185698715d
The softfloat functions float*_is_nan() were badly misnamed, because they return true only for quiet NaNs, not for all NaNs. Rename them to float*_is_quiet_nan() to more accurately reflect what they do. This change was produced by: perl -p -i -e 's/_is_nan/_is_quiet_nan/g' $(git grep -l is_nan) (with the results manually checked.) Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Nathan Froyd <froydnj@codesourcery.com> Acked-by: Edgar E. Iglesias <edgar.iglesias@gmail.com> Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
515 lines
11 KiB
C
515 lines
11 KiB
C
/* Native implementation of soft float functions. Only a single status
|
|
context is supported */
|
|
#include "softfloat.h"
|
|
#include <math.h>
|
|
#if defined(CONFIG_SOLARIS)
|
|
#include <fenv.h>
|
|
#endif
|
|
|
|
void set_float_rounding_mode(int val STATUS_PARAM)
|
|
{
|
|
STATUS(float_rounding_mode) = val;
|
|
#if (defined(CONFIG_BSD) && !defined(__APPLE__) && !defined(__GLIBC__)) || \
|
|
(defined(CONFIG_SOLARIS) && CONFIG_SOLARIS_VERSION < 10)
|
|
fpsetround(val);
|
|
#else
|
|
fesetround(val);
|
|
#endif
|
|
}
|
|
|
|
#ifdef FLOATX80
|
|
void set_floatx80_rounding_precision(int val STATUS_PARAM)
|
|
{
|
|
STATUS(floatx80_rounding_precision) = val;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_BSD) || \
|
|
(defined(CONFIG_SOLARIS) && CONFIG_SOLARIS_VERSION < 10)
|
|
#define lrint(d) ((int32_t)rint(d))
|
|
#define llrint(d) ((int64_t)rint(d))
|
|
#define lrintf(f) ((int32_t)rint(f))
|
|
#define llrintf(f) ((int64_t)rint(f))
|
|
#define sqrtf(f) ((float)sqrt(f))
|
|
#define remainderf(fa, fb) ((float)remainder(fa, fb))
|
|
#define rintf(f) ((float)rint(f))
|
|
#if !defined(__sparc__) && \
|
|
(defined(CONFIG_SOLARIS) && CONFIG_SOLARIS_VERSION < 10)
|
|
extern long double rintl(long double);
|
|
extern long double scalbnl(long double, int);
|
|
|
|
long long
|
|
llrintl(long double x) {
|
|
return ((long long) rintl(x));
|
|
}
|
|
|
|
long
|
|
lrintl(long double x) {
|
|
return ((long) rintl(x));
|
|
}
|
|
|
|
long double
|
|
ldexpl(long double x, int n) {
|
|
return (scalbnl(x, n));
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(_ARCH_PPC)
|
|
|
|
/* correct (but slow) PowerPC rint() (glibc version is incorrect) */
|
|
static double qemu_rint(double x)
|
|
{
|
|
double y = 4503599627370496.0;
|
|
if (fabs(x) >= y)
|
|
return x;
|
|
if (x < 0)
|
|
y = -y;
|
|
y = (x + y) - y;
|
|
if (y == 0.0)
|
|
y = copysign(y, x);
|
|
return y;
|
|
}
|
|
|
|
#define rint qemu_rint
|
|
#endif
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE integer-to-floating-point conversion routines.
