qemu-e2k/target/arm/machine.c
Peter Maydell ecf5e8eae8 target/arm: Make MPU_CTRL register banked for v8M
Make the MPU_CTRL register banked if v8M security extensions are
enabled.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 1503414539-28762-16-git-send-email-peter.maydell@linaro.org
2017-09-07 13:54:53 +01:00

536 lines
16 KiB
C

#include "qemu/osdep.h"
#include "qemu-common.h"
#include "cpu.h"
#include "hw/hw.h"
#include "hw/boards.h"
#include "qemu/error-report.h"
#include "sysemu/kvm.h"
#include "kvm_arm.h"
#include "internals.h"
#include "migration/cpu.h"
static bool vfp_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_VFP);
}
static int get_fpscr(QEMUFile *f, void *opaque, size_t size,
VMStateField *field)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
uint32_t val = qemu_get_be32(f);
vfp_set_fpscr(env, val);
return 0;
}
static int put_fpscr(QEMUFile *f, void *opaque, size_t size,
VMStateField *field, QJSON *vmdesc)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
qemu_put_be32(f, vfp_get_fpscr(env));
return 0;
}
static const VMStateInfo vmstate_fpscr = {
.name = "fpscr",
.get = get_fpscr,
.put = put_fpscr,
};
static const VMStateDescription vmstate_vfp = {
.name = "cpu/vfp",
.version_id = 3,
.minimum_version_id = 3,
.needed = vfp_needed,
.fields = (VMStateField[]) {
VMSTATE_FLOAT64_ARRAY(env.vfp.regs, ARMCPU, 64),
/* The xregs array is a little awkward because element 1 (FPSCR)
* requires a specific accessor, so we have to split it up in
* the vmstate:
*/
VMSTATE_UINT32(env.vfp.xregs[0], ARMCPU),
VMSTATE_UINT32_SUB_ARRAY(env.vfp.xregs, ARMCPU, 2, 14),
{
.name = "fpscr",
.version_id = 0,
.size = sizeof(uint32_t),
.info = &vmstate_fpscr,
.flags = VMS_SINGLE,
.offset = 0,
},
VMSTATE_END_OF_LIST()
}
};
static bool iwmmxt_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_IWMMXT);
}
static const VMStateDescription vmstate_iwmmxt = {
.name = "cpu/iwmmxt",
.version_id = 1,
.minimum_version_id = 1,
.needed = iwmmxt_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64_ARRAY(env.iwmmxt.regs, ARMCPU, 16),
VMSTATE_UINT32_ARRAY(env.iwmmxt.cregs, ARMCPU, 16),
VMSTATE_END_OF_LIST()
}
};
static bool m_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_M);
}
static const VMStateDescription vmstate_m_faultmask_primask = {
.name = "cpu/m/faultmask-primask",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.v7m.faultmask[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.primask[M_REG_NS], ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_m = {
.name = "cpu/m",
.version_id = 4,
.minimum_version_id = 4,
.needed = m_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.v7m.vecbase[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.basepri[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.control[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.ccr, ARMCPU),
VMSTATE_UINT32(env.v7m.cfsr, ARMCPU),
VMSTATE_UINT32(env.v7m.hfsr, ARMCPU),
VMSTATE_UINT32(env.v7m.dfsr, ARMCPU),
VMSTATE_UINT32(env.v7m.mmfar, ARMCPU),
VMSTATE_UINT32(env.v7m.bfar, ARMCPU),
VMSTATE_UINT32(env.v7m.mpu_ctrl[M_REG_NS], ARMCPU),
VMSTATE_INT32(env.v7m.exception, ARMCPU),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_m_faultmask_primask,
NULL
}
};
static bool thumb2ee_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_THUMB2EE);
}
static const VMStateDescription vmstate_thumb2ee = {
.name = "cpu/thumb2ee",
.version_id = 1,
.minimum_version_id = 1,
.needed = thumb2ee_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.teecr, ARMCPU),
VMSTATE_UINT32(env.teehbr, ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static bool pmsav7_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_PMSA) &&
arm_feature(env, ARM_FEATURE_V7) &&
!arm_feature(env, ARM_FEATURE_V8);
}
static bool pmsav7_rgnr_vmstate_validate(void *opaque, int version_id)
{
ARMCPU *cpu = opaque;
return cpu->env.pmsav7.rnr[M_REG_NS] < cpu->pmsav7_dregion;
}
static const VMStateDescription vmstate_pmsav7 = {
.name = "cpu/pmsav7",
.version_id = 1,
.minimum_version_id = 1,
.needed = pmsav7_needed,
.fields = (VMStateField[]) {
VMSTATE_VARRAY_UINT32(env.pmsav7.drbar, ARMCPU, pmsav7_dregion, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(env.pmsav7.drsr, ARMCPU, pmsav7_dregion, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(env.pmsav7.dracr, ARMCPU, pmsav7_dregion, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VALIDATE("rgnr is valid", pmsav7_rgnr_vmstate_validate),
VMSTATE_END_OF_LIST()
}
};
static bool pmsav7_rnr_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
/* For R profile cores pmsav7.rnr is migrated via the cpreg
* "RGNR" definition in helper.h. For M profile we have to
* migrate it separately.
