qemu-e2k/hw/rtc/pl031.c
Gan Qixin b026d4a6e6 pl031: Use timer_free() in the finalize function to avoid memleaks
When running device-introspect-test, a memory leak occurred in the pl031_init
function, this patch use timer_free() in the finalize function to fix it.

ASAN shows memory leak stack:

Direct leak of 48 byte(s) in 1 object(s) allocated from:
    #0 0xffffab97e1f0 in __interceptor_calloc (/lib64/libasan.so.5+0xee1f0)
    #1 0xffffab256800 in g_malloc0 (/lib64/libglib-2.0.so.0+0x56800)
    #2 0xaaabf5621cfc in timer_new_full qemu/include/qemu/timer.h:523
    #3 0xaaabf5621cfc in timer_new qemu/include/qemu/timer.h:544
    #4 0xaaabf5621cfc in timer_new_ns qemu/include/qemu/timer.h:562
    #5 0xaaabf5621cfc in pl031_init qemu/hw/rtc/pl031.c:194
    #6 0xaaabf6339f6c in object_initialize_with_type qemu/qom/object.c:515
    #7 0xaaabf633a1e0 in object_new_with_type qemu/qom/object.c:729
    #8 0xaaabf6375e40 in qmp_device_list_properties qemu/qom/qom-qmp-cmds.c:153
    #9 0xaaabf5a95540 in qdev_device_help qemu/softmmu/qdev-monitor.c:283
    #10 0xaaabf5a96940 in qmp_device_add qemu/softmmu/qdev-monitor.c:801
    #11 0xaaabf5a96e70 in hmp_device_add qemu/softmmu/qdev-monitor.c:916
    #12 0xaaabf5ac0a2c in handle_hmp_command qemu/monitor/hmp.c:1100

Reported-by: Euler Robot <euler.robot@huawei.com>
Signed-off-by: Gan Qixin <ganqixin@huawei.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-Id: <20210112112705.380534-2-ganqixin@huawei.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2021-01-18 11:51:26 +01:00

