2605188240
If kvm does not support VMX feature by nested=0, the kvm_vmx_basic can't get the right value from MSR_IA32_VMX_BASIC register, which make qemu coredump when qemu do KVM_SET_MSRS. The coredump info: error: failed to set MSR 0x480 to 0x0 kvm_put_msrs: Assertion `ret == cpu->kvm_msr_buf->nmsrs' failed. Signed-off-by: Yang Zhong <yang.zhong@intel.com> Message-Id: <20191206071111.12128-1-yang.zhong@intel.com> Reported-by: Catherine Ho <catherine.hecx@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
4787 lines
145 KiB
C
4787 lines
145 KiB
C
/*
|
|
* QEMU KVM support
|
|
*
|
|
* Copyright (C) 2006-2008 Qumranet Technologies
|
|
* Copyright IBM, Corp. 2008
|
|
*
|
|
* Authors:
|
|
* Anthony Liguori <aliguori@us.ibm.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qapi/error.h"
|
|
#include <sys/ioctl.h>
|
|
#include <sys/utsname.h>
|
|
|
|
#include <linux/kvm.h>
|
|
#include "standard-headers/asm-x86/kvm_para.h"
|
|
|
|
#include "cpu.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "sysemu/hw_accel.h"
|
|
#include "sysemu/kvm_int.h"
|
|
#include "sysemu/reset.h"
|
|
#include "sysemu/runstate.h"
|
|
#include "kvm_i386.h"
|
|
#include "hyperv.h"
|
|
#include "hyperv-proto.h"
|
|
|
|
#include "exec/gdbstub.h"
|
|
#include "qemu/host-utils.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "qemu/config-file.h"
|
|
#include "qemu/error-report.h"
|
|
#include "hw/i386/pc.h"
|
|
#include "hw/i386/apic.h"
|
|
#include "hw/i386/apic_internal.h"
|
|
#include "hw/i386/apic-msidef.h"
|
|
#include "hw/i386/intel_iommu.h"
|
|
#include "hw/i386/x86-iommu.h"
|
|
#include "hw/i386/e820_memory_layout.h"
|
|
|
|
#include "hw/pci/pci.h"
|
|
#include "hw/pci/msi.h"
|
|
#include "hw/pci/msix.h"
|
|
#include "migration/blocker.h"
|
|
#include "exec/memattrs.h"
|
|
#include "trace.h"
|
|
|
|
//#define DEBUG_KVM
|
|
|
|
#ifdef DEBUG_KVM
|
|
#define DPRINTF(fmt, ...) \
|
|
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
|
|
#else
|
|
#define DPRINTF(fmt, ...) \
|
|
do { } while (0)
|
|
#endif
|
|
|
|
#define MSR_KVM_WALL_CLOCK 0x11
|
|
#define MSR_KVM_SYSTEM_TIME 0x12
|
|
|
|
/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
|
|
* 255 kvm_msr_entry structs */
|
|
#define MSR_BUF_SIZE 4096
|
|
|
|
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
|
|
KVM_CAP_INFO(SET_TSS_ADDR),
|
|
KVM_CAP_INFO(EXT_CPUID),
|
|
KVM_CAP_INFO(MP_STATE),
|
|
KVM_CAP_LAST_INFO
|
|
};
|
|
|
|
static bool has_msr_star;
|
|
static bool has_msr_hsave_pa;
|
|
static bool has_msr_tsc_aux;
|
|
static bool has_msr_tsc_adjust;
|
|
static bool has_msr_tsc_deadline;
|
|
static bool has_msr_feature_control;
|
|
static bool has_msr_misc_enable;
|
|
static bool has_msr_smbase;
|
|
static bool has_msr_bndcfgs;
|
|
static int lm_capable_kernel;
|
|
static bool has_msr_hv_hypercall;
|
|
static bool has_msr_hv_crash;
|
|
static bool has_msr_hv_reset;
|
|
static bool has_msr_hv_vpindex;
|
|
static bool hv_vpindex_settable;
|
|
static bool has_msr_hv_runtime;
|
|
static bool has_msr_hv_synic;
|
|
static bool has_msr_hv_stimer;
|
|
static bool has_msr_hv_frequencies;
|
|
static bool has_msr_hv_reenlightenment;
|
|
static bool has_msr_xss;
|
|
static bool has_msr_umwait;
|
|
static bool has_msr_spec_ctrl;
|
|
static bool has_msr_tsx_ctrl;
|
|
static bool has_msr_virt_ssbd;
|
|
static bool has_msr_smi_count;
|
|
static bool has_msr_arch_capabs;
|
|
static bool has_msr_core_capabs;
|
|
static bool has_msr_vmx_vmfunc;
|
|
|
|
static uint32_t has_architectural_pmu_version;
|
|
static uint32_t num_architectural_pmu_gp_counters;
|
|
static uint32_t num_architectural_pmu_fixed_counters;
|
|
|
|
static int has_xsave;
|
|
static int has_xcrs;
|
|
static int has_pit_state2;
|
|
static int has_exception_payload;
|
|
|
|
static bool has_msr_mcg_ext_ctl;
|
|
|
|
static struct kvm_cpuid2 *cpuid_cache;
|
|
static struct kvm_msr_list *kvm_feature_msrs;
|
|
|
|
int kvm_has_pit_state2(void)
|
|
{
|
|
return has_pit_state2;
|
|
}
|
|
|
|
bool kvm_has_smm(void)
|
|
{
|
|
return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
|
|
}
|
|
|
|
bool kvm_has_adjust_clock_stable(void)
|
|
{
|
|
int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
|
|
|
|
return (ret == KVM_CLOCK_TSC_STABLE);
|
|
}
|
|
|
|
bool kvm_has_exception_payload(void)
|
|
{
|
|
return has_exception_payload;
|
|
}
|
|
|
|
bool kvm_allows_irq0_override(void)
|
|
{
|
|
return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
|
|
}
|
|
|
|
static bool kvm_x2apic_api_set_flags(uint64_t flags)
|
|
{
|
|
KVMState *s = KVM_STATE(current_machine->accelerator);
|
|
|
|
return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
|
|
}
|
|
|
|
#define MEMORIZE(fn, _result) \
|
|
({ \
|
|
static bool _memorized; \
|
|
\
|
|
if (_memorized) { \
|
|
return _result; \
|
|
} \
|
|
_memorized = true; \
|
|
_result = fn; \
|
|
})
|
|
|
|
static bool has_x2apic_api;
|
|
|
|
bool kvm_has_x2apic_api(void)
|
|
{
|
|
return has_x2apic_api;
|
|
}
|
|
|
|
bool kvm_enable_x2apic(void)
|
|
{
|
|
return MEMORIZE(
|
|
kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
|
|
KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
|
|
has_x2apic_api);
|
|
}
|
|
|
|
bool kvm_hv_vpindex_settable(void)
|
|
{
|
|
return hv_vpindex_settable;
|
|
}
|
|
|
|
static int kvm_get_tsc(CPUState *cs)
|
|
{
|
|
X86CPU *cpu = X86_CPU(cs);
|
|
CPUX86State *env = &cpu->env;
|
|
struct {
|
|
struct kvm_msrs info;
|
|
struct kvm_msr_entry entries[1];
|
|
} msr_data = {};
|
|
int ret;
|
|
|
|
if (env->tsc_valid) {
|
|
return 0;
|
|
}
|
|
|
|
memset(&msr_data, 0, sizeof(msr_data));
|
|
msr_data.info.nmsrs = 1;
|
|
msr_data.entries[0].index = MSR_IA32_TSC;
|
|
env->tsc_valid = !runstate_is_running();
|
|
|
|
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
assert(ret == 1);
|
|
env->tsc = msr_data.entries[0].data;
|
|
return 0;
|
|
}
|
|
|
|
static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
|
|
{
|
|
kvm_get_tsc(cpu);
|
|
}
|
|
|
|
void kvm_synchronize_all_tsc(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
if (kvm_enabled()) {
|
|
CPU_FOREACH(cpu) {
|
|
run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
|
|
{
|
|
struct kvm_cpuid2 *cpuid;
|
|
int r, size;
|
|
|
|
size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
|
|
cpuid = g_malloc0(size);
|
|
cpuid->nent = max;
|
|
r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
|
|
if (r == 0 && cpuid->nent >= max) {
|
|
r = -E2BIG;
|
|
}
|
|
if (r < 0) {
|
|
if (r == -E2BIG) {
|
|
g_free(cpuid);
|
|
return NULL;
|
|
} else {
|
|
fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
|
|
strerror(-r));
|
|
exit(1);
|
|
}
|
|
}
|
|
return cpuid;
|
|
}
|
|
|
|
/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
|
|
* for all entries.
|
|
*/
|
|
static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
|
|
{
|
|
struct kvm_cpuid2 *cpuid;
|
|
int max = 1;
|
|
|
|
if (cpuid_cache != NULL) {
|
|
return cpuid_cache;
|
|
}
|
|
while ((cpuid = try_get_cpuid(s, max)) == NULL) {
|
|
max *= 2;
|
|
}
|
|
cpuid_cache = cpuid;
|
|
return cpuid;
|
|
}
|
|
|
|
static const struct kvm_para_features {
|
|
int cap;
|
|
int feature;
|
|
} para_features[] = {
|
|
{ KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
|
|
{ KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
|
|
{ KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
|
|
{ KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
|
|
};
|
|
|
|
static int get_para_features(KVMState *s)
|
|
{
|
|
int i, features = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(para_features); i++) {
|
|
if (kvm_check_extension(s, para_features[i].cap)) {
|
|
features |= (1 << para_features[i].feature);
|
|
}
|
|
}
|
|
|
|
return features;
|
|
}
|
|
|
|
static bool host_tsx_blacklisted(void)
|
|
{
|
|
int family, model, stepping;\
|
|
char vendor[CPUID_VENDOR_SZ + 1];
|
|
|
|
host_vendor_fms(vendor, &family, &model, &stepping);
|
|
|
|
/* Check if we are running on a Haswell host known to have broken TSX */
|
|
return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
|
|
(family == 6) &&
|
|
((model == 63 && stepping < 4) ||
|
|
model == 60 || model == 69 || model == 70);
|
|
}
|
|
|
|
/* Returns the value for a specific register on the cpuid entry
|
|
*/
|
|
static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
|
|
{
|
|
uint32_t ret = 0;
|
|
switch (reg) {
|
|
case R_EAX:
|
|
ret = entry->eax;
|
|
break;
|
|
case R_EBX:
|
|
ret = entry->ebx;
|
|
break;
|
|
case R_ECX:
|
|
ret = entry->ecx;
|
|
break;
|
|
case R_EDX:
|
|
ret = entry->edx;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Find matching entry for function/index on kvm_cpuid2 struct
|
|
*/
|
|
static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
|
|
uint32_t function,
|
|
uint32_t index)
|
|
{
|
|
int i;
|
|
for (i = 0; i < cpuid->nent; ++i) {
|
|
if (cpuid->entries[i].function == function &&
|
|
cpuid->entries[i].index == index) {
|
|
return &cpuid->entries[i];
|
|
}
|
|
}
|
|
/* not found: */
|
|
return NULL;
|
|
}
|
|
|
|
uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
|
|
uint32_t index, int reg)
|
|
{
|
|
struct kvm_cpuid2 *cpuid;
|
|
uint32_t ret = 0;
|
|
uint32_t cpuid_1_edx;
|
|
bool found = false;
|
|
|
|
cpuid = get_supported_cpuid(s);
|
|
|
|
struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
|
|
if (entry) {
|
|
found = true;
|
|
ret = cpuid_entry_get_reg(entry, reg);
|
|
}
|
|
|
|
/* Fixups for the data returned by KVM, below */
|
|
|
|
if (function == 1 && reg == R_EDX) {
|
|
/* KVM before 2.6.30 misreports the following features */
|
|
ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
|
|
} else if (function == 1 && reg == R_ECX) {
|
|
/* We can set the hypervisor flag, even if KVM does not return it on
|
|
* GET_SUPPORTED_CPUID
|
|
*/
|
|
ret |= CPUID_EXT_HYPERVISOR;
|
|
/* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
|
|
* can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
|
|
* and the irqchip is in the kernel.
|
|
*/
|
|
if (kvm_irqchip_in_kernel() &&
|
|
kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
|
|
ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
|
|
}
|
|
|
|
/* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
|
|
* without the in-kernel irqchip
|
|
*/
|
|
if (!kvm_irqchip_in_kernel()) {
|
|
ret &= ~CPUID_EXT_X2APIC;
|
|
}
|
|
|
|
if (enable_cpu_pm) {
|
|
int disable_exits = kvm_check_extension(s,
|
|
KVM_CAP_X86_DISABLE_EXITS);
|
|
|
|
if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
|
|
ret |= CPUID_EXT_MONITOR;
|
|
}
|
|
}
|
|
} else if (function == 6 && reg == R_EAX) {
|
|
ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
|
|
} else if (function == 7 && index == 0 && reg == R_EBX) {
|
|
if (host_tsx_blacklisted()) {
|
|
ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
|
|
}
|
|
} else if (function == 7 && index == 0 && reg == R_ECX) {
|
|
if (enable_cpu_pm) {
|
|
ret |= CPUID_7_0_ECX_WAITPKG;
|
|
} else {
|
|
ret &= ~CPUID_7_0_ECX_WAITPKG;
|
|
}
|
|
} else if (function == 7 && index == 0 && reg == R_EDX) {
|
|
/*
|
|
* Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
|
|
* We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
|
|
* returned by KVM_GET_MSR_INDEX_LIST.
|
|
*/
|
|
if (!has_msr_arch_capabs) {
|
|
ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
|
|
}
|
|
} else if (function == 0x80000001 && reg == R_ECX) {
|
|
/*
|
|
* It's safe to enable TOPOEXT even if it's not returned by
|
|
* GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
|
|
* us to keep CPU models including TOPOEXT runnable on older kernels.
|
|
*/
|
|
ret |= CPUID_EXT3_TOPOEXT;
|
|
} else if (function == 0x80000001 && reg == R_EDX) {
|
|
/* On Intel, kvm returns cpuid according to the Intel spec,
|
|
* so add missing bits according to the AMD spec:
|
|
*/
|
|
cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
|
|
ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
|
|
} else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
|
|
/* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
|
|
* be enabled without the in-kernel irqchip
|
|
*/
|
|
if (!kvm_irqchip_in_kernel()) {
|
|
ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
|
|
}
|
|
} else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
|
|
ret |= 1U << KVM_HINTS_REALTIME;
|
|
found = 1;
|
|
}
|
|
|
|
/* fallback for older kernels */
|
|
if ((function == KVM_CPUID_FEATURES) && !found) {
|
|
ret = get_para_features(s);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
|
|
{
|
|
struct {
|
|
struct kvm_msrs info;
|
|
struct kvm_msr_entry entries[1];
|
|
} msr_data = {};
|
|
uint64_t value;
|
|
uint32_t ret, can_be_one, must_be_one;
|
|
|
|
if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
|
|
return 0;
|
|
}
|
|
|
|
/* Check if requested MSR is supported feature MSR */
|
|
int i;
|
|
for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
|
|
if (kvm_feature_msrs->indices[i] == index) {
|
|
break;
|
|
}
|
|
if (i == kvm_feature_msrs->nmsrs) {
|
|
return 0; /* if the feature MSR is not supported, simply return 0 */
|
|
}
|
|
|
|
msr_data.info.nmsrs = 1;
|
|
msr_data.entries[0].index = index;
|
|
|
|
ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
|
|
if (ret != 1) {
|
|
error_report("KVM get MSR (index=0x%x) feature failed, %s",
|
|
index, strerror(-ret));
|
|
exit(1);
|
|
}
|
|
|
|
value = msr_data.entries[0].data;
|
|
switch (index) {
|
|
case MSR_IA32_VMX_PROCBASED_CTLS2:
|
|
/* KVM forgot to add these bits for some time, do this ourselves. */
|
|
if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & CPUID_XSAVE_XSAVES) {
|
|
value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
|
|
}
|
|
if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & CPUID_EXT_RDRAND) {
|
|
value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
|
|
}
|
|
if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & CPUID_7_0_EBX_INVPCID) {
|
|
value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
|
|
}
|
|
if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & CPUID_7_0_EBX_RDSEED) {
|
|
value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
|
|
}
|
|
if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & CPUID_EXT2_RDTSCP) {
|
|
value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
|
|
}
|
|
/* fall through */
|
|
case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
|
|
case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
|
|
case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
|
|
case MSR_IA32_VMX_TRUE_EXIT_CTLS:
|
|
/*
|
|
* Return true for bits that can be one, but do not have to be one.
|
|
* The SDM tells us which bits could have a "must be one" setting,
|
|
* so we can do the opposite transformation in make_vmx_msr_value.
|
|
*/
|
|
must_be_one = (uint32_t)value;
|
|
can_be_one = (uint32_t)(value >> 32);
|
|
return can_be_one & ~must_be_one;
|
|
|
|
default:
|
|
return value;
|
|
}
|
|
}
|
|
|
|
|
|
typedef struct HWPoisonPage {
|
|
ram_addr_t ram_addr;
|
|
QLIST_ENTRY(HWPoisonPage) list;
|
|
} HWPoisonPage;
|
|
|
|
static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
|
|
QLIST_HEAD_INITIALIZER(hwpoison_page_list);
|
|
|
|
static void kvm_unpoison_all(void *param)
|
|
{
|
|
HWPoisonPage *page, *next_page;
|
|
|
|
QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
|
|
QLIST_REMOVE(page, list);
|
|
qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
|
|
g_free(page);
|
|
}
|
|
}
|
|
|
|
static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
|
|
{
|
|
HWPoisonPage *page;
|
|
|
|
QLIST_FOREACH(page, &hwpoison_page_list, list) {
|
|
if (page->ram_addr == ram_addr) {
|
|
return;
|
|
}
|
|
}
|
|
page = g_new(HWPoisonPage, 1);
|
|
page->ram_addr = ram_addr;
|
|
QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
|
|
}
|
|
|
|
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
|
|
int *max_banks)
|
|
{
|
|
int r;
|
|
|
|
r = kvm_check_extension(s, KVM_CAP_MCE);
|
|
if (r > 0) {
|
|
*max_banks = r;
|
|
return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
|
|
}
|
|
return -ENOSYS;
|
|
}
|
|
|
|
static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
CPUX86State *env = &cpu->env;
|
|
uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
|
|
MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
|
|
uint64_t mcg_status = MCG_STATUS_MCIP;
|
|
int flags = 0;
|
|
|
|
if (code == BUS_MCEERR_AR) {
|
|
status |= MCI_STATUS_AR | 0x134;
|
|
mcg_status |= MCG_STATUS_EIPV;
|
|
} else {
|
|
status |= 0xc0;
|
|
mcg_status |= MCG_STATUS_RIPV;
|
|
}
|
|
|
|
flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
|
|
/* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
|
|
* guest kernel back into env->mcg_ext_ctl.