|
|
*----------------------------------------------------------------------------*/
|
|
float32 int32_to_float32(int v STATUS_PARAM)
|
|
{
|
|
return (float32)v;
|
|
}
|
|
|
|
float32 uint32_to_float32(unsigned int v STATUS_PARAM)
|
|
{
|
|
return (float32)v;
|
|
}
|
|
|
|
float64 int32_to_float64(int v STATUS_PARAM)
|
|
{
|
|
return (float64)v;
|
|
}
|
|
|
|
float64 uint32_to_float64(unsigned int v STATUS_PARAM)
|
|
{
|
|
return (float64)v;
|
|
}
|
|
|
|
#ifdef FLOATX80
|
|
floatx80 int32_to_floatx80(int v STATUS_PARAM)
|
|
{
|
|
return (floatx80)v;
|
|
}
|
|
#endif
|
|
float32 int64_to_float32( int64_t v STATUS_PARAM)
|
|
{
|
|
return (float32)v;
|
|
}
|
|
float32 uint64_to_float32( uint64_t v STATUS_PARAM)
|
|
{
|
|
return (float32)v;
|
|
}
|
|
float64 int64_to_float64( int64_t v STATUS_PARAM)
|
|
{
|
|
return (float64)v;
|
|
}
|
|
float64 uint64_to_float64( uint64_t v STATUS_PARAM)
|
|
{
|
|
return (float64)v;
|
|
}
|
|
#ifdef FLOATX80
|
|
floatx80 int64_to_floatx80( int64_t v STATUS_PARAM)
|
|
{
|
|
return (floatx80)v;
|
|
}
|
|
#endif
|
|
|
|
/* XXX: this code implements the x86 behaviour, not the IEEE one. */
|
|
#if HOST_LONG_BITS == 32
|
|
static inline int long_to_int32(long a)
|
|
{
|
|
return a;
|
|
}
|
|
#else
|
|
static inline int long_to_int32(long a)
|
|
{
|
|
if (a != (int32_t)a)
|
|
a = 0x80000000;
|
|
return a;
|
|
}
|
|
#endif
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE single-precision conversion routines.
|
|
*----------------------------------------------------------------------------*/
|
|
int float32_to_int32( float32 a STATUS_PARAM)
|
|
{
|
|
return long_to_int32(lrintf(a));
|
|
}
|
|
int float32_to_int32_round_to_zero( float32 a STATUS_PARAM)
|
|
{
|
|
return (int)a;
|
|
}
|
|
int64_t float32_to_int64( float32 a STATUS_PARAM)
|
|
{
|
|
return llrintf(a);
|
|
}
|
|
|
|
int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM)
|
|
{
|
|
return (int64_t)a;
|
|
}
|
|
|
|
float64 float32_to_float64( float32 a STATUS_PARAM)
|
|
{
|
|
return a;
|
|
}
|
|
#ifdef FLOATX80
|
|
floatx80 float32_to_floatx80( float32 a STATUS_PARAM)
|
|
{
|
|
return a;
|
|
}
|
|
#endif
|
|
|
|
unsigned int float32_to_uint32( float32 a STATUS_PARAM)
|
|
{
|
|
int64_t v;
|
|
unsigned int res;
|
|
|
|
v = llrintf(a);
|
|
if (v < 0) {
|
|
res = 0;
|
|
} else if (v > 0xffffffff) {
|
|
res = 0xffffffff;
|
|
} else {
|
|
res = v;
|
|
}
|
|
return res;
|
|
}
|
|
unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM)
|
|
{
|
|
int64_t v;
|
|
unsigned int res;
|
|
|
|
v = (int64_t)a;
|
|
if (v < 0) {
|
|
res = 0;
|
|
} else if (v > 0xffffffff) {
|
|
res = 0xffffffff;
|
|
} else {
|
|
res = v;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE single-precision operations.
|
|
*----------------------------------------------------------------------------*/
|
|
float32 float32_round_to_int( float32 a STATUS_PARAM)
|
|
{
|
|
return rintf(a);
|
|
}
|
|
|
|
float32 float32_rem( float32 a, float32 b STATUS_PARAM)
|
|
{
|
|
return remainderf(a, b);
|
|
}
|
|
|
|
float32 float32_sqrt( float32 a STATUS_PARAM)
|
|
{
|
|
return sqrtf(a);
|
|
}
|
|
int float32_compare( float32 a, float32 b STATUS_PARAM )
|
|
{
|
|
if (a < b) {
|
|
return float_relation_less;
|
|
} else if (a == b) {
|
|
return float_relation_equal;
|
|
} else if (a > b) {
|
|
return float_relation_greater;
|
|
} else {
|
|
return float_relation_unordered;
|
|
}
|
|
}
|
|
int float32_compare_quiet( float32 a, float32 b STATUS_PARAM )
|
|
{
|
|
if (isless(a, b)) {
|
|
return float_relation_less;
|
|
} else if (a == b) {
|
|
return float_relation_equal;
|
|
} else if (isgreater(a, b)) {
|
|
return float_relation_greater;
|
|
} else {
|
|
return float_relation_unordered;
|
|
}
|
|
}
|
|
int float32_is_signaling_nan( float32 a1)
|
|
{
|
|
float32u u;
|
|
uint32_t a;
|
|
u.f = a1;
|
|
a = u.i;
|
|
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
|
|
}
|
|
|
|
int float32_is_quiet_nan( float32 a1 )
|
|
{
|
|
float32u u;
|
|
uint64_t a;
|
|
u.f = a1;
|
|
a = u.i;
|
|
return ( 0xFF800000 < ( a<<1 ) );
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE double-precision conversion routines.
