qemu-e2k/memory.c
Andreas Färber 1470a0cdca memory: Fix adjust_endianness()
Commit a621f38de85598a13d8d8524d1a94fc6a1818215 (Direct dispatch
through MemoryRegion) moved byte swaps to a central function.

Add a missing break, so that long-sized byte swaps don't abort.

Signed-off-by: Andreas Färber <afaerber@suse.de>
Reviewed-by: Aurelien Jarno <aurelien@aurel32.net>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-01-08 13:10:16 +02:00

1650 lines
48 KiB
C

/*
* Physical memory management
*
* Copyright 2011 Red Hat, Inc. and/or its affiliates
*
* Authors:
* Avi Kivity <avi@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include "memory.h"
#include "exec-memory.h"
#include "ioport.h"
#include "bitops.h"
#include "kvm.h"
#include <assert.h>
#define WANT_EXEC_OBSOLETE
#include "exec-obsolete.h"
unsigned memory_region_transaction_depth = 0;
static bool memory_region_update_pending = false;
static bool global_dirty_log = false;
static QLIST_HEAD(, MemoryListener) memory_listeners
= QLIST_HEAD_INITIALIZER(memory_listeners);
typedef struct AddrRange AddrRange;
/*
* Note using signed integers limits us to physical addresses at most
* 63 bits wide. They are needed for negative offsetting in aliases
* (large MemoryRegion::alias_offset).
*/
struct AddrRange {
Int128 start;
Int128 size;
};
static AddrRange addrrange_make(Int128 start, Int128 size)
{
return (AddrRange) { start, size };
}
static bool addrrange_equal(AddrRange r1, AddrRange r2)
{
return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
}
static Int128 addrrange_end(AddrRange r)
{
return int128_add(r.start, r.size);
}
static AddrRange addrrange_shift(AddrRange range, Int128 delta)
{
int128_addto(&range.start, delta);
return range;
}
static bool addrrange_contains(AddrRange range, Int128 addr)
{
return int128_ge(addr, range.start)
&& int128_lt(addr, addrrange_end(range));
}
static bool addrrange_intersects(AddrRange r1, AddrRange r2)
{
return addrrange_contains(r1, r2.start)
|| addrrange_contains(r2, r1.start);
}
static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
{
Int128 start = int128_max(r1.start, r2.start);
Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
return addrrange_make(start, int128_sub(end, start));
}
struct CoalescedMemoryRange {
AddrRange addr;
QTAILQ_ENTRY(CoalescedMemoryRange) link;
};
struct MemoryRegionIoeventfd {
AddrRange addr;
bool match_data;
uint64_t data;
int fd;
};
static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
MemoryRegionIoeventfd b)
{
if (int128_lt(a.addr.start, b.addr.start)) {
return true;
} else if (int128_gt(a.addr.start, b.addr.start)) {
return false;
} else if (int128_lt(a.addr.size, b.addr.size)) {
return true;
} else if (int128_gt(a.addr.size, b.addr.size)) {
return false;
} else if (a.match_data < b.match_data) {
return true;
} else if (a.match_data > b.match_data) {
return false;
} else if (a.match_data) {
if (a.data < b.data) {
return true;
} else if (a.data > b.data) {
return false;
}
}
if (a.fd < b.fd) {
return true;
} else if (a.fd > b.fd) {
return false;
}
return false;
}
static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
MemoryRegionIoeventfd b)
{
return !memory_region_ioeventfd_before(a, b)
&& !memory_region_ioeventfd_before(b, a);
}
typedef struct FlatRange FlatRange;
typedef struct FlatView FlatView;
/* Range of memory in the global map. Addresses are absolute. */
struct FlatRange {
MemoryRegion *mr;
target_phys_addr_t offset_in_region;
AddrRange addr;
uint8_t dirty_log_mask;
bool readable;
bool readonly;
};
/* Flattened global view of current active memory hierarchy. Kept in sorted
* order.
*/
struct FlatView {
FlatRange *ranges;
unsigned nr;
unsigned nr_allocated;
};
typedef struct AddressSpace AddressSpace;
typedef struct AddressSpaceOps AddressSpaceOps;
/* A system address space - I/O, memory, etc. */
struct AddressSpace {
const AddressSpaceOps *ops;
MemoryRegion *root;
FlatView current_map;
int ioeventfd_nb;
MemoryRegionIoeventfd *ioeventfds;
};
struct AddressSpaceOps {
void (*range_add)(AddressSpace *as, FlatRange *fr);
void (*range_del)(AddressSpace *as, FlatRange *fr);
void (*log_start)(AddressSpace *as, FlatRange *fr);
void (*log_stop)(AddressSpace *as, FlatRange *fr);
void (*ioeventfd_add)(AddressSpace *as, MemoryRegionIoeventfd *fd);
void (*ioeventfd_del)(AddressSpace *as, MemoryRegionIoeventfd *fd);