|
|
*/
|
|
cpu_synchronize_state(cs);
|
|
if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
|
|
mcg_status |= MCG_STATUS_LMCE;
|
|
flags = 0;
|
|
}
|
|
|
|
cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
|
|
(MCM_ADDR_PHYS << 6) | 0xc, flags);
|
|
}
|
|
|
|
static void hardware_memory_error(void *host_addr)
|
|
{
|
|
error_report("QEMU got Hardware memory error at addr %p", host_addr);
|
|
exit(1);
|
|
}
|
|
|
|
void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
|
|
{
|
|
X86CPU *cpu = X86_CPU(c);
|
|
CPUX86State *env = &cpu->env;
|
|
ram_addr_t ram_addr;
|
|
hwaddr paddr;
|
|
|
|
/* If we get an action required MCE, it has been injected by KVM
|
|
* while the VM was running. An action optional MCE instead should
|
|
* be coming from the main thread, which qemu_init_sigbus identifies
|
|
* as the "early kill" thread.
|
|
*/
|
|
assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
|
|
|
|
if ((env->mcg_cap & MCG_SER_P) && addr) {
|
|
ram_addr = qemu_ram_addr_from_host(addr);
|
|
if (ram_addr != RAM_ADDR_INVALID &&
|
|
kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
|
|
kvm_hwpoison_page_add(ram_addr);
|
|
kvm_mce_inject(cpu, paddr, code);
|
|
|
|
/*
|
|
* Use different logging severity based on error type.
|
|
* If there is additional MCE reporting on the hypervisor, QEMU VA
|
|
* could be another source to identify the PA and MCE details.
|
|
*/
|
|
if (code == BUS_MCEERR_AR) {
|
|
error_report("Guest MCE Memory Error at QEMU addr %p and "
|
|
"GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
|
|
addr, paddr, "BUS_MCEERR_AR");
|
|
} else {
|
|
warn_report("Guest MCE Memory Error at QEMU addr %p and "
|
|
"GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
|
|
addr, paddr, "BUS_MCEERR_AO");
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (code == BUS_MCEERR_AO) {
|
|
warn_report("Hardware memory error at addr %p of type %s "
|
|
"for memory used by QEMU itself instead of guest system!",
|
|
addr, "BUS_MCEERR_AO");
|
|
}
|
|
}
|
|
|
|
if (code == BUS_MCEERR_AR) {
|
|
hardware_memory_error(addr);
|
|
}
|
|
|
|
/* Hope we are lucky for AO MCE */
|
|
}
|
|
|
|
static void kvm_reset_exception(CPUX86State *env)
|
|
{
|
|
env->exception_nr = -1;
|
|
env->exception_pending = 0;
|
|
env->exception_injected = 0;
|
|
env->exception_has_payload = false;
|
|
env->exception_payload = 0;
|
|
}
|
|
|
|
static void kvm_queue_exception(CPUX86State *env,
|
|
int32_t exception_nr,
|
|
uint8_t exception_has_payload,
|
|
uint64_t exception_payload)
|
|
{
|
|
assert(env->exception_nr == -1);
|
|
assert(!env->exception_pending);
|
|
assert(!env->exception_injected);
|
|
assert(!env->exception_has_payload);
|
|
|
|
env->exception_nr = exception_nr;
|
|
|
|
if (has_exception_payload) {
|
|
env->exception_pending = 1;
|
|
|
|
env->exception_has_payload = exception_has_payload;
|
|
env->exception_payload = exception_payload;
|
|
} else {
|
|
env->exception_injected = 1;
|
|
|
|
if (exception_nr == EXCP01_DB) {
|
|
assert(exception_has_payload);
|
|
env->dr[6] = exception_payload;
|
|
} else if (exception_nr == EXCP0E_PAGE) {
|
|
assert(exception_has_payload);
|
|
env->cr[2] = exception_payload;
|
|
} else {
|
|
assert(!exception_has_payload);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int kvm_inject_mce_oldstyle(X86CPU *cpu)
|
|
{
|
|
CPUX86State *env = &cpu->env;
|
|
|
|
if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
|
|
unsigned int bank, bank_num = env->mcg_cap & 0xff;
|
|
struct kvm_x86_mce mce;
|
|
|
|
kvm_reset_exception(env);
|
|
|
|
/*
|
|
* There must be at least one bank in use if an MCE is pending.
|
|
* Find it and use its values for the event injection.
|
|
*/
|
|
for (bank = 0; bank < bank_num; bank++) {
|
|
if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
|
|
break;
|
|
}
|
|
}
|
|
assert(bank < bank_num);
|
|
|
|
mce.bank = bank;
|
|
mce.status = env->mce_banks[bank * 4 + 1];
|
|
mce.mcg_status = env->mcg_status;
|
|
mce.addr = env->mce_banks[bank * 4 + 2];
|
|
mce.misc = env->mce_banks[bank * 4 + 3];
|
|
|
|
return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void cpu_update_state(void *opaque, int running, RunState state)
|
|
{
|
|
CPUX86State *env = opaque;
|
|
|
|
if (running) {
|
|
env->tsc_valid = false;
|
|
}
|
|
}
|
|
|
|
unsigned long kvm_arch_vcpu_id(CPUState *cs)
|
|
{
|
|
X86CPU *cpu = X86_CPU(cs);
|
|
return cpu->apic_id;
|
|
}
|
|
|
|
#ifndef KVM_CPUID_SIGNATURE_NEXT
|
|
#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
|
|
#endif
|
|
|
|
static bool hyperv_enabled(X86CPU *cpu)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
|
|
((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) ||
|
|
cpu->hyperv_features || cpu->hyperv_passthrough);
|
|
}
|
|
|
|
static int kvm_arch_set_tsc_khz(CPUState *cs)
|
|
{
|
|
X86CPU *cpu = X86_CPU(cs);
|
|
CPUX86State *env = &cpu->env;
|
|
int r;
|
|
|
|
if (!env->tsc_khz) {
|
|
return 0;
|
|
}
|
|
|
|
r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
|
|
kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
|
|
-ENOTSUP;
|
|
if (r < 0) {
|
|
/* When KVM_SET_TSC_KHZ fails, it's an error only if the current
|
|
* TSC frequency doesn't match the one we want.
|
|
*/
|
|
int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
|
|
kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
|
|
-ENOTSUP;
|
|
if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
|
|
warn_report("TSC frequency mismatch between "
|
|
"VM (%" PRId64 " kHz) and host (%d kHz), "
|
|
"and TSC scaling unavailable",
|
|
env->tsc_khz, cur_freq);
|
|
return r;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool tsc_is_stable_and_known(CPUX86State *env)
|
|
{
|
|
if (!env->tsc_khz) {
|
|
return false;
|
|
}
|
|
return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
|
|
|| env->user_tsc_khz;
|
|
}
|
|
|
|
static struct {
|
|
const char *desc;
|
|
struct {
|
|
uint32_t fw;
|
|
uint32_t bits;
|
|
} flags[2];
|
|
uint64_t dependencies;
|
|
} kvm_hyperv_properties[] = {
|
|
[HYPERV_FEAT_RELAXED] = {
|
|
.desc = "relaxed timing (hv-relaxed)",
|
|
.flags = {
|
|
{.fw = FEAT_HYPERV_EAX,
|
|
.bits = HV_HYPERCALL_AVAILABLE},
|
|
{.fw = FEAT_HV_RECOMM_EAX,
|
|
.bits = HV_RELAXED_TIMING_RECOMMENDED}
|
|
}
|
|
},
|
|
[HYPERV_FEAT_VAPIC] = {
|
|
.desc = "virtual APIC (hv-vapic)",
|
|
.flags = {
|
|
{.fw = FEAT_HYPERV_EAX,
|
|
.bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE},
|
|
{.fw = FEAT_HV_RECOMM_EAX,
|
|
.bits = HV_APIC_ACCESS_RECOMMENDED}
|
|
}
|
|
},
|
|
[HYPERV_FEAT_TIME] = {
|
|
.desc = "clocksources (hv-time)",
|
|
.flags = {
|
|
{.fw = FEAT_HYPERV_EAX,
|
|
.bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE |
|
|
HV_REFERENCE_TSC_AVAILABLE}
|
|
}
|
|
},
|
|
[HYPERV_FEAT_CRASH] = {
|
|
.desc = "crash MSRs (hv-crash)",
|
|
.flags = {
|
|
{.fw = FEAT_HYPERV_EDX,
|
|
.bits = HV_GUEST_CRASH_MSR_AVAILABLE}
|
|
}
|
|
},
|
|
[HYPERV_FEAT_RESET] = {
|
|
.desc = "reset MSR (hv-reset)",
|
|
.flags = {
|
|
{.fw = FEAT_HYPERV_EAX,
|
|
.bits = HV_RESET_AVAILABLE}
|
|
}
|
|
},
|
|
[HYPERV_FEAT_VPINDEX] = {
|
|
.desc = "VP_INDEX MSR (hv-vpindex)",
|
|
.flags = {
|
|
{.fw = FEAT_HYPERV_EAX,
|
|
.bits = HV_VP_INDEX_AVAILABLE}
|
|
}
|
|
},
|
|
[HYPERV_FEAT_RUNTIME] = {
|
|
.desc = "VP_RUNTIME MSR (hv-runtime)",
|
|
.flags = {
|
|
{.fw = FEAT_HYPERV_EAX,
|
|
.bits = HV_VP_RUNTIME_AVAILABLE}
|
|
}
|
|
},
|
|
[HYPERV_FEAT_SYNIC] = {
|
|
.desc = "synthetic interrupt controller (hv-synic)",
|
|
.flags = {
|
|
{.fw = FEAT_HYPERV_EAX,
|
|
.bits = HV_SYNIC_AVAILABLE}
|
|
}
|
|
},
|
|
[HYPERV_FEAT_STIMER] = {
|
|
.desc = "synthetic timers (hv-stimer)",
|
|
.flags = {
|
|
{.fw = FEAT_HYPERV_EAX,
|
|
.bits = HV_SYNTIMERS_AVAILABLE}
|
|
},
|
|
.dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
|
|
},
|
|
[HYPERV_FEAT_FREQUENCIES] = {
|
|
.desc = "frequency MSRs (hv-frequencies)",
|
|
.flags = {
|
|
{.fw = FEAT_HYPERV_EAX,
|
|
.bits = HV_ACCESS_FREQUENCY_MSRS},
|
|
{.fw = FEAT_HYPERV_EDX,
|
|
.bits = HV_FREQUENCY_MSRS_AVAILABLE}
|
|
}
|
|
},
|
|
[HYPERV_FEAT_REENLIGHTENMENT] = {
|
|
.desc = "reenlightenment MSRs (hv-reenlightenment)",
|
|
.flags = {
|
|
{.fw = FEAT_HYPERV_EAX,
|
|
.bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
|
|
}
|
|
},
|
|
[HYPERV_FEAT_TLBFLUSH] = {
|
|
.desc = "paravirtualized TLB flush (hv-tlbflush)",
|
|
.flags = {
|
|
{.fw = FEAT_HV_RECOMM_EAX,
|
|
.bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
|
|
HV_EX_PROCESSOR_MASKS_RECOMMENDED}
|
|
},
|
|
.dependencies = BIT(HYPERV_FEAT_VPINDEX)
|
|
},
|
|
[HYPERV_FEAT_EVMCS] = {
|
|
.desc = "enlightened VMCS (hv-evmcs)",
|
|
.flags = {
|
|
{.fw = FEAT_HV_RECOMM_EAX,
|
|
.bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
|
|
},
|
|
.dependencies = BIT(HYPERV_FEAT_VAPIC)
|
|
},
|
|
[HYPERV_FEAT_IPI] = {
|
|
.desc = "paravirtualized IPI (hv-ipi)",
|
|
.flags = {
|
|
{.fw = FEAT_HV_RECOMM_EAX,
|
|
.bits = HV_CLUSTER_IPI_RECOMMENDED |
|
|
HV_EX_PROCESSOR_MASKS_RECOMMENDED}
|
|
},
|
|
.dependencies = BIT(HYPERV_FEAT_VPINDEX)
|
|
},
|
|
[HYPERV_FEAT_STIMER_DIRECT] = {
|
|
.desc = "direct mode synthetic timers (hv-stimer-direct)",
|
|
.flags = {
|
|
{.fw = FEAT_HYPERV_EDX,
|
|
.bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
|
|
},
|
|
.dependencies = BIT(HYPERV_FEAT_STIMER)
|
|
},
|
|
};
|
|
|
|
static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max)
|
|
{
|
|
struct kvm_cpuid2 *cpuid;
|
|
int r, size;
|
|
|
|
size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
|
|
cpuid = g_malloc0(size);
|
|
cpuid->nent = max;
|
|
|
|
r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
|
|
if (r == 0 && cpuid->nent >= max) {
|
|
r = -E2BIG;
|
|
}
|
|
if (r < 0) {
|
|
if (r == -E2BIG) {
|
|
g_free(cpuid);
|
|
return NULL;
|
|
} else {
|
|
fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
|
|
strerror(-r));
|
|
exit(1);
|
|
}
|
|
}
|
|
return cpuid;
|
|
}
|
|
|
|
/*
|
|
* Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
|
|
* for all entries.
|
|
*/
|
|
static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
|
|
{
|
|
struct kvm_cpuid2 *cpuid;
|
|
int max = 7; /* 0x40000000..0x40000005, 0x4000000A */
|
|
|
|
/*
|
|
* When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
|
|
* -E2BIG, however, it doesn't report back the right size. Keep increasing
|
|
* it and re-trying until we succeed.
|
|
*/
|
|
while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) {
|
|
max++;
|
|
}
|
|
return cpuid;
|
|
}
|
|
|
|
/*
|
|
* When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
|
|
* leaves from KVM_CAP_HYPERV* and present MSRs data.
|
|
*/
|
|
static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
|
|
{
|
|
X86CPU *cpu = X86_CPU(cs);
|
|
struct kvm_cpuid2 *cpuid;
|
|
struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
|
|
|
|
/* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
|
|
cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
|
|
cpuid->nent = 2;
|
|
|
|
/* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
|
|
entry_feat = &cpuid->entries[0];
|
|
entry_feat->function = HV_CPUID_FEATURES;
|
|
|
|
entry_recomm = &cpuid->entries[1];
|
|
entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
|
|
entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
|
|
|
|
if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
|
|
entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
|
|
entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
|
|
entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
|
|
entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
|
|
entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
|
|
}
|
|
|
|
if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
|
|
entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
|
|
entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
|
|
}
|
|
|
|
if (has_msr_hv_frequencies) {
|
|
entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
|
|
entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
|
|
}
|
|
|
|
if (has_msr_hv_crash) {
|
|
entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
|
|
}
|
|
|
|
if (has_msr_hv_reenlightenment) {
|
|
entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
|
|
}
|
|
|
|
if (has_msr_hv_reset) {
|
|
entry_feat->eax |= HV_RESET_AVAILABLE;
|
|
}
|
|
|
|
if (has_msr_hv_vpindex) {
|
|
entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
|
|
}
|
|
|
|
if (has_msr_hv_runtime) {
|
|
entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
|
|
}
|
|
|
|
if (has_msr_hv_synic) {
|
|
unsigned int cap = cpu->hyperv_synic_kvm_only ?
|
|
KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
|
|
|
|
if (kvm_check_extension(cs->kvm_state, cap) > 0) {
|
|
entry_feat->eax |= HV_SYNIC_AVAILABLE;
|
|
}
|
|
}
|
|
|
|
if (has_msr_hv_stimer) {
|
|
entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
|
|
}
|
|
|
|
if (kvm_check_extension(cs->kvm_state,
|
|
KVM_CAP_HYPERV_TLBFLUSH) > 0) {
|
|
entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
|
|
entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
|
|
}
|
|
|
|
if (kvm_check_extension(cs->kvm_state,
|
|
KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
|
|
entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
|
|
}
|
|
|
|
if (kvm_check_extension(cs->kvm_state,
|
|
KVM_CAP_HYPERV_SEND_IPI) > 0) {
|
|
entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
|
|
entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
|
|
}
|
|
|
|
return cpuid;
|
|
}
|
|
|
|
static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r)
|
|
{
|
|
struct kvm_cpuid_entry2 *entry;
|
|
uint32_t func;
|
|
int reg;
|
|
|
|
switch (fw) {
|
|
case FEAT_HYPERV_EAX:
|
|
reg = R_EAX;
|
|
func = HV_CPUID_FEATURES;
|
|
break;
|
|
case FEAT_HYPERV_EDX:
|
|
reg = R_EDX;
|
|
func = HV_CPUID_FEATURES;
|
|
break;
|
|
case FEAT_HV_RECOMM_EAX:
|
|
reg = R_EAX;
|
|
func = HV_CPUID_ENLIGHTMENT_INFO;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
entry = cpuid_find_entry(cpuid, func, 0);
|
|
if (!entry) {
|
|
return -ENOENT;
|
|
}
|
|
|
|
switch (reg) {
|
|
case R_EAX:
|
|
*r = entry->eax;
|
|
break;
|
|
case R_EDX:
|
|
*r = entry->edx;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid,
|
|
int feature)
|
|
{
|
|
X86CPU *cpu = X86_CPU(cs);
|
|
CPUX86State *env = &cpu->env;
|
|
uint32_t r, fw, bits;
|
|
uint64_t deps;
|
|
int i, dep_feat;
|
|
|
|
if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) {
|
|
return 0;
|
|
}
|
|
|
|
deps = kvm_hyperv_properties[feature].dependencies;
|
|
while (deps) {
|
|
dep_feat = ctz64(deps);
|
|
if (!(hyperv_feat_enabled(cpu, dep_feat))) {
|
|
fprintf(stderr,
|
|
"Hyper-V %s requires Hyper-V %s\n",
|
|
kvm_hyperv_properties[feature].desc,
|
|
kvm_hyperv_properties[dep_feat].desc);
|
|
return 1;
|
|
}
|
|
deps &= ~(1ull << dep_feat);
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
|
|
fw = kvm_hyperv_properties[feature].flags[i].fw;
|
|
bits = kvm_hyperv_properties[feature].flags[i].bits;
|
|
|
|
if (!fw) {
|
|
continue;
|
|
}
|
|
|
|
if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) {
|
|
if (hyperv_feat_enabled(cpu, feature)) {
|
|
fprintf(stderr,
|
|
"Hyper-V %s is not supported by kernel\n",
|
|
kvm_hyperv_properties[feature].desc);
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
env->features[fw] |= bits;
|
|
}
|
|
|
|
if (cpu->hyperv_passthrough) {
|
|
cpu->hyperv_features |= BIT(feature);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
|
|
* case of success, errno < 0 in case of failure and 0 when no Hyper-V
|
|
* extentions are enabled.
