (so our first
|
|
* retransmit happens at 3*rtt).
|
|
*/
|
|
tp->t_srtt = rtt << TCP_RTT_SHIFT;
|
|
tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
|
|
}
|
|
tp->t_rtt = 0;
|
|
tp->t_rxtshift = 0;
|
|
|
|
/*
|
|
* the retransmit should happen at rtt + 4 * rttvar.
|
|
* Because of the way we do the smoothing, srtt and rttvar
|
|
* will each average +1/2 tick of bias. When we compute
|
|
* the retransmit timer, we want 1/2 tick of rounding and
|
|
* 1 extra tick because of +-1/2 tick uncertainty in the
|
|
* firing of the timer. The bias will give us exactly the
|
|
* 1.5 tick we need. But, because the bias is
|
|
* statistical, we have to test that we don't drop below
|
|
* the minimum feasible timer (which is 2 ticks).
|
|
*/
|
|
TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
|
|
(short)tp->t_rttmin, TCPTV_REXMTMAX); /* XXX */
|
|
|
|
/*
|
|
* We received an ack for a packet that wasn't retransmitted;
|
|
* it is probably safe to discard any error indications we've
|
|
* received recently. This isn't quite right, but close enough
|
|
* for now (a route might have failed after we sent a segment,
|
|
* and the return path might not be symmetrical).
|
|
*/
|
|
tp->t_softerror = 0;
|
|
}
|
|
|
|
/*
|
|
* Determine a reasonable value for maxseg size.
|
|
* If the route is known, check route for mtu.
|
|
* If none, use an mss that can be handled on the outgoing
|
|
* interface without forcing IP to fragment; if bigger than
|
|
* an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
|
|
* to utilize large mbufs. If no route is found, route has no mtu,
|
|
* or the destination isn't local, use a default, hopefully conservative
|
|
* size (usually 512 or the default IP max size, but no more than the mtu
|
|
* of the interface), as we can't discover anything about intervening
|
|
* gateways or networks. We also initialize the congestion/slow start
|
|
* window to be a single segment if the destination isn't local.
|
|
* While looking at the routing entry, we also initialize other path-dependent
|
|
* parameters from pre-set or cached values in the routing entry.
|
|
*/
|
|
|
|
int
|
|
tcp_mss(tp, offer)
|
|
register struct tcpcb *tp;
|
|
u_int offer;
|
|
{
|
|
struct socket *so = tp->t_socket;
|
|
int mss;
|
|
|
|
DEBUG_CALL("tcp_mss");
|
|
DEBUG_ARG("tp = %lx", (long)tp);
|
|
DEBUG_ARG("offer = %d", offer);
|
|
|
|
mss = min(IF_MTU, IF_MRU) - sizeof(struct tcpiphdr);
|
|
if (offer)
|
|
mss = min(mss, offer);
|
|
mss = max(mss, 32);
|
|
if (mss < tp->t_maxseg || offer != 0)
|
|
tp->t_maxseg = mss;
|
|
|
|
tp->snd_cwnd = mss;
|
|
|
|
sbreserve(&so->so_snd, TCP_SNDSPACE + ((TCP_SNDSPACE % mss) ?
|
|
(mss - (TCP_SNDSPACE % mss)) :
|
|
0));
|
|
sbreserve(&so->so_rcv, TCP_RCVSPACE + ((TCP_RCVSPACE % mss) ?
|
|
(mss - (TCP_RCVSPACE % mss)) :
|
|
0));
|
|
|
|
DEBUG_MISC((dfd, " returning mss = %d\n", mss));
|
|
|
|
return mss;
|
|
}
|