|
|
*----------------------------------------------------------------------------*/
|
|
int float64_to_int32( float64 a STATUS_PARAM)
|
|
{
|
|
return long_to_int32(lrint(a));
|
|
}
|
|
int float64_to_int32_round_to_zero( float64 a STATUS_PARAM)
|
|
{
|
|
return (int)a;
|
|
}
|
|
int64_t float64_to_int64( float64 a STATUS_PARAM)
|
|
{
|
|
return llrint(a);
|
|
}
|
|
int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM)
|
|
{
|
|
return (int64_t)a;
|
|
}
|
|
float32 float64_to_float32( float64 a STATUS_PARAM)
|
|
{
|
|
return a;
|
|
}
|
|
#ifdef FLOATX80
|
|
floatx80 float64_to_floatx80( float64 a STATUS_PARAM)
|
|
{
|
|
return a;
|
|
}
|
|
#endif
|
|
#ifdef FLOAT128
|
|
float128 float64_to_float128( float64 a STATUS_PARAM)
|
|
{
|
|
return a;
|
|
}
|
|
#endif
|
|
|
|
unsigned int float64_to_uint32( float64 a STATUS_PARAM)
|
|
{
|
|
int64_t v;
|
|
unsigned int res;
|
|
|
|
v = llrint(a);
|
|
if (v < 0) {
|
|
res = 0;
|
|
} else if (v > 0xffffffff) {
|
|
res = 0xffffffff;
|
|
} else {
|
|
res = v;
|
|
}
|
|
return res;
|
|
}
|
|
unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM)
|
|
{
|
|
int64_t v;
|
|
unsigned int res;
|
|
|
|
v = (int64_t)a;
|
|
if (v < 0) {
|
|
res = 0;
|
|
} else if (v > 0xffffffff) {
|
|
res = 0xffffffff;
|
|
} else {
|
|
res = v;
|
|
}
|
|
return res;
|
|
}
|
|
uint64_t float64_to_uint64 (float64 a STATUS_PARAM)
|
|
{
|
|
int64_t v;
|
|
|
|
v = llrint(a + (float64)INT64_MIN);
|
|
|
|
return v - INT64_MIN;
|
|
}
|
|
uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
|
|
{
|
|
int64_t v;
|
|
|
|
v = (int64_t)(a + (float64)INT64_MIN);
|
|
|
|
return v - INT64_MIN;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE double-precision operations.