*/
return arm_feature(env, ARM_FEATURE_M);
}
static const VMStateDescription vmstate_pmsav7_rnr = {
.name = "cpu/pmsav7-rnr",
.version_id = 1,
.minimum_version_id = 1,
.needed = pmsav7_rnr_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.pmsav7.rnr[M_REG_NS], ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static bool pmsav8_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_PMSA) &&
arm_feature(env, ARM_FEATURE_V8);
}
static const VMStateDescription vmstate_pmsav8 = {
.name = "cpu/pmsav8",
.version_id = 1,
.minimum_version_id = 1,
.needed = pmsav8_needed,
.fields = (VMStateField[]) {
VMSTATE_VARRAY_UINT32(env.pmsav8.rbar[M_REG_NS], ARMCPU, pmsav7_dregion,
0, vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(env.pmsav8.rlar[M_REG_NS], ARMCPU, pmsav7_dregion,
0, vmstate_info_uint32, uint32_t),
VMSTATE_UINT32(env.pmsav8.mair0[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.pmsav8.mair1[M_REG_NS], ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static bool s_rnr_vmstate_validate(void *opaque, int version_id)
{
ARMCPU *cpu = opaque;
return cpu->env.pmsav7.rnr[M_REG_S] < cpu->pmsav7_dregion;
}
static bool m_security_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_M_SECURITY);
}
static const VMStateDescription vmstate_m_security = {
.name = "cpu/m-security",
.version_id = 1,
.minimum_version_id = 1,
.needed = m_security_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.v7m.secure, ARMCPU),
VMSTATE_UINT32(env.v7m.basepri[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.primask[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.faultmask[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.control[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.vecbase[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.pmsav8.mair0[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.pmsav8.mair1[M_REG_S], ARMCPU),
VMSTATE_VARRAY_UINT32(env.pmsav8.rbar[M_REG_S], ARMCPU, pmsav7_dregion,
0, vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(env.pmsav8.rlar[M_REG_S], ARMCPU, pmsav7_dregion,
0, vmstate_info_uint32, uint32_t),
VMSTATE_UINT32(env.pmsav7.rnr[M_REG_S], ARMCPU),
VMSTATE_VALIDATE("secure MPU_RNR is valid", s_rnr_vmstate_validate),
VMSTATE_UINT32(env.v7m.mpu_ctrl[M_REG_S], ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static int get_cpsr(QEMUFile *f, void *opaque, size_t size,
VMStateField *field)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
uint32_t val = qemu_get_be32(f);
if (arm_feature(env, ARM_FEATURE_M)) {
if (val & XPSR_EXCP) {
/* This is a CPSR format value from an older QEMU. (We can tell
* because values transferred in XPSR format always have zero
* for the EXCP field, and CPSR format will always have bit 4
* set in CPSR_M.) Rearrange it into XPSR format. The significant
* differences are that the T bit is not in the same place, the
* primask/faultmask info may be in the CPSR I and F bits, and
* we do not want the mode bits.