|
|
*/
|
|
static int hyperv_handle_properties(CPUState *cs,
|
|
struct kvm_cpuid_entry2 *cpuid_ent)
|
|
{
|
|
X86CPU *cpu = X86_CPU(cs);
|
|
CPUX86State *env = &cpu->env;
|
|
struct kvm_cpuid2 *cpuid;
|
|
struct kvm_cpuid_entry2 *c;
|
|
uint32_t signature[3];
|
|
uint32_t cpuid_i = 0;
|
|
int r;
|
|
|
|
if (!hyperv_enabled(cpu))
|
|
return 0;
|
|
|
|
if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ||
|
|
cpu->hyperv_passthrough) {
|
|
uint16_t evmcs_version;
|
|
|
|
r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
|
|
(uintptr_t)&evmcs_version);
|
|
|
|
if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) {
|
|
fprintf(stderr, "Hyper-V %s is not supported by kernel\n",
|
|
kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
|
|
return -ENOSYS;
|
|
}
|
|
|
|
if (!r) {
|
|
env->features[FEAT_HV_RECOMM_EAX] |=
|
|
HV_ENLIGHTENED_VMCS_RECOMMENDED;
|
|
env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
|
|
}
|
|
}
|
|
|
|
if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
|
|
cpuid = get_supported_hv_cpuid(cs);
|
|
} else {
|
|
cpuid = get_supported_hv_cpuid_legacy(cs);
|
|
}
|
|
|
|
if (cpu->hyperv_passthrough) {
|
|
memcpy(cpuid_ent, &cpuid->entries[0],
|
|
cpuid->nent * sizeof(cpuid->entries[0]));
|
|
|
|
c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0);
|
|
if (c) {
|
|
env->features[FEAT_HYPERV_EAX] = c->eax;
|
|
env->features[FEAT_HYPERV_EBX] = c->ebx;
|
|
env->features[FEAT_HYPERV_EDX] = c->eax;
|
|
}
|
|
c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
|
|
if (c) {
|
|
env->features[FEAT_HV_RECOMM_EAX] = c->eax;
|
|
|
|
/* hv-spinlocks may have been overriden */
|
|
if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) {
|
|
c->ebx = cpu->hyperv_spinlock_attempts;
|
|
}
|
|
}
|
|
c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0);
|
|
if (c) {
|
|
env->features[FEAT_HV_NESTED_EAX] = c->eax;
|
|
}
|
|
}
|
|
|
|
if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
|
|
env->features[FEAT_HV_RECOMM_EAX] |= HV_NO_NONARCH_CORESHARING;
|
|
} else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
|
|
c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
|
|
if (c) {
|
|
env->features[FEAT_HV_RECOMM_EAX] |=
|
|
c->eax & HV_NO_NONARCH_CORESHARING;
|
|
}
|
|
}
|
|
|
|
/* Features */
|
|
r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED);
|
|
r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC);
|
|
r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME);
|
|
r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH);
|
|
r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET);
|
|
r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX);
|
|
r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME);
|
|
r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC);
|
|
r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER);
|
|
r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES);
|
|
r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT);
|
|
r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH);
|
|
r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS);
|
|
r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI);
|
|
r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT);
|
|
|
|
/* Additional dependencies not covered by kvm_hyperv_properties[] */
|
|
if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
|
|
!cpu->hyperv_synic_kvm_only &&
|
|
!hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
|
|
fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n",
|
|
kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
|
|
kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
|
|
r |= 1;
|
|
}
|
|
|
|
/* Not exposed by KVM but needed to make CPU hotplug in Windows work */
|
|
env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
|
|
|
|
if (r) {
|
|
r = -ENOSYS;
|
|
goto free;
|
|
}
|
|
|
|
if (cpu->hyperv_passthrough) {
|
|
/* We already copied all feature words from KVM as is */
|
|
r = cpuid->nent;
|
|
goto free;
|
|
}
|
|
|
|
c = &cpuid_ent[cpuid_i++];
|
|
c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
|
|
if (!cpu->hyperv_vendor_id) {
|
|
memcpy(signature, "Microsoft Hv", 12);
|
|
} else {
|
|
size_t len = strlen(cpu->hyperv_vendor_id);
|
|
|
|
if (len > 12) {
|
|
error_report("hv-vendor-id truncated to 12 characters");
|
|
len = 12;
|
|
}
|
|
memset(signature, 0, 12);
|
|
memcpy(signature, cpu->hyperv_vendor_id, len);
|
|
}
|
|
c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
|
|
HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
|
|
c->ebx = signature[0];
|
|
c->ecx = signature[1];
|
|
c->edx = signature[2];
|
|
|
|
c = &cpuid_ent[cpuid_i++];
|
|
c->function = HV_CPUID_INTERFACE;
|
|
memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
|
|
c->eax = signature[0];
|
|
c->ebx = 0;
|
|
c->ecx = 0;
|
|
c->edx = 0;
|
|
|
|
c = &cpuid_ent[cpuid_i++];
|
|
c->function = HV_CPUID_VERSION;
|
|
c->eax = 0x00001bbc;
|
|
c->ebx = 0x00060001;
|
|
|
|
c = &cpuid_ent[cpuid_i++];
|
|
c->function = HV_CPUID_FEATURES;
|
|
c->eax = env->features[FEAT_HYPERV_EAX];
|
|
c->ebx = env->features[FEAT_HYPERV_EBX];
|
|
c->edx = env->features[FEAT_HYPERV_EDX];
|
|
|
|
c = &cpuid_ent[cpuid_i++];
|
|
c->function = HV_CPUID_ENLIGHTMENT_INFO;
|
|
c->eax = env->features[FEAT_HV_RECOMM_EAX];
|
|
c->ebx = cpu->hyperv_spinlock_attempts;
|
|
|
|
c = &cpuid_ent[cpuid_i++];
|
|
c->function = HV_CPUID_IMPLEMENT_LIMITS;
|
|
c->eax = cpu->hv_max_vps;
|
|
c->ebx = 0x40;
|
|
|
|
if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
|
|
__u32 function;
|
|
|
|
/* Create zeroed 0x40000006..0x40000009 leaves */
|
|
for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
|
|
function < HV_CPUID_NESTED_FEATURES; function++) {
|
|
c = &cpuid_ent[cpuid_i++];
|
|
c->function = function;
|
|
}
|
|
|
|
c = &cpuid_ent[cpuid_i++];
|
|
c->function = HV_CPUID_NESTED_FEATURES;
|
|
c->eax = env->features[FEAT_HV_NESTED_EAX];
|
|
}
|
|
r = cpuid_i;
|
|
|
|
free:
|
|
g_free(cpuid);
|
|
|
|
return r;
|
|
}
|
|
|
|
static Error *hv_passthrough_mig_blocker;
|
|
static Error *hv_no_nonarch_cs_mig_blocker;
|
|
|
|
static int hyperv_init_vcpu(X86CPU *cpu)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
Error *local_err = NULL;
|
|
int ret;
|
|
|
|
if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
|
|
error_setg(&hv_passthrough_mig_blocker,
|
|
"'hv-passthrough' CPU flag prevents migration, use explicit"
|
|
" set of hv-* flags instead");
|
|
ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
|
|
if (local_err) {
|
|
error_report_err(local_err);
|
|
error_free(hv_passthrough_mig_blocker);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
|
|
hv_no_nonarch_cs_mig_blocker == NULL) {
|
|
error_setg(&hv_no_nonarch_cs_mig_blocker,
|
|
"'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
|
|
" use explicit 'hv-no-nonarch-coresharing=on' instead (but"
|
|
" make sure SMT is disabled and/or that vCPUs are properly"
|
|
" pinned)");
|
|
ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
|
|
if (local_err) {
|
|
error_report_err(local_err);
|
|
error_free(hv_no_nonarch_cs_mig_blocker);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
|
|
/*
|
|
* the kernel doesn't support setting vp_index; assert that its value
|
|
* is in sync
|
|
*/
|
|
struct {
|
|
struct kvm_msrs info;
|
|
struct kvm_msr_entry entries[1];
|
|
} msr_data = {
|
|
.info.nmsrs = 1,
|
|
.entries[0].index = HV_X64_MSR_VP_INDEX,
|
|
};
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
assert(ret == 1);
|
|
|
|
if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
|
|
error_report("kernel's vp_index != QEMU's vp_index");
|
|
return -ENXIO;
|
|
}
|
|
}
|
|
|
|
if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
|
|
uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
|
|
KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
|
|
ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
|
|
if (ret < 0) {
|
|
error_report("failed to turn on HyperV SynIC in KVM: %s",
|
|
strerror(-ret));
|
|
return ret;
|
|
}
|
|
|
|
if (!cpu->hyperv_synic_kvm_only) {
|
|
ret = hyperv_x86_synic_add(cpu);
|
|
if (ret < 0) {
|
|
error_report("failed to create HyperV SynIC: %s",
|
|
strerror(-ret));
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static Error *invtsc_mig_blocker;
|
|
|
|
#define KVM_MAX_CPUID_ENTRIES 100
|
|
|
|
int kvm_arch_init_vcpu(CPUState *cs)
|
|
{
|
|
struct {
|
|
struct kvm_cpuid2 cpuid;
|
|
struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
|
|
} cpuid_data;
|
|
/*
|
|
* The kernel defines these structs with padding fields so there
|
|
* should be no extra padding in our cpuid_data struct.
|
|
*/
|
|
QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
|
|
sizeof(struct kvm_cpuid2) +
|
|
sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
|
|
|
|
X86CPU *cpu = X86_CPU(cs);
|
|
CPUX86State *env = &cpu->env;
|
|
uint32_t limit, i, j, cpuid_i;
|
|
uint32_t unused;
|
|
struct kvm_cpuid_entry2 *c;
|
|
uint32_t signature[3];
|
|
int kvm_base = KVM_CPUID_SIGNATURE;
|
|
int max_nested_state_len;
|
|
int r;
|
|
Error *local_err = NULL;
|
|
|
|
memset(&cpuid_data, 0, sizeof(cpuid_data));
|
|
|
|
cpuid_i = 0;
|
|
|
|
r = kvm_arch_set_tsc_khz(cs);
|
|
if (r < 0) {
|
|
return r;
|
|
}
|
|
|
|
/* vcpu's TSC frequency is either specified by user, or following
|
|
* the value used by KVM if the former is not present. In the
|
|
* latter case, we query it from KVM and record in env->tsc_khz,
|
|
* so that vcpu's TSC frequency can be migrated later via this field.
|
|
*/
|
|
if (!env->tsc_khz) {
|
|
r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
|
|
kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
|
|
-ENOTSUP;
|
|
if (r > 0) {
|
|
env->tsc_khz = r;
|
|
}
|
|
}
|
|
|
|
/* Paravirtualization CPUIDs */
|
|
r = hyperv_handle_properties(cs, cpuid_data.entries);
|
|
if (r < 0) {
|
|
return r;
|
|
} else if (r > 0) {
|
|
cpuid_i = r;
|
|
kvm_base = KVM_CPUID_SIGNATURE_NEXT;
|
|
has_msr_hv_hypercall = true;
|
|
}
|
|
|
|
if (cpu->expose_kvm) {
|
|
memcpy(signature, "KVMKVMKVM\0\0\0", 12);
|
|
c = &cpuid_data.entries[cpuid_i++];
|
|
c->function = KVM_CPUID_SIGNATURE | kvm_base;
|
|
c->eax = KVM_CPUID_FEATURES | kvm_base;
|
|
c->ebx = signature[0];
|
|
c->ecx = signature[1];
|
|
c->edx = signature[2];
|
|
|
|
c = &cpuid_data.entries[cpuid_i++];
|
|
c->function = KVM_CPUID_FEATURES | kvm_base;
|
|
c->eax = env->features[FEAT_KVM];
|
|
c->edx = env->features[FEAT_KVM_HINTS];
|
|
}
|
|
|
|
cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
|
|
|
|
for (i = 0; i <= limit; i++) {
|
|
if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
|
|
fprintf(stderr, "unsupported level value: 0x%x\n", limit);
|
|
abort();
|
|
}
|
|
c = &cpuid_data.entries[cpuid_i++];
|
|
|
|
switch (i) {
|
|
case 2: {
|
|
/* Keep reading function 2 till all the input is received */
|
|
int times;
|
|
|
|
c->function = i;
|
|
c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
|
|
KVM_CPUID_FLAG_STATE_READ_NEXT;
|
|
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
|
|
times = c->eax & 0xff;
|
|
|
|
for (j = 1; j < times; ++j) {
|
|
if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
|
|
fprintf(stderr, "cpuid_data is full, no space for "
|
|
"cpuid(eax:2):eax & 0xf = 0x%x\n", times);
|
|
abort();
|
|
}
|
|
c = &cpuid_data.entries[cpuid_i++];
|
|
c->function = i;
|
|
c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
|
|
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
|
|
}
|
|
break;
|
|
}
|
|
case 0x1f:
|
|
if (env->nr_dies < 2) {
|
|
break;
|
|
}
|
|
case 4:
|
|
case 0xb:
|
|
case 0xd:
|
|
for (j = 0; ; j++) {
|
|
if (i == 0xd && j == 64) {
|
|
break;
|
|
}
|
|
|
|
if (i == 0x1f && j == 64) {
|
|
break;
|
|
}
|
|
|
|
c->function = i;
|
|
c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
c->index = j;
|
|
cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
|
|
|
|
if (i == 4 && c->eax == 0) {
|
|
break;
|
|
}
|
|
if (i == 0xb && !(c->ecx & 0xff00)) {
|
|
break;
|
|
}
|
|
if (i == 0x1f && !(c->ecx & 0xff00)) {
|
|
break;
|
|
}
|
|
if (i == 0xd && c->eax == 0) {
|
|
continue;
|
|
}
|
|
if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
|
|
fprintf(stderr, "cpuid_data is full, no space for "
|
|
"cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
|
|
abort();
|
|
}
|
|
c = &cpuid_data.entries[cpuid_i++];
|
|
}
|
|
break;
|
|
case 0x7:
|
|
case 0x14: {
|
|
uint32_t times;
|
|
|
|
c->function = i;
|
|
c->index = 0;
|
|
c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
|
|
times = c->eax;
|
|
|
|
for (j = 1; j <= times; ++j) {
|
|
if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
|
|
fprintf(stderr, "cpuid_data is full, no space for "
|
|
"cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
|
|
abort();
|
|
}
|
|
c = &cpuid_data.entries[cpuid_i++];
|
|
c->function = i;
|
|
c->index = j;
|
|
c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
c->function = i;
|
|
c->flags = 0;
|
|
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
|
|
if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
|
|
/*
|
|
* KVM already returns all zeroes if a CPUID entry is missing,
|
|
* so we can omit it and avoid hitting KVM's 80-entry limit.
|
|
*/
|
|
cpuid_i--;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (limit >= 0x0a) {
|
|
uint32_t eax, edx;
|
|
|
|
cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
|
|
|
|
has_architectural_pmu_version = eax & 0xff;
|
|
if (has_architectural_pmu_version > 0) {
|
|
num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
|
|
|
|
/* Shouldn't be more than 32, since that's the number of bits
|
|
* available in EBX to tell us _which_ counters are available.
|
|
* Play it safe.
|
|
*/
|
|
if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
|
|
num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
|
|
}
|
|
|
|
if (has_architectural_pmu_version > 1) {
|
|
num_architectural_pmu_fixed_counters = edx & 0x1f;
|
|
|
|
if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
|
|
num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
|
|
|
|
for (i = 0x80000000; i <= limit; i++) {
|
|
if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
|
|
fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
|
|
abort();
|
|
}
|
|
c = &cpuid_data.entries[cpuid_i++];
|
|
|
|
switch (i) {
|
|
case 0x8000001d:
|
|
/* Query for all AMD cache information leaves */
|
|
for (j = 0; ; j++) {
|
|
c->function = i;
|
|
c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
c->index = j;
|
|
cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
|
|
|
|
if (c->eax == 0) {
|
|
break;
|
|
}
|
|
if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
|
|
fprintf(stderr, "cpuid_data is full, no space for "
|
|
"cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
|
|
abort();
|
|
}
|
|
c = &cpuid_data.entries[cpuid_i++];
|
|
}
|
|
break;
|
|
default:
|
|
c->function = i;
|
|
c->flags = 0;
|
|
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
|
|
if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
|
|
/*
|
|
* KVM already returns all zeroes if a CPUID entry is missing,
|
|
* so we can omit it and avoid hitting KVM's 80-entry limit.
