qemu-e2k/hw/ppc/spapr_numa.c

277 lines
9.0 KiB
C

/*
* QEMU PowerPC pSeries Logical Partition NUMA associativity handling
*
* Copyright IBM Corp. 2020
*
* Authors:
* Daniel Henrique Barboza <danielhb413@gmail.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "hw/ppc/spapr_numa.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/fdt.h"
/* Moved from hw/ppc/spapr_pci_nvlink2.c */
#define SPAPR_GPU_NUMA_ID (cpu_to_be32(1))
static bool spapr_numa_is_symmetrical(MachineState *ms)
{
int src, dst;
int nb_numa_nodes = ms->numa_state->num_nodes;
NodeInfo *numa_info = ms->numa_state->nodes;
for (src = 0; src < nb_numa_nodes; src++) {
for (dst = src; dst < nb_numa_nodes; dst++) {
if (numa_info[src].distance[dst] !=
numa_info[dst].distance[src]) {
return false;
}
}
}
return true;
}
void spapr_numa_associativity_init(SpaprMachineState *spapr,
MachineState *machine)
{
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
int nb_numa_nodes = machine->numa_state->num_nodes;
int i, j, max_nodes_with_gpus;
/*
* For all associativity arrays: first position is the size,
* position MAX_DISTANCE_REF_POINTS is always the numa_id,
* represented by the index 'i'.
*
* This will break on sparse NUMA setups, when/if QEMU starts
* to support it, because there will be no more guarantee that
* 'i' will be a valid node_id set by the user.
*/
for (i = 0; i < nb_numa_nodes; i++) {
spapr->numa_assoc_array[i][0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i);
}
/*
* Initialize NVLink GPU associativity arrays. We know that
* the first GPU will take the first available NUMA id, and
* we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine.
* At this point we're not sure if there are GPUs or not, but
* let's initialize the associativity arrays and allow NVLink
* GPUs to be handled like regular NUMA nodes later on.
*/
max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM;
for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) {
spapr->numa_assoc_array[i][0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
for (j = 1; j < MAX_DISTANCE_REF_POINTS; j++) {
uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
spapr->numa_assoc_array[i][j] = gpu_assoc;
}
spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i);
}
/*
* Legacy NUMA guests (pseries-5.1 and older, or guests with only
* 1 NUMA node) will not benefit from anything we're going to do
* after this point.
*/
if (spapr_machine_using_legacy_numa(spapr)) {
return;
}
if (!spapr_numa_is_symmetrical(machine)) {
error_report("Asymmetrical NUMA topologies aren't supported "
"in the pSeries machine");
exit(EXIT_FAILURE);
}
}
void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
int offset, int nodeid)
{
_FDT((fdt_setprop(fdt, offset, "ibm,associativity",
spapr->numa_assoc_array[nodeid],
sizeof(spapr->numa_assoc_array[nodeid]))));
}
static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
PowerPCCPU *cpu)
{
uint32_t *vcpu_assoc = g_new(uint32_t, VCPU_ASSOC_SIZE);
int index = spapr_get_vcpu_id(cpu);
/*
* VCPUs have an extra 'cpu_id' value in ibm,associativity
* compared to other resources. Increment the size at index
* 0, put cpu_id last, then copy the remaining associativity
* domains.
*/
vcpu_assoc[0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS + 1);
vcpu_assoc[VCPU_ASSOC_SIZE - 1] = cpu_to_be32(index);
memcpy(vcpu_assoc + 1, spapr->numa_assoc_array[cpu->node_id] + 1,
(VCPU_ASSOC_SIZE - 2) * sizeof(uint32_t));
return vcpu_assoc;
}
int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
int offset, PowerPCCPU *cpu)
{
g_autofree uint32_t *vcpu_assoc = NULL;
vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);
/* Advertise NUMA via ibm,associativity */
return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
VCPU_ASSOC_SIZE * sizeof(uint32_t));
}
int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
int offset)
{
MachineState *machine = MACHINE(spapr);
int nb_numa_nodes = machine->numa_state->num_nodes;
int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
uint32_t *int_buf, *cur_index, buf_len;
int ret, i;
/* ibm,associativity-lookup-arrays */
buf_len = (nr_nodes * MAX_DISTANCE_REF_POINTS + 2) * sizeof(uint32_t);
cur_index = int_buf = g_malloc0(buf_len);
int_buf[0] = cpu_to_be32(nr_nodes);
/* Number of entries per associativity list */
int_buf[1] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
cur_index += 2;
for (i = 0; i < nr_nodes; i++) {
/*
* For the lookup-array we use the ibm,associativity array,
* from numa_assoc_array. without the first element (size).
*/
uint32_t *associativity = spapr->numa_assoc_array[i];
memcpy(cur_index, ++associativity,
sizeof(uint32_t) * MAX_DISTANCE_REF_POINTS);
cur_index += MAX_DISTANCE_REF_POINTS;
}
ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
(cur_index - int_buf) * sizeof(uint32_t));
g_free(int_buf);
return ret;
}
/*
* Helper that writes ibm,associativity-reference-points and
* max-associativity-domains in the RTAS pointed by @rtas
* in the DT @fdt.
*/
void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
{
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
uint32_t refpoints[] = {
cpu_to_be32(0x4),
cpu_to_be32(0x4),
cpu_to_be32(0x2),
};
uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
uint32_t maxdomains[] = {
cpu_to_be32(4),
maxdomain,
maxdomain,
maxdomain,
cpu_to_be32(spapr->gpu_numa_id),
};
if (smc->pre_5_1_assoc_refpoints) {
nr_refpoints = 2;
}
_FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
refpoints, nr_refpoints * sizeof(refpoints[0])));
_FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
maxdomains, sizeof(maxdomains)));
}
static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
g_autofree uint32_t *vcpu_assoc = NULL;
target_ulong flags = args[0];
target_ulong procno = args[1];
PowerPCCPU *tcpu;
int idx, assoc_idx;
/* only support procno from H_REGISTER_VPA */
if (flags != 0x1) {
return H_FUNCTION;
}
tcpu = spapr_find_cpu(procno);
if (tcpu == NULL) {
return H_P2;
}
/*
* Given that we want to be flexible with the sizes and indexes,
* we must consider that there is a hard limit of how many
* associativities domain we can fit in R4 up to R9, which would be
* 12 associativity domains for vcpus. Assert and bail if that's
* not the case.
*/
G_STATIC_ASSERT((VCPU_ASSOC_SIZE - 1) <= 12);
vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
/* assoc_idx starts at 1 to skip associativity size */
assoc_idx = 1;
#define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
((uint64_t)(b) & 0xffffffff))
for (idx = 0; idx < 6; idx++) {
int32_t a, b;
/*
* vcpu_assoc[] will contain the associativity domains for tcpu,
* including tcpu->node_id and procno, meaning that we don't
* need to use these variables here.
*
* We'll read 2 values at a time to fill up the ASSOCIATIVITY()
* macro. The ternary will fill the remaining registers with -1
* after we went through vcpu_assoc[].
*/
a = assoc_idx < VCPU_ASSOC_SIZE ?
be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
b = assoc_idx < VCPU_ASSOC_SIZE ?
be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
args[idx] = ASSOCIATIVITY(a, b);
}
#undef ASSOCIATIVITY
return H_SUCCESS;
}
static void spapr_numa_register_types(void)
{
/* Virtual Processor Home Node */
spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
h_home_node_associativity);
}
type_init(spapr_numa_register_types)