* We know that this cleanup happened before v8M, so there
* is no complication with banked primask/faultmask.
*/
uint32_t newval = val;
assert(!arm_feature(env, ARM_FEATURE_M_SECURITY));
newval &= (CPSR_NZCV | CPSR_Q | CPSR_IT | CPSR_GE);
if (val & CPSR_T) {
newval |= XPSR_T;
}
/* If the I or F bits are set then this is a migration from
* an old QEMU which still stored the M profile FAULTMASK
* and PRIMASK in env->daif. For a new QEMU, the data is
* transferred using the vmstate_m_faultmask_primask subsection.
*/
if (val & CPSR_F) {
env->v7m.faultmask[M_REG_NS] = 1;
}
if (val & CPSR_I) {
env->v7m.primask[M_REG_NS] = 1;
}
val = newval;
}
/* Ignore the low bits, they are handled by vmstate_m. */
xpsr_write(env, val, ~XPSR_EXCP);
return 0;
}
env->aarch64 = ((val & PSTATE_nRW) == 0);
if (is_a64(env)) {
pstate_write(env, val);
return 0;
}
cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
return 0;
}
static int put_cpsr(QEMUFile *f, void *opaque, size_t size,
VMStateField *field, QJSON *vmdesc)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
uint32_t val;
if (arm_feature(env, ARM_FEATURE_M)) {
/* The low 9 bits are v7m.exception, which is handled by vmstate_m. */
val = xpsr_read(env) & ~XPSR_EXCP;
} else if (is_a64(env)) {
val = pstate_read(env);
} else {
val = cpsr_read(env);
}
qemu_put_be32(f, val);
return 0;
}
static const VMStateInfo vmstate_cpsr = {
.name = "cpsr",
.get = get_cpsr,
.put = put_cpsr,
};
static int get_power(QEMUFile *f, void *opaque, size_t size,
VMStateField *field)
{
ARMCPU *cpu = opaque;
bool powered_off = qemu_get_byte(f);
cpu->power_state = powered_off ? PSCI_OFF : PSCI_ON;
return 0;
}
static int put_power(QEMUFile *f, void *opaque, size_t size,
VMStateField *field, QJSON *vmdesc)
{
ARMCPU *cpu = opaque;
/* Migration should never happen while we transition power states */
if (cpu->power_state == PSCI_ON ||
cpu->power_state == PSCI_OFF) {
bool powered_off = (cpu->power_state == PSCI_OFF) ? true : false;
qemu_put_byte(f, powered_off);
return 0;
} else {
return 1;
}
}
static const VMStateInfo vmstate_powered_off = {
.name = "powered_off",
.get = get_power,
.put = put_power,
};
static void cpu_pre_save(void *opaque)
{
ARMCPU *cpu = opaque;
if (kvm_enabled()) {
if (!write_kvmstate_to_list(cpu)) {
/* This should never fail */
abort();
}
} else {
if (!write_cpustate_to_list(cpu)) {
/* This should never fail. */
abort();
}
}
cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
memcpy(cpu->cpreg_vmstate_indexes, cpu->cpreg_indexes,
cpu->cpreg_array_len * sizeof(uint64_t));
memcpy(cpu->cpreg_vmstate_values, cpu->cpreg_values,
cpu->cpreg_array_len * sizeof(uint64_t));
}
static int cpu_post_load(void *opaque, int version_id)
{
ARMCPU *cpu = opaque;
int i, v;
/* Update the values list from the incoming migration data.
* Anything in the incoming data which we don't know about is
* a migration failure; anything we know about but the incoming
* data doesn't specify retains its current (reset) value.
* The indexes list remains untouched -- we only inspect the
* incoming migration index list so we can match the values array
* entries with the right slots in our own values array.