|
|
*/
|
|
cpuid_i--;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Call Centaur's CPUID instructions they are supported. */
|
|
if (env->cpuid_xlevel2 > 0) {
|
|
cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
|
|
|
|
for (i = 0xC0000000; i <= limit; i++) {
|
|
if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
|
|
fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
|
|
abort();
|
|
}
|
|
c = &cpuid_data.entries[cpuid_i++];
|
|
|
|
c->function = i;
|
|
c->flags = 0;
|
|
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
|
|
}
|
|
}
|
|
|
|
cpuid_data.cpuid.nent = cpuid_i;
|
|
|
|
if (((env->cpuid_version >> 8)&0xF) >= 6
|
|
&& (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
|
|
(CPUID_MCE | CPUID_MCA)
|
|
&& kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
|
|
uint64_t mcg_cap, unsupported_caps;
|
|
int banks;
|
|
int ret;
|
|
|
|
ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
|
|
return ret;
|
|
}
|
|
|
|
if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
|
|
error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
|
|
(int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
|
|
if (unsupported_caps) {
|
|
if (unsupported_caps & MCG_LMCE_P) {
|
|
error_report("kvm: LMCE not supported");
|
|
return -ENOTSUP;
|
|
}
|
|
warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
|
|
unsupported_caps);
|
|
}
|
|
|
|
env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
qemu_add_vm_change_state_handler(cpu_update_state, env);
|
|
|
|
c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
|
|
if (c) {
|
|
has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
|
|
!!(c->ecx & CPUID_EXT_SMX);
|
|
}
|
|
|
|
if (env->mcg_cap & MCG_LMCE_P) {
|
|
has_msr_mcg_ext_ctl = has_msr_feature_control = true;
|
|
}
|
|
|
|
if (!env->user_tsc_khz) {
|
|
if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
|
|
invtsc_mig_blocker == NULL) {
|
|
error_setg(&invtsc_mig_blocker,
|
|
"State blocked by non-migratable CPU device"
|
|
" (invtsc flag)");
|
|
r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
|
|
if (local_err) {
|
|
error_report_err(local_err);
|
|
error_free(invtsc_mig_blocker);
|
|
return r;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cpu->vmware_cpuid_freq
|
|
/* Guests depend on 0x40000000 to detect this feature, so only expose
|
|
* it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
|
|
&& cpu->expose_kvm
|
|
&& kvm_base == KVM_CPUID_SIGNATURE
|
|
/* TSC clock must be stable and known for this feature. */
|
|
&& tsc_is_stable_and_known(env)) {
|
|
|
|
c = &cpuid_data.entries[cpuid_i++];
|
|
c->function = KVM_CPUID_SIGNATURE | 0x10;
|
|
c->eax = env->tsc_khz;
|
|
/* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
|
|
* APIC_BUS_CYCLE_NS */
|
|
c->ebx = 1000000;
|
|
c->ecx = c->edx = 0;
|
|
|
|
c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
|
|
c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
|
|
}
|
|
|
|
cpuid_data.cpuid.nent = cpuid_i;
|
|
|
|
cpuid_data.cpuid.padding = 0;
|
|
r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
|
|
if (r) {
|
|
goto fail;
|
|
}
|
|
|
|
if (has_xsave) {
|
|
env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
|
|
memset(env->xsave_buf, 0, sizeof(struct kvm_xsave));
|
|
}
|
|
|
|
max_nested_state_len = kvm_max_nested_state_length();
|
|
if (max_nested_state_len > 0) {
|
|
assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
|
|
|
|
if (cpu_has_vmx(env)) {
|
|
struct kvm_vmx_nested_state_hdr *vmx_hdr;
|
|
|
|
env->nested_state = g_malloc0(max_nested_state_len);
|
|
env->nested_state->size = max_nested_state_len;
|
|
env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
|
|
|
|
vmx_hdr = &env->nested_state->hdr.vmx;
|
|
vmx_hdr->vmxon_pa = -1ull;
|
|
vmx_hdr->vmcs12_pa = -1ull;
|
|
}
|
|
}
|
|
|
|
cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
|
|
|
|
if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
|
|
has_msr_tsc_aux = false;
|
|
}
|
|
|
|
r = hyperv_init_vcpu(cpu);
|
|
if (r) {
|
|
goto fail;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
migrate_del_blocker(invtsc_mig_blocker);
|
|
|
|
return r;
|
|
}
|
|
|
|
int kvm_arch_destroy_vcpu(CPUState *cs)
|
|
{
|
|
X86CPU *cpu = X86_CPU(cs);
|
|
CPUX86State *env = &cpu->env;
|
|
|
|
if (cpu->kvm_msr_buf) {
|
|
g_free(cpu->kvm_msr_buf);
|
|
cpu->kvm_msr_buf = NULL;
|
|
}
|
|
|
|
if (env->nested_state) {
|
|
g_free(env->nested_state);
|
|
env->nested_state = NULL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_reset_vcpu(X86CPU *cpu)
|
|
{
|
|
CPUX86State *env = &cpu->env;
|
|
|
|
env->xcr0 = 1;
|
|
if (kvm_irqchip_in_kernel()) {
|
|
env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
|
|
KVM_MP_STATE_UNINITIALIZED;
|
|
} else {
|
|
env->mp_state = KVM_MP_STATE_RUNNABLE;
|
|
}
|
|
|
|
if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
|
|
int i;
|
|
for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
|
|
env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
|
|
}
|
|
|
|
hyperv_x86_synic_reset(cpu);
|
|
}
|
|
/* enabled by default */
|
|
env->poll_control_msr = 1;
|
|
}
|
|
|
|
void kvm_arch_do_init_vcpu(X86CPU *cpu)
|
|
{
|
|
CPUX86State *env = &cpu->env;
|
|
|
|
/* APs get directly into wait-for-SIPI state. */
|
|
if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
|
|
env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
|
|
}
|
|
}
|
|
|
|
static int kvm_get_supported_feature_msrs(KVMState *s)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (kvm_feature_msrs != NULL) {
|
|
return 0;
|
|
}
|
|
|
|
if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
|
|
return 0;
|
|
}
|
|
|
|
struct kvm_msr_list msr_list;
|
|
|
|
msr_list.nmsrs = 0;
|
|
ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
|
|
if (ret < 0 && ret != -E2BIG) {
|
|
error_report("Fetch KVM feature MSR list failed: %s",
|
|
strerror(-ret));
|
|
return ret;
|
|
}
|
|
|
|
assert(msr_list.nmsrs > 0);
|
|
kvm_feature_msrs = (struct kvm_msr_list *) \
|
|
g_malloc0(sizeof(msr_list) +
|
|
msr_list.nmsrs * sizeof(msr_list.indices[0]));
|
|
|
|
kvm_feature_msrs->nmsrs = msr_list.nmsrs;
|
|
ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
|
|
|
|
if (ret < 0) {
|
|
error_report("Fetch KVM feature MSR list failed: %s",
|
|
strerror(-ret));
|
|
g_free(kvm_feature_msrs);
|
|
kvm_feature_msrs = NULL;
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_get_supported_msrs(KVMState *s)
|
|
{
|
|
int ret = 0;
|
|
struct kvm_msr_list msr_list, *kvm_msr_list;
|
|
|
|
/*
|
|
* Obtain MSR list from KVM. These are the MSRs that we must
|
|
* save/restore.
|
|
*/
|
|
msr_list.nmsrs = 0;
|
|
ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
|
|
if (ret < 0 && ret != -E2BIG) {
|
|
return ret;
|
|
}
|
|
/*
|
|
* Old kernel modules had a bug and could write beyond the provided
|
|
* memory. Allocate at least a safe amount of 1K.
|
|
*/
|
|
kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
|
|
msr_list.nmsrs *
|
|
sizeof(msr_list.indices[0])));
|
|
|
|
kvm_msr_list->nmsrs = msr_list.nmsrs;
|
|
ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
|
|
if (ret >= 0) {
|
|
int i;
|
|
|
|
for (i = 0; i < kvm_msr_list->nmsrs; i++) {
|
|
switch (kvm_msr_list->indices[i]) {
|
|
case MSR_STAR:
|
|
has_msr_star = true;
|
|
break;
|
|
case MSR_VM_HSAVE_PA:
|
|
has_msr_hsave_pa = true;
|
|
break;
|
|
case MSR_TSC_AUX:
|
|
has_msr_tsc_aux = true;
|
|
break;
|
|
case MSR_TSC_ADJUST:
|
|
has_msr_tsc_adjust = true;
|
|
break;
|
|
case MSR_IA32_TSCDEADLINE:
|
|
has_msr_tsc_deadline = true;
|
|
break;
|
|
case MSR_IA32_SMBASE:
|
|
has_msr_smbase = true;
|
|
break;
|
|
case MSR_SMI_COUNT:
|
|
has_msr_smi_count = true;
|
|
break;
|
|
case MSR_IA32_MISC_ENABLE:
|
|
has_msr_misc_enable = true;
|
|
break;
|
|
case MSR_IA32_BNDCFGS:
|
|
has_msr_bndcfgs = true;
|
|
break;
|
|
case MSR_IA32_XSS:
|
|
has_msr_xss = true;
|
|
break;
|
|
case MSR_IA32_UMWAIT_CONTROL:
|
|
has_msr_umwait = true;
|
|
break;
|
|
case HV_X64_MSR_CRASH_CTL:
|
|
has_msr_hv_crash = true;
|
|
break;
|
|
case HV_X64_MSR_RESET:
|
|
has_msr_hv_reset = true;
|
|
break;
|
|
case HV_X64_MSR_VP_INDEX:
|
|
has_msr_hv_vpindex = true;
|
|
break;
|
|
case HV_X64_MSR_VP_RUNTIME:
|
|
has_msr_hv_runtime = true;
|
|
break;
|
|
case HV_X64_MSR_SCONTROL:
|
|
has_msr_hv_synic = true;
|
|
break;
|
|
case HV_X64_MSR_STIMER0_CONFIG:
|
|
has_msr_hv_stimer = true;
|
|
break;
|
|
case HV_X64_MSR_TSC_FREQUENCY:
|
|
has_msr_hv_frequencies = true;
|
|
break;
|
|
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
|
|
has_msr_hv_reenlightenment = true;
|
|
break;
|
|
case MSR_IA32_SPEC_CTRL:
|
|
has_msr_spec_ctrl = true;
|
|
break;
|
|
case MSR_IA32_TSX_CTRL:
|
|
has_msr_tsx_ctrl = true;
|
|
break;
|
|
case MSR_VIRT_SSBD:
|
|
has_msr_virt_ssbd = true;
|
|
break;
|
|
case MSR_IA32_ARCH_CAPABILITIES:
|
|
has_msr_arch_capabs = true;
|
|
break;
|
|
case MSR_IA32_CORE_CAPABILITY:
|
|
has_msr_core_capabs = true;
|
|
break;
|
|
case MSR_IA32_VMX_VMFUNC:
|
|
has_msr_vmx_vmfunc = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
g_free(kvm_msr_list);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static Notifier smram_machine_done;
|
|
static KVMMemoryListener smram_listener;
|
|
static AddressSpace smram_address_space;
|
|
static MemoryRegion smram_as_root;
|
|
static MemoryRegion smram_as_mem;
|
|
|
|
static void register_smram_listener(Notifier *n, void *unused)
|
|
{
|
|
MemoryRegion *smram =
|
|
(MemoryRegion *) object_resolve_path("/machine/smram", NULL);
|
|
|
|
/* Outer container... */
|
|
memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
|
|
memory_region_set_enabled(&smram_as_root, true);
|
|
|
|
/* ... with two regions inside: normal system memory with low
|
|
* priority, and...
|
|
*/
|
|
memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
|
|
get_system_memory(), 0, ~0ull);
|
|
memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
|
|
memory_region_set_enabled(&smram_as_mem, true);
|
|
|
|
if (smram) {
|
|
/* ... SMRAM with higher priority */
|
|
memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
|
|
memory_region_set_enabled(smram, true);
|
|
}
|
|
|
|
address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
|
|
kvm_memory_listener_register(kvm_state, &smram_listener,
|
|
&smram_address_space, 1);
|
|
}
|
|
|
|
int kvm_arch_init(MachineState *ms, KVMState *s)
|
|
{
|
|
uint64_t identity_base = 0xfffbc000;
|
|
uint64_t shadow_mem;
|
|
int ret;
|
|
struct utsname utsname;
|
|
|
|
has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
|
|
has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
|
|
has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
|
|
|
|
hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
|
|
|
|
has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
|
|
if (has_exception_payload) {
|
|
ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
|
|
if (ret < 0) {
|
|
error_report("kvm: Failed to enable exception payload cap: %s",
|
|
strerror(-ret));
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ret = kvm_get_supported_msrs(s);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
kvm_get_supported_feature_msrs(s);
|
|
|
|
uname(&utsname);
|
|
lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
|
|
|
|
/*
|
|
* On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
|
|
* In order to use vm86 mode, an EPT identity map and a TSS are needed.
|
|
* Since these must be part of guest physical memory, we need to allocate
|
|
* them, both by setting their start addresses in the kernel and by
|
|
* creating a corresponding e820 entry. We need 4 pages before the BIOS.
|
|
*
|
|
* Older KVM versions may not support setting the identity map base. In
|
|
* that case we need to stick with the default, i.e. a 256K maximum BIOS
|
|
* size.