|
|
*----------------------------------------------------------------------------*/
|
|
#if defined(__sun__) && \
|
|
(defined(CONFIG_SOLARIS) && CONFIG_SOLARIS_VERSION < 10)
|
|
static inline float64 trunc(float64 x)
|
|
{
|
|
return x < 0 ? -floor(-x) : floor(x);
|
|
}
|
|
#endif
|
|
float64 float64_trunc_to_int( float64 a STATUS_PARAM )
|
|
{
|
|
return trunc(a);
|
|
}
|
|
|
|
float64 float64_round_to_int( float64 a STATUS_PARAM )
|
|
{
|
|
return rint(a);
|
|
}
|
|
|
|
float64 float64_rem( float64 a, float64 b STATUS_PARAM)
|
|
{
|
|
return remainder(a, b);
|
|
}
|
|
|
|
float64 float64_sqrt( float64 a STATUS_PARAM)
|
|
{
|
|
return sqrt(a);
|
|
}
|
|
int float64_compare( float64 a, float64 b STATUS_PARAM )
|
|
{
|
|
if (a < b) {
|
|
return float_relation_less;
|
|
} else if (a == b) {
|
|
return float_relation_equal;
|
|
} else if (a > b) {
|
|
return float_relation_greater;
|
|
} else {
|
|
return float_relation_unordered;
|
|
}
|
|
}
|
|
int float64_compare_quiet( float64 a, float64 b STATUS_PARAM )
|
|
{
|
|
if (isless(a, b)) {
|
|
return float_relation_less;
|
|
} else if (a == b) {
|
|
return float_relation_equal;
|
|
} else if (isgreater(a, b)) {
|
|
return float_relation_greater;
|
|
} else {
|
|
return float_relation_unordered;
|
|
}
|
|
}
|
|
int float64_is_signaling_nan( float64 a1)
|
|
{
|
|
float64u u;
|
|
uint64_t a;
|
|
u.f = a1;
|
|
a = u.i;
|
|
return
|
|
( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
|
|
&& ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
|
|
|
|
}
|
|
|
|
int float64_is_quiet_nan( float64 a1 )
|
|
{
|
|
float64u u;
|
|
uint64_t a;
|
|
u.f = a1;
|
|
a = u.i;
|
|
|
|
return ( LIT64( 0xFFF0000000000000 ) < (bits64) ( a<<1 ) );
|
|
|
|
}
|
|
|
|
#ifdef FLOATX80
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE extended double-precision conversion routines.
|
|
*----------------------------------------------------------------------------*/
|
|
int floatx80_to_int32( floatx80 a STATUS_PARAM)
|
|
{
|
|
return long_to_int32(lrintl(a));
|
|
}
|
|
int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM)
|
|
{
|
|
return (int)a;
|
|
}
|
|
int64_t floatx80_to_int64( floatx80 a STATUS_PARAM)
|
|
{
|
|
return llrintl(a);
|
|
}
|
|
int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM)
|
|
{
|
|
return (int64_t)a;
|
|
}
|
|
float32 floatx80_to_float32( floatx80 a STATUS_PARAM)
|
|
{
|
|
return a;
|
|
}
|
|
float64 floatx80_to_float64( floatx80 a STATUS_PARAM)
|
|
{
|
|
return a;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE extended double-precision operations.
|
|
*----------------------------------------------------------------------------*/
|
|
floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM)
|
|
{
|
|
return rintl(a);
|
|
}
|
|
floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM)
|
|
{
|
|
return remainderl(a, b);
|
|
}
|
|
floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM)
|
|
{
|
|
return sqrtl(a);
|
|
}
|
|
int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
|
|
{
|
|
if (a < b) {
|
|
return float_relation_less;
|
|
} else if (a == b) {
|
|
return float_relation_equal;
|
|
} else if (a > b) {
|
|
return float_relation_greater;
|
|
} else {
|
|
return float_relation_unordered;
|
|
}
|
|
}
|
|
int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
|
|
{
|
|
if (isless(a, b)) {
|
|
return float_relation_less;
|
|
} else if (a == b) {
|
|
return float_relation_equal;
|
|
} else if (isgreater(a, b)) {
|
|
return float_relation_greater;
|
|
} else {
|
|
return float_relation_unordered;
|
|
}
|
|
}
|
|
int floatx80_is_signaling_nan( floatx80 a1)
|
|
{
|
|
floatx80u u;
|
|
uint64_t aLow;
|
|
u.f = a1;
|
|
|
|
aLow = u.i.low & ~ LIT64( 0x4000000000000000 );
|
|
return
|
|
( ( u.i.high & 0x7FFF ) == 0x7FFF )
|
|
&& (bits64) ( aLow<<1 )
|
|
&& ( u.i.low == aLow );
|
|
}
|
|
|
|
int floatx80_is_quiet_nan( floatx80 a1 )
|
|
{
|
|
floatx80u u;
|
|
u.f = a1;
|
|
return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 );
|
|
}
|
|
|
|
#endif
|