*/
for (i = 0, v = 0; i < cpu->cpreg_array_len
&& v < cpu->cpreg_vmstate_array_len; i++) {
if (cpu->cpreg_vmstate_indexes[v] > cpu->cpreg_indexes[i]) {
/* register in our list but not incoming : skip it */
continue;
}
if (cpu->cpreg_vmstate_indexes[v] < cpu->cpreg_indexes[i]) {
/* register in their list but not ours: fail migration */
return -1;
}
/* matching register, copy the value over */
cpu->cpreg_values[i] = cpu->cpreg_vmstate_values[v];
v++;
}
if (kvm_enabled()) {
if (!write_list_to_kvmstate(cpu, KVM_PUT_FULL_STATE)) {
return -1;
}
/* Note that it's OK for the TCG side not to know about
* every register in the list; KVM is authoritative if
* we're using it.
*/
write_list_to_cpustate(cpu);
} else {
if (!write_list_to_cpustate(cpu)) {
return -1;
}
}
hw_breakpoint_update_all(cpu);
hw_watchpoint_update_all(cpu);
return 0;
}
const VMStateDescription vmstate_arm_cpu = {
.name = "cpu",
.version_id = 22,
.minimum_version_id = 22,
.pre_save = cpu_pre_save,
.post_load = cpu_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(env.regs, ARMCPU, 16),
VMSTATE_UINT64_ARRAY(env.xregs, ARMCPU, 32),
VMSTATE_UINT64(env.pc, ARMCPU),
{
.name = "cpsr",
.version_id = 0,
.size = sizeof(uint32_t),
.info = &vmstate_cpsr,
.flags = VMS_SINGLE,
.offset = 0,
},
VMSTATE_UINT32(env.spsr, ARMCPU),
VMSTATE_UINT64_ARRAY(env.banked_spsr, ARMCPU, 8),
VMSTATE_UINT32_ARRAY(env.banked_r13, ARMCPU, 8),
VMSTATE_UINT32_ARRAY(env.banked_r14, ARMCPU, 8),
VMSTATE_UINT32_ARRAY(env.usr_regs, ARMCPU, 5),
VMSTATE_UINT32_ARRAY(env.fiq_regs, ARMCPU, 5),
VMSTATE_UINT64_ARRAY(env.elr_el, ARMCPU, 4),
VMSTATE_UINT64_ARRAY(env.sp_el, ARMCPU, 4),
/* The length-check must come before the arrays to avoid
* incoming data possibly overflowing the array.
*/
VMSTATE_INT32_POSITIVE_LE(cpreg_vmstate_array_len, ARMCPU),
VMSTATE_VARRAY_INT32(cpreg_vmstate_indexes, ARMCPU,
cpreg_vmstate_array_len,
0, vmstate_info_uint64, uint64_t),
VMSTATE_VARRAY_INT32(cpreg_vmstate_values, ARMCPU,
cpreg_vmstate_array_len,
0, vmstate_info_uint64, uint64_t),
VMSTATE_UINT64(env.exclusive_addr, ARMCPU),
VMSTATE_UINT64(env.exclusive_val, ARMCPU),
VMSTATE_UINT64(env.exclusive_high, ARMCPU),
VMSTATE_UINT64(env.features, ARMCPU),
VMSTATE_UINT32(env.exception.syndrome, ARMCPU),
VMSTATE_UINT32(env.exception.fsr, ARMCPU),
VMSTATE_UINT64(env.exception.vaddress, ARMCPU),
VMSTATE_TIMER_PTR(gt_timer[GTIMER_PHYS], ARMCPU),
VMSTATE_TIMER_PTR(gt_timer[GTIMER_VIRT], ARMCPU),
{
.name = "power_state",
.version_id = 0,
.size = sizeof(bool),
.info = &vmstate_powered_off,
.flags = VMS_SINGLE,
.offset = 0,
},
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_vfp,
&vmstate_iwmmxt,
&vmstate_m,
&vmstate_thumb2ee,
/* pmsav7_rnr must come before pmsav7 so that we have the
* region number before we test it in the VMSTATE_VALIDATE
* in vmstate_pmsav7.
*/
&vmstate_pmsav7_rnr,
&vmstate_pmsav7,
&vmstate_pmsav8,
&vmstate_m_security,
NULL
}
};