|
|
*/
|
|
if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
|
|
/* Allows up to 16M BIOSes. */
|
|
identity_base = 0xfeffc000;
|
|
|
|
ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Set TSS base one page after EPT identity map. */
|
|
ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* Tell fw_cfg to notify the BIOS to reserve the range. */
|
|
ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "e820_add_entry() table is full\n");
|
|
return ret;
|
|
}
|
|
qemu_register_reset(kvm_unpoison_all, NULL);
|
|
|
|
shadow_mem = machine_kvm_shadow_mem(ms);
|
|
if (shadow_mem != -1) {
|
|
shadow_mem /= 4096;
|
|
ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
|
|
object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) &&
|
|
pc_machine_is_smm_enabled(PC_MACHINE(ms))) {
|
|
smram_machine_done.notify = register_smram_listener;
|
|
qemu_add_machine_init_done_notifier(&smram_machine_done);
|
|
}
|
|
|
|
if (enable_cpu_pm) {
|
|
int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
|
|
int ret;
|
|
|
|
/* Work around for kernel header with a typo. TODO: fix header and drop. */
|
|
#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
|
|
#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
|
|
#endif
|
|
if (disable_exits) {
|
|
disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
|
|
KVM_X86_DISABLE_EXITS_HLT |
|
|
KVM_X86_DISABLE_EXITS_PAUSE |
|
|
KVM_X86_DISABLE_EXITS_CSTATE);
|
|
}
|
|
|
|
ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
|
|
disable_exits);
|
|
if (ret < 0) {
|
|
error_report("kvm: guest stopping CPU not supported: %s",
|
|
strerror(-ret));
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
|
|
{
|
|
lhs->selector = rhs->selector;
|
|
lhs->base = rhs->base;
|
|
lhs->limit = rhs->limit;
|
|
lhs->type = 3;
|
|
lhs->present = 1;
|
|
lhs->dpl = 3;
|
|
lhs->db = 0;
|
|
lhs->s = 1;
|
|
lhs->l = 0;
|
|
lhs->g = 0;
|
|
lhs->avl = 0;
|
|
lhs->unusable = 0;
|
|
}
|
|
|
|
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
|
|
{
|
|
unsigned flags = rhs->flags;
|
|
lhs->selector = rhs->selector;
|
|
lhs->base = rhs->base;
|
|
lhs->limit = rhs->limit;
|
|
lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
|
|
lhs->present = (flags & DESC_P_MASK) != 0;
|
|
lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
|
|
lhs->db = (flags >> DESC_B_SHIFT) & 1;
|
|
lhs->s = (flags & DESC_S_MASK) != 0;
|
|
lhs->l = (flags >> DESC_L_SHIFT) & 1;
|
|
lhs->g = (flags & DESC_G_MASK) != 0;
|
|
lhs->avl = (flags & DESC_AVL_MASK) != 0;
|
|
lhs->unusable = !lhs->present;
|
|
lhs->padding = 0;
|
|
}
|
|
|
|
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
|
|
{
|
|
lhs->selector = rhs->selector;
|
|
lhs->base = rhs->base;
|
|
lhs->limit = rhs->limit;
|
|
lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
|
|
((rhs->present && !rhs->unusable) * DESC_P_MASK) |
|
|
(rhs->dpl << DESC_DPL_SHIFT) |
|
|
(rhs->db << DESC_B_SHIFT) |
|
|
(rhs->s * DESC_S_MASK) |
|
|
(rhs->l << DESC_L_SHIFT) |
|
|
(rhs->g * DESC_G_MASK) |
|
|
(rhs->avl * DESC_AVL_MASK);
|
|
}
|
|
|
|
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
|
|
{
|
|
if (set) {
|
|
*kvm_reg = *qemu_reg;
|
|
} else {
|
|
*qemu_reg = *kvm_reg;
|
|
}
|
|
}
|
|
|
|
static int kvm_getput_regs(X86CPU *cpu, int set)
|
|
{
|
|
CPUX86State *env = &cpu->env;
|
|
struct kvm_regs regs;
|
|
int ret = 0;
|
|
|
|
if (!set) {
|
|
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
kvm_getput_reg(®s.rax, &env->regs[R_EAX], set);
|
|
kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set);
|
|
kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set);
|
|
kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set);
|
|
kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set);
|
|
kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set);
|
|
kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set);
|
|
kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set);
|
|
#ifdef TARGET_X86_64
|
|
kvm_getput_reg(®s.r8, &env->regs[8], set);
|
|
kvm_getput_reg(®s.r9, &env->regs[9], set);
|
|
kvm_getput_reg(®s.r10, &env->regs[10], set);
|
|
kvm_getput_reg(®s.r11, &env->regs[11], set);
|
|
kvm_getput_reg(®s.r12, &env->regs[12], set);
|
|
kvm_getput_reg(®s.r13, &env->regs[13], set);
|
|
kvm_getput_reg(®s.r14, &env->regs[14], set);
|
|
kvm_getput_reg(®s.r15, &env->regs[15], set);
|
|
#endif
|
|
|
|
kvm_getput_reg(®s.rflags, &env->eflags, set);
|
|
kvm_getput_reg(®s.rip, &env->eip, set);
|
|
|
|
if (set) {
|
|
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_put_fpu(X86CPU *cpu)
|
|
{
|
|
CPUX86State *env = &cpu->env;
|
|
struct kvm_fpu fpu;
|
|
int i;
|
|
|
|
memset(&fpu, 0, sizeof fpu);
|
|
fpu.fsw = env->fpus & ~(7 << 11);
|
|
fpu.fsw |= (env->fpstt & 7) << 11;
|
|
fpu.fcw = env->fpuc;
|
|
fpu.last_opcode = env->fpop;
|
|
fpu.last_ip = env->fpip;
|
|
fpu.last_dp = env->fpdp;
|
|
for (i = 0; i < 8; ++i) {
|
|
fpu.ftwx |= (!env->fptags[i]) << i;
|
|
}
|
|
memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
|
|
for (i = 0; i < CPU_NB_REGS; i++) {
|
|
stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
|
|
stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
|
|
}
|
|
fpu.mxcsr = env->mxcsr;
|
|
|
|
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
|
|
}
|
|
|
|
#define XSAVE_FCW_FSW 0
|
|
#define XSAVE_FTW_FOP 1
|
|
#define XSAVE_CWD_RIP 2
|
|
#define XSAVE_CWD_RDP 4
|
|
#define XSAVE_MXCSR 6
|
|
#define XSAVE_ST_SPACE 8
|
|
#define XSAVE_XMM_SPACE 40
|
|
#define XSAVE_XSTATE_BV 128
|
|
#define XSAVE_YMMH_SPACE 144
|
|
#define XSAVE_BNDREGS 240
|
|
#define XSAVE_BNDCSR 256
|
|
#define XSAVE_OPMASK 272
|
|
#define XSAVE_ZMM_Hi256 288
|
|
#define XSAVE_Hi16_ZMM 416
|
|
#define XSAVE_PKRU 672
|
|
|
|
#define XSAVE_BYTE_OFFSET(word_offset) \
|
|
((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
|
|
|
|
#define ASSERT_OFFSET(word_offset, field) \
|
|
QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
|
|
offsetof(X86XSaveArea, field))
|
|
|
|
ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
|
|
ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
|
|
ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
|
|
ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
|
|
ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
|
|
ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
|
|
ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
|
|
ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
|
|
ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
|
|
ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
|
|
ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
|
|
ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
|
|
ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
|
|
ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
|
|
ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
|
|
|
|
static int kvm_put_xsave(X86CPU *cpu)
|
|
{
|
|
CPUX86State *env = &cpu->env;
|
|
X86XSaveArea *xsave = env->xsave_buf;
|
|
|
|
if (!has_xsave) {
|
|
return kvm_put_fpu(cpu);
|
|
}
|
|
x86_cpu_xsave_all_areas(cpu, xsave);
|
|
|
|
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
|
|
}
|
|
|
|
static int kvm_put_xcrs(X86CPU *cpu)
|
|
{
|
|
CPUX86State *env = &cpu->env;
|
|
struct kvm_xcrs xcrs = {};
|
|
|
|
if (!has_xcrs) {
|
|
return 0;
|
|
}
|
|
|
|
xcrs.nr_xcrs = 1;
|
|
xcrs.flags = 0;
|
|
xcrs.xcrs[0].xcr = 0;
|
|
xcrs.xcrs[0].value = env->xcr0;
|
|
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
|
|
}
|
|
|
|
static int kvm_put_sregs(X86CPU *cpu)
|
|
{
|
|
CPUX86State *env = &cpu->env;
|
|
struct kvm_sregs sregs;
|
|
|
|
memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
|
|
if (env->interrupt_injected >= 0) {
|
|
sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
|
|
(uint64_t)1 << (env->interrupt_injected % 64);
|
|
}
|
|
|
|
if ((env->eflags & VM_MASK)) {
|
|
set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
|
|
set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
|
|
set_v8086_seg(&sregs.es, &env->segs[R_ES]);
|
|
set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
|
|
set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
|
|
set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
|
|
} else {
|
|
set_seg(&sregs.cs, &env->segs[R_CS]);
|
|
set_seg(&sregs.ds, &env->segs[R_DS]);
|
|
set_seg(&sregs.es, &env->segs[R_ES]);
|
|
set_seg(&sregs.fs, &env->segs[R_FS]);
|
|
set_seg(&sregs.gs, &env->segs[R_GS]);
|
|
set_seg(&sregs.ss, &env->segs[R_SS]);
|
|
}
|
|
|
|
set_seg(&sregs.tr, &env->tr);
|
|
set_seg(&sregs.ldt, &env->ldt);
|
|
|
|
sregs.idt.limit = env->idt.limit;
|
|
sregs.idt.base = env->idt.base;
|
|
memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
|
|
sregs.gdt.limit = env->gdt.limit;
|
|
sregs.gdt.base = env->gdt.base;
|
|
memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
|
|
|
|
sregs.cr0 = env->cr[0];
|
|
sregs.cr2 = env->cr[2];
|
|
sregs.cr3 = env->cr[3];
|
|
sregs.cr4 = env->cr[4];
|
|
|
|
sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
|
|
sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
|
|
|
|
sregs.efer = env->efer;
|
|
|
|
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
|
|
}
|
|
|
|
static void kvm_msr_buf_reset(X86CPU *cpu)
|
|
{
|
|
memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
|
|
}
|
|
|
|
static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
|
|
{
|
|
struct kvm_msrs *msrs = cpu->kvm_msr_buf;
|
|
void *limit = ((void *)msrs) + MSR_BUF_SIZE;
|
|
struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
|
|
|
|
assert((void *)(entry + 1) <= limit);
|
|
|
|
entry->index = index;
|
|
entry->reserved = 0;
|
|
entry->data = value;
|
|
msrs->nmsrs++;
|
|
}
|
|
|
|
static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
|
|
{
|
|
kvm_msr_buf_reset(cpu);
|
|
kvm_msr_entry_add(cpu, index, value);
|
|
|
|
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
|
|
}
|
|
|
|
void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
|
|
{
|
|
int ret;
|
|
|
|
ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
|
|
assert(ret == 1);
|
|
}
|
|
|
|
static int kvm_put_tscdeadline_msr(X86CPU *cpu)
|
|
{
|
|
CPUX86State *env = &cpu->env;
|
|
int ret;
|
|
|
|
if (!has_msr_tsc_deadline) {
|
|
return 0;
|
|
}
|
|
|
|
ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
assert(ret == 1);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Provide a separate write service for the feature control MSR in order to
|
|
* kick the VCPU out of VMXON or even guest mode on reset. This has to be done
|
|
* before writing any other state because forcibly leaving nested mode
|
|
* invalidates the VCPU state.
|
|
*/
|
|
static int kvm_put_msr_feature_control(X86CPU *cpu)
|
|
{
|
|
int ret;
|
|
|
|
if (!has_msr_feature_control) {
|
|
return 0;
|
|
}
|
|
|
|
ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
|
|
cpu->env.msr_ia32_feature_control);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
assert(ret == 1);
|
|
return 0;
|
|
}
|
|
|
|
static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
|
|
{
|
|
uint32_t default1, can_be_one, can_be_zero;
|
|
uint32_t must_be_one;
|
|
|
|
switch (index) {
|
|
case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
|
|
default1 = 0x00000016;
|
|
break;
|
|
case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
|
|
default1 = 0x0401e172;
|
|
break;
|
|
case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
|
|
default1 = 0x000011ff;
|
|
break;
|
|
case MSR_IA32_VMX_TRUE_EXIT_CTLS:
|
|
default1 = 0x00036dff;
|
|
break;
|
|
case MSR_IA32_VMX_PROCBASED_CTLS2:
|
|
default1 = 0;
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
|
|
/* If a feature bit is set, the control can be either set or clear.
|
|
* Otherwise the value is limited to either 0 or 1 by default1.
|
|
*/
|
|
can_be_one = features | default1;
|
|
can_be_zero = features | ~default1;
|
|
must_be_one = ~can_be_zero;
|
|
|
|
/*
|
|
* Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
|
|
* Bit 32:63 -> 1 if the control bit can be one.
|
|
*/
|
|
return must_be_one | (((uint64_t)can_be_one) << 32);
|
|
}
|
|
|
|
#define VMCS12_MAX_FIELD_INDEX (0x17)
|
|
|
|
static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
|
|
{
|
|
uint64_t kvm_vmx_basic =
|
|
kvm_arch_get_supported_msr_feature(kvm_state,
|
|
MSR_IA32_VMX_BASIC);
|
|
|
|
if (!kvm_vmx_basic) {
|
|
/* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
|
|
* then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
uint64_t kvm_vmx_misc =
|
|
kvm_arch_get_supported_msr_feature(kvm_state,
|
|
MSR_IA32_VMX_MISC);
|
|
uint64_t kvm_vmx_ept_vpid =
|
|
kvm_arch_get_supported_msr_feature(kvm_state,
|
|
MSR_IA32_VMX_EPT_VPID_CAP);
|
|
|
|
/*
|
|
* If the guest is 64-bit, a value of 1 is allowed for the host address
|
|
* space size vmexit control.
|
|
*/
|
|
uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
|
|
? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
|
|
|
|
/*
|
|
* Bits 0-30, 32-44 and 50-53 come from the host. KVM should
|
|
* not change them for backwards compatibility.
|
|
*/
|
|
uint64_t fixed_vmx_basic = kvm_vmx_basic &
|
|
(MSR_VMX_BASIC_VMCS_REVISION_MASK |
|
|
MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
|
|
MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
|
|
|
|
/*
|
|
* Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
|
|
* change in the future but are always zero for now, clear them to be
|
|
* future proof. Bits 32-63 in theory could change, though KVM does
|
|
* not support dual-monitor treatment and probably never will; mask
|
|
* them out as well.
|
|
*/
|
|
uint64_t fixed_vmx_misc = kvm_vmx_misc &
|
|
(MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
|
|
MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
|
|
|
|
/*
|
|
* EPT memory types should not change either, so we do not bother
|
|
* adding features for them.
|
|
*/
|
|
uint64_t fixed_vmx_ept_mask =
|
|
(f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
|
|
MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
|
|
uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
|
|
|
|
kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
|
|
make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
|
|
f[FEAT_VMX_PROCBASED_CTLS]));
|
|
kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
|
|
make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
|
|
f[FEAT_VMX_PINBASED_CTLS]));
|
|
kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
|
|
make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
|
|
f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
|
|
kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
|
|
make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
|
|
f[FEAT_VMX_ENTRY_CTLS]));
|
|
kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
|
|
make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
|
|
f[FEAT_VMX_SECONDARY_CTLS]));
|
|
kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
|
|
f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
|
|
kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
|
|
f[FEAT_VMX_BASIC] | fixed_vmx_basic);
|
|
kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
|
|
f[FEAT_VMX_MISC] | fixed_vmx_misc);
|
|
if (has_msr_vmx_vmfunc) {
|
|
kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
|
|
}
|
|
|
|
/*
|
|
* Just to be safe, write these with constant values. The CRn_FIXED1
|
|
* MSRs are generated by KVM based on the vCPU's CPUID.
|
|
*/
|
|
kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
|
|
CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
|
|
kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
|
|
CR4_VMXE_MASK);
|
|
kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM,
|
|
VMCS12_MAX_FIELD_INDEX << 1);
|
|
}
|
|
|
|
static int kvm_put_msrs(X86CPU *cpu, int level)
|
|
{
|
|
CPUX86State *env = &cpu->env;
|
|
int i;
|
|
int ret;
|
|
|
|
kvm_msr_buf_reset(cpu);
|
|
|
|
kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
|
|
kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
|
|
kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
|
|
kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
|
|
if (has_msr_star) {
|
|
kvm_msr_entry_add(cpu, MSR_STAR, env->star);
|
|
}
|
|
if (has_msr_hsave_pa) {
|
|
kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
|
|
}
|
|
if (has_msr_tsc_aux) {
|
|
kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
|
|
}
|
|
if (has_msr_tsc_adjust) {
|
|
kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
|
|
}
|
|
if (has_msr_misc_enable) {
|
|
kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
|
|
env->msr_ia32_misc_enable);
|
|
}
|
|
if (has_msr_smbase) {
|
|
kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
|
|
}
|
|
if (has_msr_smi_count) {
|
|
kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
|
|
}
|
|
if (has_msr_bndcfgs) {
|
|
kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
|
|
}
|
|
if (has_msr_xss) {
|
|
kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
|
|
}
|
|
if (has_msr_umwait) {
|
|
kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
|
|
}
|
|
if (has_msr_spec_ctrl) {
|
|
kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
|
|
}
|
|
if (has_msr_tsx_ctrl) {
|
|
kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
|
|
}
|
|
if (has_msr_virt_ssbd) {
|
|
kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
|
|
}
|
|
|
|
#ifdef TARGET_X86_64
|
|
if (lm_capable_kernel) {
|
|
kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
|
|
kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
|
|
kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
|
|
kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
|
|
}
|
|
#endif
|
|
|
|
/* If host supports feature MSR, write down. */
|
|
if (has_msr_arch_capabs) {
|
|
kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
|
|
env->features[FEAT_ARCH_CAPABILITIES]);
|
|
}
|
|
|
|
if (has_msr_core_capabs) {
|
|
kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
|
|
env->features[FEAT_CORE_CAPABILITY]);
|
|
}
|
|
|
|
/*
|
|
* The following MSRs have side effects on the guest or are too heavy
|
|
* for normal writeback. Limit them to reset or full state updates.
|
|
*/
|
|
if (level >= KVM_PUT_RESET_STATE) {
|
|
kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
|
|
kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
|
|
kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
|
|
if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
|
|
kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
|
|
}
|
|
if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
|
|
kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
|
|
}
|
|
if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
|
|
kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
|
|
}
|
|
|
|
if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
|
|
kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
|
|
}
|
|
|
|
if (has_architectural_pmu_version > 0) {
|
|
if (has_architectural_pmu_version > 1) {
|
|
/* Stop the counter. */
|
|
kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
|
|
kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
|
|
}
|
|
|
|
/* Set the counter values. */
|
|
for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
|
|
kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
|
|
env->msr_fixed_counters[i]);
|
|
}
|
|
for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
|
|
kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
|
|
env->msr_gp_counters[i]);
|
|
kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
|
|
env->msr_gp_evtsel[i]);
|
|
}
|
|
if (has_architectural_pmu_version > 1) {
|
|
kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
|
|
env->msr_global_status);
|
|
kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
|
|
env->msr_global_ovf_ctrl);
|
|
|
|
/* Now start the PMU. */
|
|
kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
|
|
env->msr_fixed_ctr_ctrl);
|
|
kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
|
|
env->msr_global_ctrl);
|
|
}
|
|
}
|
|
/*
|
|
* Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
|
|
* only sync them to KVM on the first cpu
|
|
*/
|
|
if (current_cpu == first_cpu) {
|
|
if (has_msr_hv_hypercall) {
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
|
|
env->msr_hv_guest_os_id);
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
|
|
env->msr_hv_hypercall);
|
|
}
|
|
if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
|
|
env->msr_hv_tsc);
|
|
}
|
|
if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
|
|
env->msr_hv_reenlightenment_control);
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
|
|
env->msr_hv_tsc_emulation_control);
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
|
|
env->msr_hv_tsc_emulation_status);
|
|
}
|
|
}
|
|
if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
|
|
env->msr_hv_vapic);
|
|
}
|
|
if (has_msr_hv_crash) {
|
|
int j;
|
|
|
|
for (j = 0; j < HV_CRASH_PARAMS; j++)
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
|
|
env->msr_hv_crash_params[j]);
|
|
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
|
|
}
|
|
if (has_msr_hv_runtime) {
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
|
|
}
|
|
if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
|
|
&& hv_vpindex_settable) {
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
|
|
hyperv_vp_index(CPU(cpu)));
|
|
}
|
|
if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
|
|
int j;
|
|
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
|
|
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
|
|
env->msr_hv_synic_control);
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
|
|
env->msr_hv_synic_evt_page);
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
|
|
env->msr_hv_synic_msg_page);
|
|
|
|
for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
|
|
env->msr_hv_synic_sint[j]);
|
|
}
|
|
}
|
|
if (has_msr_hv_stimer) {
|
|
int j;
|
|
|
|
for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
|
|
env->msr_hv_stimer_config[j]);
|
|
}
|
|
|
|
for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
|
|
env->msr_hv_stimer_count[j]);
|
|
}
|
|
}
|
|
if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
|
|
uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
|
|
|
|
kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
|
|
for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
|
|
/* The CPU GPs if we write to a bit above the physical limit of
|
|
* the host CPU (and KVM emulates that)
|
|
*/
|
|
uint64_t mask = env->mtrr_var[i].mask;
|
|
mask &= phys_mask;
|
|
|
|
kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
|
|
env->mtrr_var[i].base);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
|
|
}
|
|
}
|
|
if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
|
|
int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
|
|
0x14, 1, R_EAX) & 0x7;
|
|
|
|
kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
|
|
env->msr_rtit_ctrl);
|
|
kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
|
|
env->msr_rtit_status);
|
|
kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
|
|
env->msr_rtit_output_base);
|
|
kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
|
|
env->msr_rtit_output_mask);
|
|
kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
|
|
env->msr_rtit_cr3_match);
|
|
for (i = 0; i < addr_num; i++) {
|
|
kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
|
|
env->msr_rtit_addrs[i]);
|
|
}
|
|
}
|
|
|
|
/* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
|
|
* kvm_put_msr_feature_control. */
|
|
|
|
/*
|
|
* Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
|
|
* all kernels with MSR features should have them.