349 lines
9.4 KiB
C

/*
* ARM AMBA PrimeCell PL031 RTC
*
* Copyright (c) 2007 CodeSourcery
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "hw/rtc/pl031.h"
#include "migration/vmstate.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "hw/sysbus.h"
#include "qemu/timer.h"
#include "sysemu/sysemu.h"
#include "qemu/cutils.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "trace.h"
#define RTC_DR 0x00 /* Data read register */
#define RTC_MR 0x04 /* Match register */
#define RTC_LR 0x08 /* Data load register */
#define RTC_CR 0x0c /* Control register */
#define RTC_IMSC 0x10 /* Interrupt mask and set register */
#define RTC_RIS 0x14 /* Raw interrupt status register */
#define RTC_MIS 0x18 /* Masked interrupt status register */
#define RTC_ICR 0x1c /* Interrupt clear register */
static const unsigned char pl031_id[] = {
0x31, 0x10, 0x14, 0x00, /* Device ID */
0x0d, 0xf0, 0x05, 0xb1 /* Cell ID */
};
static void pl031_update(PL031State *s)
{
uint32_t flags = s->is & s->im;
trace_pl031_irq_state(flags);
qemu_set_irq(s->irq, flags);
}
static void pl031_interrupt(void * opaque)
{
PL031State *s = (PL031State *)opaque;
s->is = 1;
trace_pl031_alarm_raised();
pl031_update(s);
}
static uint32_t pl031_get_count(PL031State *s)
{
int64_t now = qemu_clock_get_ns(rtc_clock);
return s->tick_offset + now / NANOSECONDS_PER_SECOND;
}
static void pl031_set_alarm(PL031State *s)
{
uint32_t ticks;
/* The timer wraps around. This subtraction also wraps in the same way,
and gives correct results when alarm < now_ticks. */
ticks = s->mr - pl031_get_count(s);
trace_pl031_set_alarm(ticks);
if (ticks == 0) {
timer_del(s->timer);
pl031_interrupt(s);
} else {
int64_t now = qemu_clock_get_ns(rtc_clock);
timer_mod(s->timer, now + (int64_t)ticks * NANOSECONDS_PER_SECOND);
}
}
static uint64_t pl031_read(void *opaque, hwaddr offset,
unsigned size)
{
PL031State *s = (PL031State *)opaque;
uint64_t r;
switch (offset) {
case RTC_DR:
r = pl031_get_count(s);
break;
case RTC_MR:
r = s->mr;
break;
case RTC_IMSC:
r = s->im;
break;
case RTC_RIS:
r = s->is;
break;
case RTC_LR:
r = s->lr;
break;
case RTC_CR:
/* RTC is permanently enabled. */
r = 1;
break;
case RTC_MIS:
r = s->is & s->im;
break;
case 0xfe0 ... 0xfff:
r = pl031_id[(offset - 0xfe0) >> 2];
break;
case RTC_ICR:
qemu_log_mask(LOG_GUEST_ERROR,
"pl031: read of write-only register at offset 0x%x\n",
(int)offset);
r = 0;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"pl031_read: Bad offset 0x%x\n", (int)offset);
r = 0;
break;
}
trace_pl031_read(offset, r);
return r;
}
static void pl031_write(void * opaque, hwaddr offset,
uint64_t value, unsigned size)
{
PL031State *s = (PL031State *)opaque;
trace_pl031_write(offset, value);
switch (offset) {
case RTC_LR:
s->tick_offset += value - pl031_get_count(s);
pl031_set_alarm(s);
break;
case RTC_MR:
s->mr = value;
pl031_set_alarm(s);
break;
case RTC_IMSC:
s->im = value & 1;
pl031_update(s);
break;
case RTC_ICR:
s->is &= ~value;
pl031_update(s);
break;
case RTC_CR:
/* Written value is ignored. */
break;
case RTC_DR:
case RTC_MIS:
case RTC_RIS:
qemu_log_mask(LOG_GUEST_ERROR,
"pl031: write to read-only register at offset 0x%x\n",
(int)offset);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"pl031_write: Bad offset 0x%x\n", (int)offset);
break;
}
}
static const MemoryRegionOps pl031_ops = {
.read = pl031_read,
.write = pl031_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void pl031_init(Object *obj)
{
PL031State *s = PL031(obj);
SysBusDevice *dev = SYS_BUS_DEVICE(obj);
struct tm tm;
memory_region_init_io(&s->iomem, obj, &pl031_ops, s, "pl031", 0x1000);
sysbus_init_mmio(dev, &s->iomem);
sysbus_init_irq(dev, &s->irq);
qemu_get_timedate(&tm, 0);
s->tick_offset = mktimegm(&tm) -
qemu_clock_get_ns(rtc_clock) / NANOSECONDS_PER_SECOND;
s->timer = timer_new_ns(rtc_clock, pl031_interrupt, s);
}
static void pl031_finalize(Object *obj)
{
PL031State *s = PL031(obj);
timer_free(s->timer);
}
static int pl031_pre_save(void *opaque)
{
PL031State *s = opaque;
/*
* The PL031 device model code uses the tick_offset field, which is
* the offset between what the guest RTC should read and what the
* QEMU rtc_clock reads:
* guest_rtc = rtc_clock + tick_offset
* and so
* tick_offset = guest_rtc - rtc_clock
*
* We want to migrate this offset, which sounds straightforward.
* Unfortunately older versions of QEMU migrated a conversion of this
* offset into an offset from the vm_clock. (This was in turn an
* attempt to be compatible with even older QEMU versions, but it
* has incorrect behaviour if the rtc_clock is not the same as the
* vm_clock.) So we put the actual tick_offset into a migration
* subsection, and the backwards-compatible time-relative-to-vm_clock
* in the main migration state.
*
* Calculate base time relative to QEMU_CLOCK_VIRTUAL:
*/
int64_t delta = qemu_clock_get_ns(rtc_clock) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
s->tick_offset_vmstate = s->tick_offset + delta / NANOSECONDS_PER_SECOND;
return 0;
}
static int pl031_pre_load(void *opaque)
{
PL031State *s = opaque;
s->tick_offset_migrated = false;
return 0;
}
static int pl031_post_load(void *opaque, int version_id)
{
PL031State *s = opaque;
/*
* If we got the tick_offset subsection, then we can just use
* the value in that. Otherwise the source is an older QEMU and
* has given us the offset from the vm_clock; convert it back to
* an offset from the rtc_clock. This will cause time to incorrectly
* go backwards compared to the host RTC, but this is unavoidable.
*/
if (!s->tick_offset_migrated) {
int64_t delta = qemu_clock_get_ns(rtc_clock) -
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
s->tick_offset = s->tick_offset_vmstate -
delta / NANOSECONDS_PER_SECOND;
}
pl031_set_alarm(s);
return 0;
}
static int pl031_tick_offset_post_load(void *opaque, int version_id)
{
PL031State *s = opaque;
s->tick_offset_migrated = true;
return 0;
}
static bool pl031_tick_offset_needed(void *opaque)
{
PL031State *s = opaque;
return s->migrate_tick_offset;
}
static const VMStateDescription vmstate_pl031_tick_offset = {
.name = "pl031/tick-offset",
.version_id = 1,
.minimum_version_id = 1,
.needed = pl031_tick_offset_needed,
.post_load = pl031_tick_offset_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32(tick_offset, PL031State),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_pl031 = {
.name = "pl031",
.version_id = 1,
.minimum_version_id = 1,
.pre_save = pl031_pre_save,
.pre_load = pl031_pre_load,
.post_load = pl031_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32(tick_offset_vmstate, PL031State),
VMSTATE_UINT32(mr, PL031State),
VMSTATE_UINT32(lr, PL031State),
VMSTATE_UINT32(cr, PL031State),
VMSTATE_UINT32(im, PL031State),
VMSTATE_UINT32(is, PL031State),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_pl031_tick_offset,
NULL
}
};
static Property pl031_properties[] = {
/*
* True to correctly migrate the tick offset of the RTC. False to
* obtain backward migration compatibility with older QEMU versions,
* at the expense of the guest RTC going backwards compared with the
* host RTC when the VM is saved/restored if using -rtc host.
* (Even if set to 'true' older QEMU can migrate forward to newer QEMU;
* 'false' also permits newer QEMU to migrate to older QEMU.)
*/
DEFINE_PROP_BOOL("migrate-tick-offset",
PL031State, migrate_tick_offset, true),
DEFINE_PROP_END_OF_LIST()
};
static void pl031_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->vmsd = &vmstate_pl031;
device_class_set_props(dc, pl031_properties);
}
static const TypeInfo pl031_info = {
.name = TYPE_PL031,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(PL031State),
.instance_init = pl031_init,
.instance_finalize = pl031_finalize,
.class_init = pl031_class_init,
};
static void pl031_register_types(void)
{
type_register_static(&pl031_info);
}
type_init(pl031_register_types)