|
|
*/
|
|
if (kvm_feature_msrs && cpu_has_vmx(env)) {
|
|
kvm_msr_entry_add_vmx(cpu, env->features);
|
|
}
|
|
}
|
|
|
|
if (env->mcg_cap) {
|
|
int i;
|
|
|
|
kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
|
|
kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
|
|
if (has_msr_mcg_ext_ctl) {
|
|
kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
|
|
}
|
|
for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
|
|
kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
|
|
}
|
|
}
|
|
|
|
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
if (ret < cpu->kvm_msr_buf->nmsrs) {
|
|
struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
|
|
error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
|
|
(uint32_t)e->index, (uint64_t)e->data);
|
|
}
|
|
|
|
assert(ret == cpu->kvm_msr_buf->nmsrs);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int kvm_get_fpu(X86CPU *cpu)
|
|
{
|
|
CPUX86State *env = &cpu->env;
|
|
struct kvm_fpu fpu;
|
|
int i, ret;
|
|
|
|
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
env->fpstt = (fpu.fsw >> 11) & 7;
|
|
env->fpus = fpu.fsw;
|
|
env->fpuc = fpu.fcw;
|
|
env->fpop = fpu.last_opcode;
|
|
env->fpip = fpu.last_ip;
|
|
env->fpdp = fpu.last_dp;
|
|
for (i = 0; i < 8; ++i) {
|
|
env->fptags[i] = !((fpu.ftwx >> i) & 1);
|
|
}
|
|
memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
|
|
for (i = 0; i < CPU_NB_REGS; i++) {
|
|
env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
|
|
env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
|
|
}
|
|
env->mxcsr = fpu.mxcsr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_get_xsave(X86CPU *cpu)
|
|
{
|
|
CPUX86State *env = &cpu->env;
|
|
X86XSaveArea *xsave = env->xsave_buf;
|
|
int ret;
|
|
|
|
if (!has_xsave) {
|
|
return kvm_get_fpu(cpu);
|
|
}
|
|
|
|
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
x86_cpu_xrstor_all_areas(cpu, xsave);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_get_xcrs(X86CPU *cpu)
|
|
{
|
|
CPUX86State *env = &cpu->env;
|
|
int i, ret;
|
|
struct kvm_xcrs xcrs;
|
|
|
|
if (!has_xcrs) {
|
|
return 0;
|
|
}
|
|
|
|
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
for (i = 0; i < xcrs.nr_xcrs; i++) {
|
|
/* Only support xcr0 now */
|
|
if (xcrs.xcrs[i].xcr == 0) {
|
|
env->xcr0 = xcrs.xcrs[i].value;
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_get_sregs(X86CPU *cpu)
|
|
{
|
|
CPUX86State *env = &cpu->env;
|
|
struct kvm_sregs sregs;
|
|
int bit, i, ret;
|
|
|
|
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* There can only be one pending IRQ set in the bitmap at a time, so try
|
|
to find it and save its number instead (-1 for none). */
|
|
env->interrupt_injected = -1;
|
|
for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
|
|
if (sregs.interrupt_bitmap[i]) {
|
|
bit = ctz64(sregs.interrupt_bitmap[i]);
|
|
env->interrupt_injected = i * 64 + bit;
|
|
break;
|
|
}
|
|
}
|
|
|
|
get_seg(&env->segs[R_CS], &sregs.cs);
|
|
get_seg(&env->segs[R_DS], &sregs.ds);
|
|
get_seg(&env->segs[R_ES], &sregs.es);
|
|
get_seg(&env->segs[R_FS], &sregs.fs);
|
|
get_seg(&env->segs[R_GS], &sregs.gs);
|
|
get_seg(&env->segs[R_SS], &sregs.ss);
|
|
|
|
get_seg(&env->tr, &sregs.tr);
|
|
get_seg(&env->ldt, &sregs.ldt);
|
|
|
|
env->idt.limit = sregs.idt.limit;
|
|
env->idt.base = sregs.idt.base;
|
|
env->gdt.limit = sregs.gdt.limit;
|
|
env->gdt.base = sregs.gdt.base;
|
|
|
|
env->cr[0] = sregs.cr0;
|
|
env->cr[2] = sregs.cr2;
|
|
env->cr[3] = sregs.cr3;
|
|
env->cr[4] = sregs.cr4;
|
|
|
|
env->efer = sregs.efer;
|
|
|
|
/* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
|
|
x86_update_hflags(env);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_get_msrs(X86CPU *cpu)
|
|
{
|
|
CPUX86State *env = &cpu->env;
|
|
struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
|
|
int ret, i;
|
|
uint64_t mtrr_top_bits;
|
|
|
|
kvm_msr_buf_reset(cpu);
|
|
|
|
kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
|
|
kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
|
|
kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
|
|
kvm_msr_entry_add(cpu, MSR_PAT, 0);
|
|
if (has_msr_star) {
|
|
kvm_msr_entry_add(cpu, MSR_STAR, 0);
|
|
}
|
|
if (has_msr_hsave_pa) {
|
|
kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
|
|
}
|
|
if (has_msr_tsc_aux) {
|
|
kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
|
|
}
|
|
if (has_msr_tsc_adjust) {
|
|
kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
|
|
}
|
|
if (has_msr_tsc_deadline) {
|
|
kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
|
|
}
|
|
if (has_msr_misc_enable) {
|
|
kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
|
|
}
|
|
if (has_msr_smbase) {
|
|
kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
|
|
}
|
|
if (has_msr_smi_count) {
|
|
kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
|
|
}
|
|
if (has_msr_feature_control) {
|
|
kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
|
|
}
|
|
if (has_msr_bndcfgs) {
|
|
kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
|
|
}
|
|
if (has_msr_xss) {
|
|
kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
|
|
}
|
|
if (has_msr_umwait) {
|
|
kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
|
|
}
|
|
if (has_msr_spec_ctrl) {
|
|
kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
|
|
}
|
|
if (has_msr_tsx_ctrl) {
|
|
kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
|
|
}
|
|
if (has_msr_virt_ssbd) {
|
|
kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
|
|
}
|
|
if (!env->tsc_valid) {
|
|
kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
|
|
env->tsc_valid = !runstate_is_running();
|
|
}
|
|
|
|
#ifdef TARGET_X86_64
|
|
if (lm_capable_kernel) {
|
|
kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
|
|
kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
|
|
kvm_msr_entry_add(cpu, MSR_FMASK, 0);
|
|
kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
|
|
}
|
|
#endif
|
|
kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
|
|
kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
|
|
if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
|
|
kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
|
|
}
|
|
if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
|
|
kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
|
|
}
|
|
if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
|
|
kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
|
|
}
|
|
if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
|
|
kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
|
|
}
|
|
if (has_architectural_pmu_version > 0) {
|
|
if (has_architectural_pmu_version > 1) {
|
|
kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
|
|
kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
|
|
kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
|
|
kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
|
|
}
|
|
for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
|
|
kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
|
|
}
|
|
for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
|
|
kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
|
|
kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
|
|
}
|
|
}
|
|
|
|
if (env->mcg_cap) {
|
|
kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
|
|
kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
|
|
if (has_msr_mcg_ext_ctl) {
|
|
kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
|
|
}
|
|
for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
|
|
kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
|
|
}
|
|
}
|
|
|
|
if (has_msr_hv_hypercall) {
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
|
|
}
|
|
if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
|
|
}
|
|
if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
|
|
}
|
|
if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
|
|
}
|
|
if (has_msr_hv_crash) {
|
|
int j;
|
|
|
|
for (j = 0; j < HV_CRASH_PARAMS; j++) {
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
|
|
}
|
|
}
|
|
if (has_msr_hv_runtime) {
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
|
|
}
|
|
if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
|
|
uint32_t msr;
|
|
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
|
|
kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
|
|
for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
|
|
kvm_msr_entry_add(cpu, msr, 0);
|
|
}
|
|
}
|
|
if (has_msr_hv_stimer) {
|
|
uint32_t msr;
|
|
|
|
for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
|
|
msr++) {
|
|
kvm_msr_entry_add(cpu, msr, 0);
|
|
}
|
|
}
|
|
if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
|
|
kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
|
|
for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
|
|
kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
|
|
kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
|
|
}
|
|
}
|
|
|
|
if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
|
|
int addr_num =
|
|
kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
|
|
|
|
kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
|
|
kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
|
|
kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
|
|
kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
|
|
kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
|
|
for (i = 0; i < addr_num; i++) {
|
|
kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
|
|
}
|
|
}
|
|
|
|
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
if (ret < cpu->kvm_msr_buf->nmsrs) {
|
|
struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
|
|
error_report("error: failed to get MSR 0x%" PRIx32,
|
|
(uint32_t)e->index);
|
|
}
|
|
|
|
assert(ret == cpu->kvm_msr_buf->nmsrs);
|
|
/*
|
|
* MTRR masks: Each mask consists of 5 parts
|
|
* a 10..0: must be zero
|
|
* b 11 : valid bit
|
|
* c n-1.12: actual mask bits
|
|
* d 51..n: reserved must be zero
|
|
* e 63.52: reserved must be zero
|
|
*
|
|
* 'n' is the number of physical bits supported by the CPU and is
|
|
* apparently always <= 52. We know our 'n' but don't know what
|
|
* the destinations 'n' is; it might be smaller, in which case
|
|
* it masks (c) on loading. It might be larger, in which case
|
|
* we fill 'd' so that d..c is consistent irrespetive of the 'n'
|
|
* we're migrating to.
|
|
*/
|
|
|
|
if (cpu->fill_mtrr_mask) {
|
|
QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
|
|
assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
|
|
mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
|
|
} else {
|
|
mtrr_top_bits = 0;
|
|
}
|
|
|
|
for (i = 0; i < ret; i++) {
|
|
uint32_t index = msrs[i].index;
|
|
switch (index) {
|
|
case MSR_IA32_SYSENTER_CS:
|
|
env->sysenter_cs = msrs[i].data;
|
|
break;
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
env->sysenter_esp = msrs[i].data;
|
|
break;
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
env->sysenter_eip = msrs[i].data;
|
|
break;
|
|
case MSR_PAT:
|
|
env->pat = msrs[i].data;
|
|
break;
|
|
case MSR_STAR:
|
|
env->star = msrs[i].data;
|
|
break;
|
|
#ifdef TARGET_X86_64
|
|
case MSR_CSTAR:
|
|
env->cstar = msrs[i].data;
|
|
break;
|
|
case MSR_KERNELGSBASE:
|
|
env->kernelgsbase = msrs[i].data;
|
|
break;
|
|
case MSR_FMASK:
|
|
env->fmask = msrs[i].data;
|
|
break;
|
|
case MSR_LSTAR:
|
|
env->lstar = msrs[i].data;
|
|
break;
|
|
#endif
|
|
case MSR_IA32_TSC:
|
|
env->tsc = msrs[i].data;
|
|
break;
|
|
case MSR_TSC_AUX:
|
|
env->tsc_aux = msrs[i].data;
|
|
break;
|
|
case MSR_TSC_ADJUST:
|
|
env->tsc_adjust = msrs[i].data;
|
|
break;
|
|
case MSR_IA32_TSCDEADLINE:
|
|
env->tsc_deadline = msrs[i].data;
|
|
break;
|
|
case MSR_VM_HSAVE_PA:
|
|
env->vm_hsave = msrs[i].data;
|
|
break;
|
|
case MSR_KVM_SYSTEM_TIME:
|
|
env->system_time_msr = msrs[i].data;
|
|
break;
|
|
case MSR_KVM_WALL_CLOCK:
|
|
env->wall_clock_msr = msrs[i].data;
|
|
break;
|
|
case MSR_MCG_STATUS:
|
|
env->mcg_status = msrs[i].data;
|
|
break;
|
|
case MSR_MCG_CTL:
|
|
env->mcg_ctl = msrs[i].data;
|
|
break;
|
|
case MSR_MCG_EXT_CTL:
|
|
env->mcg_ext_ctl = msrs[i].data;
|
|
break;
|
|
case MSR_IA32_MISC_ENABLE:
|
|
env->msr_ia32_misc_enable = msrs[i].data;
|
|
break;
|
|
case MSR_IA32_SMBASE:
|
|
env->smbase = msrs[i].data;
|
|
break;
|
|
case MSR_SMI_COUNT:
|
|
env->msr_smi_count = msrs[i].data;
|
|
break;
|
|
case MSR_IA32_FEATURE_CONTROL:
|
|
env->msr_ia32_feature_control = msrs[i].data;
|
|
break;
|
|
case MSR_IA32_BNDCFGS:
|
|
env->msr_bndcfgs = msrs[i].data;
|
|
break;
|
|
case MSR_IA32_XSS:
|
|
env->xss = msrs[i].data;
|
|
break;
|
|
case MSR_IA32_UMWAIT_CONTROL:
|
|
env->umwait = msrs[i].data;
|
|
break;
|
|
default:
|
|
if (msrs[i].index >= MSR_MC0_CTL &&
|
|
msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
|
|
env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
|
|
}
|
|
break;
|
|
case MSR_KVM_ASYNC_PF_EN:
|
|
env->async_pf_en_msr = msrs[i].data;
|
|
break;
|
|
case MSR_KVM_PV_EOI_EN:
|
|
env->pv_eoi_en_msr = msrs[i].data;
|
|
break;
|
|
case MSR_KVM_STEAL_TIME:
|
|
env->steal_time_msr = msrs[i].data;
|
|
break;
|
|
case MSR_KVM_POLL_CONTROL: {
|
|
env->poll_control_msr = msrs[i].data;
|
|
break;
|
|
}
|
|
case MSR_CORE_PERF_FIXED_CTR_CTRL:
|
|
env->msr_fixed_ctr_ctrl = msrs[i].data;
|
|
break;
|
|
case MSR_CORE_PERF_GLOBAL_CTRL:
|
|
env->msr_global_ctrl = msrs[i].data;
|
|
break;
|
|
case MSR_CORE_PERF_GLOBAL_STATUS:
|
|
env->msr_global_status = msrs[i].data;
|
|
break;
|
|
case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
|
|
env->msr_global_ovf_ctrl = msrs[i].data;
|
|
break;
|
|
case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
|
|
env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
|
|
break;
|
|
case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
|
|
env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
|
|
break;
|
|
case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
|
|
env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
|
|
break;
|
|
case HV_X64_MSR_HYPERCALL:
|
|
env->msr_hv_hypercall = msrs[i].data;
|
|
break;
|
|
case HV_X64_MSR_GUEST_OS_ID:
|
|
env->msr_hv_guest_os_id = msrs[i].data;
|
|
break;
|
|
case HV_X64_MSR_APIC_ASSIST_PAGE:
|
|
env->msr_hv_vapic = msrs[i].data;
|
|
break;
|
|
case HV_X64_MSR_REFERENCE_TSC:
|
|
env->msr_hv_tsc = msrs[i].data;
|
|
break;
|
|
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
|
|
env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
|
|
break;
|
|
case HV_X64_MSR_VP_RUNTIME:
|
|
env->msr_hv_runtime = msrs[i].data;
|
|
break;
|
|
case HV_X64_MSR_SCONTROL:
|
|
env->msr_hv_synic_control = msrs[i].data;
|
|
break;
|
|
case HV_X64_MSR_SIEFP:
|
|
env->msr_hv_synic_evt_page = msrs[i].data;
|
|
break;
|
|
case HV_X64_MSR_SIMP:
|
|
env->msr_hv_synic_msg_page = msrs[i].data;
|
|
break;
|
|
case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
|
|
env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
|
|
break;
|
|
case HV_X64_MSR_STIMER0_CONFIG:
|
|
case HV_X64_MSR_STIMER1_CONFIG:
|
|
case HV_X64_MSR_STIMER2_CONFIG:
|
|
case HV_X64_MSR_STIMER3_CONFIG:
|
|
env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
|
|
msrs[i].data;
|
|
break;
|
|
case HV_X64_MSR_STIMER0_COUNT:
|
|
case HV_X64_MSR_STIMER1_COUNT:
|
|
case HV_X64_MSR_STIMER2_COUNT:
|
|
case HV_X64_MSR_STIMER3_COUNT:
|
|
env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
|
|
msrs[i].data;
|
|
break;
|
|
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
|
|
env->msr_hv_reenlightenment_control = msrs[i].data;
|
|
break;
|
|
case HV_X64_MSR_TSC_EMULATION_CONTROL:
|
|
env->msr_hv_tsc_emulation_control = msrs[i].data;
|
|
break;
|
|
case HV_X64_MSR_TSC_EMULATION_STATUS:
|
|
env->msr_hv_tsc_emulation_status = msrs[i].data;
|
|
break;
|
|
case MSR_MTRRdefType:
|
|
env->mtrr_deftype = msrs[i].data;
|
|
break;
|
|
case MSR_MTRRfix64K_00000:
|
|
env->mtrr_fixed[0] = msrs[i].data;
|
|
break;
|
|
case MSR_MTRRfix16K_80000:
|
|
env->mtrr_fixed[1] = msrs[i].data;
|
|
break;
|
|
case MSR_MTRRfix16K_A0000:
|
|
env->mtrr_fixed[2] = msrs[i].data;
|
|
break;
|
|
case MSR_MTRRfix4K_C0000:
|
|
env->mtrr_fixed[3] = msrs[i].data;
|
|
break;
|
|
case MSR_MTRRfix4K_C8000:
|
|
env->mtrr_fixed[4] = msrs[i].data;
|
|
break;
|
|
case MSR_MTRRfix4K_D0000:
|
|
env->mtrr_fixed[5] = msrs[i].data;
|
|
break;
|
|
case MSR_MTRRfix4K_D8000:
|
|
env->mtrr_fixed[6] = msrs[i].data;
|
|
break;
|
|
case MSR_MTRRfix4K_E0000:
|
|
env->mtrr_fixed[7] = msrs[i].data;
|
|
break;
|
|
case MSR_MTRRfix4K_E8000:
|
|
env->mtrr_fixed[8] = msrs[i].data;
|
|
break;
|
|
case MSR_MTRRfix4K_F0000:
|
|
env->mtrr_fixed[9] = msrs[i].data;
|
|
break;
|
|
case MSR_MTRRfix4K_F8000:
|
|
env->mtrr_fixed[10] = msrs[i].data;
|
|
break;
|
|
case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
|
|
if (index & 1) {
|
|
env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
|
|
mtrr_top_bits;
|
|
} else {
|
|
env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
|
|
}
|
|
break;
|
|
case MSR_IA32_SPEC_CTRL:
|
|
env->spec_ctrl = msrs[i].data;
|
|
break;
|
|
case MSR_IA32_TSX_CTRL:
|
|
env->tsx_ctrl = msrs[i].data;
|
|
break;
|
|
case MSR_VIRT_SSBD:
|
|
env->virt_ssbd = msrs[i].data;
|
|
break;
|
|
case MSR_IA32_RTIT_CTL:
|
|
env->msr_rtit_ctrl = msrs[i].data;
|
|
break;
|
|
case MSR_IA32_RTIT_STATUS:
|
|
env->msr_rtit_status = msrs[i].data;
|
|
break;
|
|
case MSR_IA32_RTIT_OUTPUT_BASE:
|
|
env->msr_rtit_output_base = msrs[i].data;
|
|
break;
|
|
case MSR_IA32_RTIT_OUTPUT_MASK:
|
|
env->msr_rtit_output_mask = msrs[i].data;
|
|
break;
|
|
case MSR_IA32_RTIT_CR3_MATCH:
|
|
env->msr_rtit_cr3_match = msrs[i].data;
|
|
break;
|
|
case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
|
|
env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_put_mp_state(X86CPU *cpu)
|
|
{
|
|
struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
|
|
|
|
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
|
|
}
|
|
|
|
static int kvm_get_mp_state(X86CPU *cpu)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
CPUX86State *env = &cpu->env;
|
|
struct kvm_mp_state mp_state;
|
|
int ret;
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
env->mp_state = mp_state.mp_state;
|
|
if (kvm_irqchip_in_kernel()) {
|
|
cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_get_apic(X86CPU *cpu)
|
|
{
|
|
DeviceState *apic = cpu->apic_state;
|
|
struct kvm_lapic_state kapic;
|
|
int ret;
|
|
|
|
if (apic && kvm_irqchip_in_kernel()) {
|
|
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
kvm_get_apic_state(apic, &kapic);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_put_vcpu_events(X86CPU *cpu, int level)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
CPUX86State *env = &cpu->env;
|
|
struct kvm_vcpu_events events = {};
|
|
|
|
if (!kvm_has_vcpu_events()) {
|
|
return 0;
|
|
}
|
|
|
|
events.flags = 0;
|
|
|
|
if (has_exception_payload) {
|
|
events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
|
|
events.exception.pending = env->exception_pending;
|
|
events.exception_has_payload = env->exception_has_payload;
|
|
events.exception_payload = env->exception_payload;
|
|
}
|
|
events.exception.nr = env->exception_nr;
|
|
events.exception.injected = env->exception_injected;
|
|
events.exception.has_error_code = env->has_error_code;
|
|
events.exception.error_code = env->error_code;
|
|
|
|
events.interrupt.injected = (env->interrupt_injected >= 0);
|
|
events.interrupt.nr = env->interrupt_injected;
|
|
events.interrupt.soft = env->soft_interrupt;
|
|
|
|
events.nmi.injected = env->nmi_injected;
|
|
events.nmi.pending = env->nmi_pending;
|
|
events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
|
|
|
|
events.sipi_vector = env->sipi_vector;
|
|
|
|
if (has_msr_smbase) {
|
|
events.smi.smm = !!(env->hflags & HF_SMM_MASK);
|
|
events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
|
|
if (kvm_irqchip_in_kernel()) {
|
|
/* As soon as these are moved to the kernel, remove them
|
|
* from cs->interrupt_request.
|
|
*/
|
|
events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
|
|
events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
|
|
cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
|
|
} else {
|
|
/* Keep these in cs->interrupt_request. */
|
|
events.smi.pending = 0;
|
|
events.smi.latched_init = 0;
|
|
}
|
|
/* Stop SMI delivery on old machine types to avoid a reboot
|
|
* on an inward migration of an old VM.
|
|
*/
|
|
if (!cpu->kvm_no_smi_migration) {
|
|
events.flags |= KVM_VCPUEVENT_VALID_SMM;
|
|
}
|
|
}
|
|
|
|
if (level >= KVM_PUT_RESET_STATE) {
|
|
events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
|
|
if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
|
|
events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
|
|
}
|
|
}
|
|
|
|
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
|
|
}
|
|
|
|
static int kvm_get_vcpu_events(X86CPU *cpu)
|
|
{
|
|
CPUX86State *env = &cpu->env;
|
|
struct kvm_vcpu_events events;
|
|
int ret;
|
|
|
|
if (!kvm_has_vcpu_events()) {
|
|
return 0;
|
|
}
|
|
|
|
memset(&events, 0, sizeof(events));
|
|
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
|
|
env->exception_pending = events.exception.pending;
|
|
env->exception_has_payload = events.exception_has_payload;
|
|
env->exception_payload = events.exception_payload;
|
|
} else {
|
|
env->exception_pending = 0;
|
|
env->exception_has_payload = false;
|
|
}
|
|
env->exception_injected = events.exception.injected;
|
|
env->exception_nr =
|
|
(env->exception_pending || env->exception_injected) ?
|
|
events.exception.nr : -1;
|
|
env->has_error_code = events.exception.has_error_code;
|
|
env->error_code = events.exception.error_code;
|
|
|
|
env->interrupt_injected =
|
|
events.interrupt.injected ? events.interrupt.nr : -1;
|
|
env->soft_interrupt = events.interrupt.soft;
|
|
|
|
env->nmi_injected = events.nmi.injected;
|
|
env->nmi_pending = events.nmi.pending;
|
|
if (events.nmi.masked) {
|
|
env->hflags2 |= HF2_NMI_MASK;
|
|
} else {
|
|
env->hflags2 &= ~HF2_NMI_MASK;
|
|
}
|
|
|
|
if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
|
|
if (events.smi.smm) {
|
|
env->hflags |= HF_SMM_MASK;
|
|
} else {
|
|
env->hflags &= ~HF_SMM_MASK;
|
|
}
|
|
if (events.smi.pending) {
|
|
cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
|
|
} else {
|
|
cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
|
|
}
|
|
if (events.smi.smm_inside_nmi) {
|
|
env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
|
|
} else {
|
|
env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
|
|
}
|
|
if (events.smi.latched_init) {
|
|
cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
|
|
} else {
|
|
cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
|
|
}
|
|
}
|
|
|
|
env->sipi_vector = events.sipi_vector;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_guest_debug_workarounds(X86CPU *cpu)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
CPUX86State *env = &cpu->env;
|
|
int ret = 0;
|
|
unsigned long reinject_trap = 0;
|
|
|
|
if (!kvm_has_vcpu_events()) {
|
|
if (env->exception_nr == EXCP01_DB) {
|
|
reinject_trap = KVM_GUESTDBG_INJECT_DB;
|
|
} else if (env->exception_injected == EXCP03_INT3) {
|
|
reinject_trap = KVM_GUESTDBG_INJECT_BP;
|
|
}
|
|
kvm_reset_exception(env);
|
|
}
|
|
|
|
/*
|
|
* Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
|
|
* injected via SET_GUEST_DEBUG while updating GP regs. Work around this
|
|
* by updating the debug state once again if single-stepping is on.
|
|
* Another reason to call kvm_update_guest_debug here is a pending debug
|
|
* trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
|
|
* reinject them via SET_GUEST_DEBUG.
|
|
*/
|
|
if (reinject_trap ||
|
|
(!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
|
|
ret = kvm_update_guest_debug(cs, reinject_trap);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_put_debugregs(X86CPU *cpu)
|
|
{
|
|
CPUX86State *env = &cpu->env;
|
|
struct kvm_debugregs dbgregs;
|
|
int i;
|
|
|
|
if (!kvm_has_debugregs()) {
|
|
return 0;
|
|
}
|
|
|
|
memset(&dbgregs, 0, sizeof(dbgregs));
|
|
for (i = 0; i < 4; i++) {
|
|
dbgregs.db[i] = env->dr[i];
|
|
}
|
|
dbgregs.dr6 = env->dr[6];
|
|
dbgregs.dr7 = env->dr[7];
|
|
dbgregs.flags = 0;
|
|
|
|
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
|
|
}
|
|
|
|
static int kvm_get_debugregs(X86CPU *cpu)
|
|
{
|
|
CPUX86State *env = &cpu->env;
|
|
struct kvm_debugregs dbgregs;
|
|
int i, ret;
|
|
|
|
if (!kvm_has_debugregs()) {
|
|
return 0;
|
|
}
|
|
|
|
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
for (i = 0; i < 4; i++) {
|
|
env->dr[i] = dbgregs.db[i];
|
|
}
|
|
env->dr[4] = env->dr[6] = dbgregs.dr6;
|
|
env->dr[5] = env->dr[7] = dbgregs.dr7;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_put_nested_state(X86CPU *cpu)
|
|
{
|
|
CPUX86State *env = &cpu->env;
|
|
int max_nested_state_len = kvm_max_nested_state_length();
|
|
|
|
if (!env->nested_state) {
|
|
return 0;
|
|
}
|
|
|
|
assert(env->nested_state->size <= max_nested_state_len);
|
|
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
|
|
}
|
|
|
|
static int kvm_get_nested_state(X86CPU *cpu)
|
|
{
|
|
CPUX86State *env = &cpu->env;
|
|
int max_nested_state_len = kvm_max_nested_state_length();
|
|
int ret;
|
|
|
|
if (!env->nested_state) {
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* It is possible that migration restored a smaller size into
|
|
* nested_state->hdr.size than what our kernel support.
|
|
* We preserve migration origin nested_state->hdr.size for
|
|
* call to KVM_SET_NESTED_STATE but wish that our next call
|
|
* to KVM_GET_NESTED_STATE will use max size our kernel support.
|
|
*/
|
|
env->nested_state->size = max_nested_state_len;
|
|
|
|
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
|
|
env->hflags |= HF_GUEST_MASK;
|
|
} else {
|
|
env->hflags &= ~HF_GUEST_MASK;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int kvm_arch_put_registers(CPUState *cpu, int level)
|
|
{
|
|
X86CPU *x86_cpu = X86_CPU(cpu);
|
|
int ret;
|
|
|
|
assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
|
|
|
|
if (level >= KVM_PUT_RESET_STATE) {
|
|
ret = kvm_put_nested_state(x86_cpu);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
ret = kvm_put_msr_feature_control(x86_cpu);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (level == KVM_PUT_FULL_STATE) {
|
|
/* We don't check for kvm_arch_set_tsc_khz() errors here,
|
|
* because TSC frequency mismatch shouldn't abort migration,
|
|
* unless the user explicitly asked for a more strict TSC
|
|
* setting (e.g. using an explicit "tsc-freq" option).
|
|
*/
|
|
kvm_arch_set_tsc_khz(cpu);
|
|
}
|
|
|
|
ret = kvm_getput_regs(x86_cpu, 1);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
ret = kvm_put_xsave(x86_cpu);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
ret = kvm_put_xcrs(x86_cpu);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
ret = kvm_put_sregs(x86_cpu);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
/* must be before kvm_put_msrs */
|
|
ret = kvm_inject_mce_oldstyle(x86_cpu);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
ret = kvm_put_msrs(x86_cpu, level);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
ret = kvm_put_vcpu_events(x86_cpu, level);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
if (level >= KVM_PUT_RESET_STATE) {
|
|
ret = kvm_put_mp_state(x86_cpu);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ret = kvm_put_tscdeadline_msr(x86_cpu);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
ret = kvm_put_debugregs(x86_cpu);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
/* must be last */
|
|
ret = kvm_guest_debug_workarounds(x86_cpu);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_get_registers(CPUState *cs)
|
|
{
|
|
X86CPU *cpu = X86_CPU(cs);
|
|
int ret;
|
|
|
|
assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
|
|
|
|
ret = kvm_get_vcpu_events(cpu);
|
|
if (ret < 0) {
|
|
goto out;
|
|
}
|
|
/*
|
|
* KVM_GET_MPSTATE can modify CS and RIP, call it before
|
|
* KVM_GET_REGS and KVM_GET_SREGS.
|
|
*/
|
|
ret = kvm_get_mp_state(cpu);
|
|
if (ret < 0) {
|
|
goto out;
|
|
}
|
|
ret = kvm_getput_regs(cpu, 0);
|
|
if (ret < 0) {
|
|
goto out;
|
|
}
|
|
ret = kvm_get_xsave(cpu);
|
|
if (ret < 0) {
|
|
goto out;
|
|
}
|
|
ret = kvm_get_xcrs(cpu);
|
|
if (ret < 0) {
|
|
goto out;
|
|
}
|
|
ret = kvm_get_sregs(cpu);
|
|
if (ret < 0) {
|
|
goto out;
|
|
}
|
|
ret = kvm_get_msrs(cpu);
|
|
if (ret < 0) {
|
|
goto out;
|
|
}
|
|
ret = kvm_get_apic(cpu);
|
|
if (ret < 0) {
|
|
goto out;
|
|
}
|
|
ret = kvm_get_debugregs(cpu);
|
|
if (ret < 0) {
|
|
goto out;
|
|
}
|
|
ret = kvm_get_nested_state(cpu);
|
|
if (ret < 0) {
|
|
goto out;
|
|
}
|
|
ret = 0;
|
|
out:
|
|
cpu_sync_bndcs_hflags(&cpu->env);
|
|
return ret;
|
|
}
|
|
|
|
void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
|
|
{
|
|
X86CPU *x86_cpu = X86_CPU(cpu);
|
|
CPUX86State *env = &x86_cpu->env;
|
|
int ret;
|
|
|
|
/* Inject NMI */
|
|
if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
|
|
if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
|
|
qemu_mutex_lock_iothread();
|
|
cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
|
|
qemu_mutex_unlock_iothread();
|
|
DPRINTF("injected NMI\n");
|
|
ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
|
|
strerror(-ret));
|
|
}
|
|
}
|
|
if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
|
|
qemu_mutex_lock_iothread();
|
|
cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
|
|
qemu_mutex_unlock_iothread();
|
|
DPRINTF("injected SMI\n");
|
|
ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
|
|
strerror(-ret));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!kvm_pic_in_kernel()) {
|
|
qemu_mutex_lock_iothread();
|
|
}
|
|
|
|
/* Force the VCPU out of its inner loop to process any INIT requests
|
|
* or (for userspace APIC, but it is cheap to combine the checks here)
|
|
* pending TPR access reports.
|
|
*/
|
|
if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
|
|
if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
|
|
!(env->hflags & HF_SMM_MASK)) {
|
|
cpu->exit_request = 1;
|
|
}
|
|
if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
|
|
cpu->exit_request = 1;
|
|
}
|
|
}
|
|
|
|
if (!kvm_pic_in_kernel()) {
|
|
/* Try to inject an interrupt if the guest can accept it */
|
|
if (run->ready_for_interrupt_injection &&
|
|
(cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
|
|
(env->eflags & IF_MASK)) {
|
|
int irq;
|
|
|
|
cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
|
|
irq = cpu_get_pic_interrupt(env);
|
|
if (irq >= 0) {
|
|
struct kvm_interrupt intr;
|
|
|
|
intr.irq = irq;
|
|
DPRINTF("injected interrupt %d\n", irq);
|
|
ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
|
|
if (ret < 0) {
|
|
fprintf(stderr,
|
|
"KVM: injection failed, interrupt lost (%s)\n",
|
|
strerror(-ret));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If we have an interrupt but the guest is not ready to receive an
|
|
* interrupt, request an interrupt window exit. This will
|
|
* cause a return to userspace as soon as the guest is ready to
|
|
* receive interrupts. */
|
|
if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
|
|
run->request_interrupt_window = 1;
|
|
} else {
|
|
run->request_interrupt_window = 0;
|
|
}
|
|
|
|
DPRINTF("setting tpr\n");
|
|
run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
|
|
|
|
qemu_mutex_unlock_iothread();
|
|
}
|
|
}
|
|
|
|
MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
|
|
{
|
|
X86CPU *x86_cpu = X86_CPU(cpu);
|
|
CPUX86State *env = &x86_cpu->env;
|
|
|
|
if (run->flags & KVM_RUN_X86_SMM) {
|
|
env->hflags |= HF_SMM_MASK;
|
|
} else {
|
|
env->hflags &= ~HF_SMM_MASK;
|
|
}
|
|
if (run->if_flag) {
|
|
env->eflags |= IF_MASK;
|
|
} else {
|
|
env->eflags &= ~IF_MASK;
|
|
}
|
|
|
|
/* We need to protect the apic state against concurrent accesses from
|
|
* different threads in case the userspace irqchip is used. */
|
|
if (!kvm_irqchip_in_kernel()) {
|
|
qemu_mutex_lock_iothread();
|
|
}
|
|
cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
|
|
cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
|
|
if (!kvm_irqchip_in_kernel()) {
|
|
qemu_mutex_unlock_iothread();
|
|
}
|
|
return cpu_get_mem_attrs(env);
|
|
}
|
|
|
|
int kvm_arch_process_async_events(CPUState *cs)
|
|
{
|
|
X86CPU *cpu = X86_CPU(cs);
|
|
CPUX86State *env = &cpu->env;
|
|
|
|
if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
|
|
/* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
|
|
assert(env->mcg_cap);
|
|
|
|
cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
|
|
|
|
kvm_cpu_synchronize_state(cs);
|
|
|
|
if (env->exception_nr == EXCP08_DBLE) {
|
|
/* this means triple fault */
|
|
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
|
|
cs->exit_request = 1;
|
|
return 0;
|
|
}
|
|
kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
|
|
env->has_error_code = 0;
|
|
|
|
cs->halted = 0;
|
|
if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
|
|
env->mp_state = KVM_MP_STATE_RUNNABLE;
|
|
}
|
|
}
|
|
|
|
if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
|
|
!(env->hflags & HF_SMM_MASK)) {
|
|
kvm_cpu_synchronize_state(cs);
|
|
do_cpu_init(cpu);
|
|
}
|
|
|
|
if (kvm_irqchip_in_kernel()) {
|
|
return 0;
|
|
}
|
|
|
|
if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
|
|
cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
|
|
apic_poll_irq(cpu->apic_state);
|
|
}
|
|
if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
|
|
(env->eflags & IF_MASK)) ||
|
|
(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
|
|
cs->halted = 0;
|
|
}
|
|
if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
|
|
kvm_cpu_synchronize_state(cs);
|
|
do_cpu_sipi(cpu);
|
|
}
|
|
if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
|
|
cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
|
|
kvm_cpu_synchronize_state(cs);
|
|
apic_handle_tpr_access_report(cpu->apic_state, env->eip,
|
|
env->tpr_access_type);
|
|
}
|
|
|
|
return cs->halted;
|
|
}
|
|
|
|
static int kvm_handle_halt(X86CPU *cpu)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
CPUX86State *env = &cpu->env;
|
|
|
|
if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
|
|
(env->eflags & IF_MASK)) &&
|
|
!(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
|
|
cs->halted = 1;
|
|
return EXCP_HLT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_handle_tpr_access(X86CPU *cpu)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
struct kvm_run *run = cs->kvm_run;
|
|
|
|
apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
|
|
run->tpr_access.is_write ? TPR_ACCESS_WRITE
|
|
: TPR_ACCESS_READ);
|
|
return 1;
|
|
}
|
|
|
|
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
|
|
{
|
|
static const uint8_t int3 = 0xcc;
|
|
|
|
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
|
|
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
|
|
{
|
|
uint8_t int3;
|
|
|
|
if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
|
|
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct {
|
|
target_ulong addr;
|
|
int len;
|
|
int type;
|
|
} hw_breakpoint[4];
|
|
|
|
static int nb_hw_breakpoint;
|
|
|
|
static int find_hw_breakpoint(target_ulong addr, int len, int type)
|
|
{
|
|
int n;
|
|
|
|
for (n = 0; n < nb_hw_breakpoint; n++) {
|
|
if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
|
|
(hw_breakpoint[n].len == len || len == -1)) {
|
|
return n;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
|
|
target_ulong len, int type)
|
|
{
|
|
switch (type) {
|
|
case GDB_BREAKPOINT_HW:
|
|
len = 1;
|
|
break;
|
|
case GDB_WATCHPOINT_WRITE:
|
|
case GDB_WATCHPOINT_ACCESS:
|
|
switch (len) {
|
|
case 1:
|
|
break;
|
|
case 2:
|
|
case 4:
|
|
case 8:
|
|
if (addr & (len - 1)) {
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
default:
|
|
return -ENOSYS;
|
|
}
|
|
|
|
if (nb_hw_breakpoint == 4) {
|
|
return -ENOBUFS;
|
|
}
|
|
if (find_hw_breakpoint(addr, len, type) >= 0) {
|
|
return -EEXIST;
|
|
}
|
|
hw_breakpoint[nb_hw_breakpoint].addr = addr;
|
|
hw_breakpoint[nb_hw_breakpoint].len = len;
|
|
hw_breakpoint[nb_hw_breakpoint].type = type;
|
|
nb_hw_breakpoint++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
|
|
target_ulong len, int type)
|
|
{
|
|
int n;
|
|
|
|
n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
|
|
if (n < 0) {
|
|
return -ENOENT;
|
|
}
|
|
nb_hw_breakpoint--;
|
|
hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_remove_all_hw_breakpoints(void)
|
|
{
|
|
nb_hw_breakpoint = 0;
|
|
}
|
|
|
|
static CPUWatchpoint hw_watchpoint;
|
|
|
|
static int kvm_handle_debug(X86CPU *cpu,
|
|
struct kvm_debug_exit_arch *arch_info)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
CPUX86State *env = &cpu->env;
|
|
int ret = 0;
|
|
int n;
|
|
|
|
if (arch_info->exception == EXCP01_DB) {
|
|
if (arch_info->dr6 & DR6_BS) {
|
|
if (cs->singlestep_enabled) {
|
|
ret = EXCP_DEBUG;
|
|
}
|
|
} else {
|
|
for (n = 0; n < 4; n++) {
|
|
if (arch_info->dr6 & (1 << n)) {
|
|
switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
|
|
case 0x0:
|
|
ret = EXCP_DEBUG;
|
|
break;
|
|
case 0x1:
|
|
ret = EXCP_DEBUG;
|
|
cs->watchpoint_hit = &hw_watchpoint;
|
|
hw_watchpoint.vaddr = hw_breakpoint[n].addr;
|
|
hw_watchpoint.flags = BP_MEM_WRITE;
|
|
break;
|
|
case 0x3:
|
|
ret = EXCP_DEBUG;
|
|
cs->watchpoint_hit = &hw_watchpoint;
|
|
hw_watchpoint.vaddr = hw_breakpoint[n].addr;
|
|
hw_watchpoint.flags = BP_MEM_ACCESS;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
|
|
ret = EXCP_DEBUG;
|
|
}
|
|
if (ret == 0) {
|
|
cpu_synchronize_state(cs);
|
|
assert(env->exception_nr == -1);
|
|
|
|
/* pass to guest */
|
|
kvm_queue_exception(env, arch_info->exception,
|
|
arch_info->exception == EXCP01_DB,
|
|
arch_info->dr6);
|
|
env->has_error_code = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
|
|
{
|
|
const uint8_t type_code[] = {
|
|
[GDB_BREAKPOINT_HW] = 0x0,
|
|
[GDB_WATCHPOINT_WRITE] = 0x1,
|
|
[GDB_WATCHPOINT_ACCESS] = 0x3
|
|
};
|
|
const uint8_t len_code[] = {
|
|
[1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
|
|
};
|
|
int n;
|
|
|
|
if (kvm_sw_breakpoints_active(cpu)) {
|
|
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
|
|
}
|
|
if (nb_hw_breakpoint > 0) {
|
|
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
|
|
dbg->arch.debugreg[7] = 0x0600;
|
|
for (n = 0; n < nb_hw_breakpoint; n++) {
|
|
dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
|
|
dbg->arch.debugreg[7] |= (2 << (n * 2)) |
|
|
(type_code[hw_breakpoint[n].type] << (16 + n*4)) |
|
|
((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool host_supports_vmx(void)
|
|
{
|
|
uint32_t ecx, unused;
|
|
|
|
host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
|
|
return ecx & CPUID_EXT_VMX;
|
|
}
|
|
|
|
#define VMX_INVALID_GUEST_STATE 0x80000021
|
|
|
|
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
|
|
{
|
|
X86CPU *cpu = X86_CPU(cs);
|
|
uint64_t code;
|
|
int ret;
|
|
|
|
switch (run->exit_reason) {
|
|
case KVM_EXIT_HLT:
|
|
DPRINTF("handle_hlt\n");
|
|
qemu_mutex_lock_iothread();
|
|
ret = kvm_handle_halt(cpu);
|
|
qemu_mutex_unlock_iothread();
|
|
break;
|
|
case KVM_EXIT_SET_TPR:
|
|
ret = 0;
|
|
break;
|
|
case KVM_EXIT_TPR_ACCESS:
|
|
qemu_mutex_lock_iothread();
|
|
ret = kvm_handle_tpr_access(cpu);
|
|
qemu_mutex_unlock_iothread();
|
|
break;
|
|
case KVM_EXIT_FAIL_ENTRY:
|
|
code = run->fail_entry.hardware_entry_failure_reason;
|
|
fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
|
|
code);
|
|
if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
|
|
fprintf(stderr,
|
|
"\nIf you're running a guest on an Intel machine without "
|
|
"unrestricted mode\n"
|
|
"support, the failure can be most likely due to the guest "
|
|
"entering an invalid\n"
|
|
"state for Intel VT. For example, the guest maybe running "
|
|
"in big real mode\n"
|
|
"which is not supported on less recent Intel processors."
|
|
"\n\n");
|
|
}
|
|
ret = -1;
|
|
break;
|
|
case KVM_EXIT_EXCEPTION:
|
|
fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
|
|
run->ex.exception, run->ex.error_code);
|
|
ret = -1;
|
|
break;
|
|
case KVM_EXIT_DEBUG:
|
|
DPRINTF("kvm_exit_debug\n");
|
|
qemu_mutex_lock_iothread();
|
|
ret = kvm_handle_debug(cpu, &run->debug.arch);
|
|
qemu_mutex_unlock_iothread();
|
|
break;
|
|
case KVM_EXIT_HYPERV:
|
|
ret = kvm_hv_handle_exit(cpu, &run->hyperv);
|
|
break;
|
|
case KVM_EXIT_IOAPIC_EOI:
|
|
ioapic_eoi_broadcast(run->eoi.vector);
|
|
ret = 0;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
|
|
ret = -1;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool kvm_arch_stop_on_emulation_error(CPUState *cs)
|
|
{
|
|
X86CPU *cpu = X86_CPU(cs);
|
|
CPUX86State *env = &cpu->env;
|
|
|
|
kvm_cpu_synchronize_state(cs);
|
|
return !(env->cr[0] & CR0_PE_MASK) ||
|
|
((env->segs[R_CS].selector & 3) != 3);
|
|
}
|
|
|
|
void kvm_arch_init_irq_routing(KVMState *s)
|
|
{
|
|
if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
|
|
/* If kernel can't do irq routing, interrupt source
|
|
* override 0->2 cannot be set up as required by HPET.
|
|
* So we have to disable it.
|
|
*/
|
|
no_hpet = 1;
|
|
}
|
|
/* We know at this point that we're using the in-kernel
|
|
* irqchip, so we can use irqfds, and on x86 we know
|
|
* we can use msi via irqfd and GSI routing.
|
|
*/
|
|
kvm_msi_via_irqfd_allowed = true;
|
|
kvm_gsi_routing_allowed = true;
|
|
|
|
if (kvm_irqchip_is_split()) {
|
|
int i;
|
|
|
|
/* If the ioapic is in QEMU and the lapics are in KVM, reserve
|
|
MSI routes for signaling interrupts to the local apics. */
|
|
for (i = 0; i < IOAPIC_NUM_PINS; i++) {
|
|
if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
|
|
error_report("Could not enable split IRQ mode.");
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
|
|
{
|
|
int ret;
|
|
if (machine_kernel_irqchip_split(ms)) {
|
|
ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
|
|
if (ret) {
|
|
error_report("Could not enable split irqchip mode: %s",
|
|
strerror(-ret));
|
|
exit(1);
|
|
} else {
|
|
DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
|
|
kvm_split_irqchip = true;
|
|
return 1;
|
|
}
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Classic KVM device assignment interface. Will remain x86 only. */
|
|
int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
|
|
uint32_t flags, uint32_t *dev_id)
|
|
{
|
|
struct kvm_assigned_pci_dev dev_data = {
|
|
.segnr = dev_addr->domain,
|
|
.busnr = dev_addr->bus,
|
|
.devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
|
|
.flags = flags,
|
|
};
|
|
int ret;
|
|
|
|
dev_data.assigned_dev_id =
|
|
(dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
|
|
|
|
ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
*dev_id = dev_data.assigned_dev_id;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
|
|
{
|
|
struct kvm_assigned_pci_dev dev_data = {
|
|
.assigned_dev_id = dev_id,
|
|
};
|
|
|
|
return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
|
|
}
|
|
|
|
static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
|
|
uint32_t irq_type, uint32_t guest_irq)
|
|
{
|
|
struct kvm_assigned_irq assigned_irq = {
|
|
.assigned_dev_id = dev_id,
|
|
.guest_irq = guest_irq,
|
|
.flags = irq_type,
|
|
};
|
|
|
|
if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
|
|
return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
|
|
} else {
|
|
return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
|
|
}
|
|
}
|
|
|
|
int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
|
|
uint32_t guest_irq)
|
|
{
|
|
uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
|
|
(use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
|
|
|
|
return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
|
|
}
|
|
|
|
int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
|
|
{
|
|
struct kvm_assigned_pci_dev dev_data = {
|
|
.assigned_dev_id = dev_id,
|
|
.flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
|
|
};
|
|
|
|
return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
|
|
}
|
|
|
|
static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
|
|
uint32_t type)
|
|
{
|
|
struct kvm_assigned_irq assigned_irq = {
|
|
.assigned_dev_id = dev_id,
|
|
.flags = type,
|
|
};
|
|
|
|
return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
|
|
}
|
|
|
|
int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
|
|
{
|
|
return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
|
|
(use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
|
|
}
|
|
|
|
int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
|
|
{
|
|
return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
|
|
KVM_DEV_IRQ_GUEST_MSI, virq);
|
|
}
|
|
|
|
int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
|
|
{
|
|
return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
|
|
KVM_DEV_IRQ_HOST_MSI);
|
|
}
|
|
|
|
bool kvm_device_msix_supported(KVMState *s)
|
|
{
|
|
/* The kernel lacks a corresponding KVM_CAP, so we probe by calling
|
|
* KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
|
|
return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
|
|
}
|
|
|
|
int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
|
|
uint32_t nr_vectors)
|
|
{
|
|
struct kvm_assigned_msix_nr msix_nr = {
|
|
.assigned_dev_id = dev_id,
|
|
.entry_nr = nr_vectors,
|
|
};
|
|
|
|
return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
|
|
}
|
|
|
|
int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
|
|
int virq)
|
|
{
|
|
struct kvm_assigned_msix_entry msix_entry = {
|
|
.assigned_dev_id = dev_id,
|
|
.gsi = virq,
|
|
.entry = vector,
|
|
};
|
|
|
|
return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
|
|
}
|
|
|
|
int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
|
|
{
|
|
return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
|
|
KVM_DEV_IRQ_GUEST_MSIX, 0);
|
|
}
|
|
|
|
int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
|
|
{
|
|
return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
|
|
KVM_DEV_IRQ_HOST_MSIX);
|
|
}
|
|
|
|
int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
|
|
uint64_t address, uint32_t data, PCIDevice *dev)
|
|
{
|
|
X86IOMMUState *iommu = x86_iommu_get_default();
|
|
|
|
if (iommu) {
|
|
int ret;
|
|
MSIMessage src, dst;
|
|
X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
|
|
|
|
if (!class->int_remap) {
|
|
return 0;
|
|
}
|
|
|
|
src.address = route->u.msi.address_hi;
|
|
src.address <<= VTD_MSI_ADDR_HI_SHIFT;
|
|
src.address |= route->u.msi.address_lo;
|
|
src.data = route->u.msi.data;
|
|
|
|
ret = class->int_remap(iommu, &src, &dst, dev ? \
|
|
pci_requester_id(dev) : \
|
|
X86_IOMMU_SID_INVALID);
|
|
if (ret) {
|
|
trace_kvm_x86_fixup_msi_error(route->gsi);
|
|
return 1;
|
|
}
|
|
|
|
route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
|
|
route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
|
|
route->u.msi.data = dst.data;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
typedef struct MSIRouteEntry MSIRouteEntry;
|
|
|
|
struct MSIRouteEntry {
|
|
PCIDevice *dev; /* Device pointer */
|
|
int vector; /* MSI/MSIX vector index */
|
|
int virq; /* Virtual IRQ index */
|
|
QLIST_ENTRY(MSIRouteEntry) list;
|
|
};
|
|
|
|
/* List of used GSI routes */
|
|
static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
|
|
QLIST_HEAD_INITIALIZER(msi_route_list);
|
|
|
|
static void kvm_update_msi_routes_all(void *private, bool global,
|
|
uint32_t index, uint32_t mask)
|
|
{
|
|
int cnt = 0, vector;
|
|
MSIRouteEntry *entry;
|
|
MSIMessage msg;
|
|
PCIDevice *dev;
|
|
|
|
/* TODO: explicit route update */
|
|
QLIST_FOREACH(entry, &msi_route_list, list) {
|
|
cnt++;
|
|
vector = entry->vector;
|
|
dev = entry->dev;
|
|
if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
|
|
msg = msix_get_message(dev, vector);
|
|
} else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
|
|
msg = msi_get_message(dev, vector);
|
|
} else {
|
|
/*
|
|
* Either MSI/MSIX is disabled for the device, or the
|
|
* specific message was masked out. Skip this one.
|
|
*/
|
|
continue;
|
|
}
|
|
kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
|
|
}
|
|
kvm_irqchip_commit_routes(kvm_state);
|
|
trace_kvm_x86_update_msi_routes(cnt);
|
|
}
|
|
|
|
int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
|
|
int vector, PCIDevice *dev)
|
|
{
|
|
static bool notify_list_inited = false;
|
|
MSIRouteEntry *entry;
|
|
|
|
if (!dev) {
|
|
/* These are (possibly) IOAPIC routes only used for split
|
|
* kernel irqchip mode, while what we are housekeeping are
|
|
* PCI devices only. */
|
|
return 0;
|
|
}
|
|
|
|
entry = g_new0(MSIRouteEntry, 1);
|
|
entry->dev = dev;
|
|
entry->vector = vector;
|
|
entry->virq = route->gsi;
|
|
QLIST_INSERT_HEAD(&msi_route_list, entry, list);
|
|
|
|
trace_kvm_x86_add_msi_route(route->gsi);
|
|
|
|
if (!notify_list_inited) {
|
|
/* For the first time we do add route, add ourselves into
|
|
* IOMMU's IEC notify list if needed. */
|
|
X86IOMMUState *iommu = x86_iommu_get_default();
|
|
if (iommu) {
|
|
x86_iommu_iec_register_notifier(iommu,
|
|
kvm_update_msi_routes_all,
|
|
NULL);
|
|
}
|
|
notify_list_inited = true;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_release_virq_post(int virq)
|
|
{
|
|
MSIRouteEntry *entry, *next;
|
|
QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
|
|
if (entry->virq == virq) {
|
|
trace_kvm_x86_remove_msi_route(virq);
|
|
QLIST_REMOVE(entry, list);
|
|
g_free(entry);
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_msi_data_to_gsi(uint32_t data)
|
|
{
|
|
abort();
|
|
}
|