};
#define FOR_EACH_FLAT_RANGE(var, view) \
for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
static bool flatrange_equal(FlatRange *a, FlatRange *b)
{
return a->mr == b->mr
&& addrrange_equal(a->addr, b->addr)
&& a->offset_in_region == b->offset_in_region
&& a->readable == b->readable
&& a->readonly == b->readonly;
}
static void flatview_init(FlatView *view)
{
view->ranges = NULL;
view->nr = 0;
view->nr_allocated = 0;
}
/* Insert a range into a given position. Caller is responsible for maintaining
* sorting order.
*/
static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
{
if (view->nr == view->nr_allocated) {
view->nr_allocated = MAX(2 * view->nr, 10);
view->ranges = g_realloc(view->ranges,
view->nr_allocated * sizeof(*view->ranges));
}
memmove(view->ranges + pos + 1, view->ranges + pos,
(view->nr - pos) * sizeof(FlatRange));
view->ranges[pos] = *range;
++view->nr;
}
static void flatview_destroy(FlatView *view)
{
g_free(view->ranges);
}
static bool can_merge(FlatRange *r1, FlatRange *r2)
{
return int128_eq(addrrange_end(r1->addr), r2->addr.start)
&& r1->mr == r2->mr
&& int128_eq(int128_add(int128_make64(r1->offset_in_region),
r1->addr.size),
int128_make64(r2->offset_in_region))
&& r1->dirty_log_mask == r2->dirty_log_mask
&& r1->readable == r2->readable
&& r1->readonly == r2->readonly;
}
/* Attempt to simplify a view by merging ajacent ranges */
static void flatview_simplify(FlatView *view)
{
unsigned i, j;
i = 0;
while (i < view->nr) {
j = i + 1;
while (j < view->nr
&& can_merge(&view->ranges[j-1], &view->ranges[j])) {
int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
++j;
}
++i;
memmove(&view->ranges[i], &view->ranges[j],
(view->nr - j) * sizeof(view->ranges[j]));
view->nr -= j - i;
}
}
static void memory_region_read_accessor(void *opaque,
target_phys_addr_t addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask)
{
MemoryRegion *mr = opaque;
uint64_t tmp;
tmp = mr->ops->read(mr->opaque, addr, size);
*value |= (tmp & mask) << shift;
}
static void memory_region_write_accessor(void *opaque,
target_phys_addr_t addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask)
{
MemoryRegion *mr = opaque;
uint64_t tmp;
tmp = (*value >> shift) & mask;
mr->ops->write(mr->opaque, addr, tmp, size);
}
static void access_with_adjusted_size(target_phys_addr_t addr,
uint64_t *value,
unsigned size,
unsigned access_size_min,
unsigned access_size_max,
void (*access)(void *opaque,
target_phys_addr_t addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask),
void *opaque)
{
uint64_t access_mask;
unsigned access_size;
unsigned i;
if (!access_size_min) {
access_size_min = 1;
}
if (!access_size_max) {
access_size_max = 4;
}
access_size = MAX(MIN(size, access_size_max), access_size_min);
access_mask = -1ULL >> (64 - access_size * 8);
for (i = 0; i < size; i += access_size) {
/* FIXME: big-endian support */
access(opaque, addr + i, value, access_size, i * 8, access_mask);
}
}
static void as_memory_range_add(AddressSpace *as, FlatRange *fr)
{
MemoryRegionSection section = {
.mr = fr->mr,
.offset_within_address_space = int128_get64(fr->addr.start),
.offset_within_region = fr->offset_in_region,
.size = int128_get64(fr->addr.size),
};
cpu_register_physical_memory_log(&section, fr->readable, fr->readonly);
}
static void as_memory_range_del(AddressSpace *as, FlatRange *fr)
{
MemoryRegionSection section = {
.mr = &io_mem_unassigned,
.offset_within_address_space = int128_get64(fr->addr.start),
.offset_within_region = int128_get64(fr->addr.start),
.size = int128_get64(fr->addr.size),
};
cpu_register_physical_memory_log(&section, true, false);
}
static void as_memory_log_start(AddressSpace *as, FlatRange *fr)
{
}
static void as_memory_log_stop(AddressSpace *as, FlatRange *fr)
{
}
static void as_memory_ioeventfd_add(AddressSpace *as, MemoryRegionIoeventfd *fd)
{
int r;
assert(fd->match_data && int128_get64(fd->addr.size) == 4);
r = kvm_set_ioeventfd_mmio_long(fd->fd, int128_get64(fd->addr.start),
fd->data, true);
if (r < 0) {
abort();
}
}
static void as_memory_ioeventfd_del(AddressSpace *as, MemoryRegionIoeventfd *fd)
{
int r;
r = kvm_set_ioeventfd_mmio_long(fd->fd, int128_get64(fd->addr.start),
fd->data, false);
if (r < 0) {
abort();
}
}
static const AddressSpaceOps address_space_ops_memory = {
.range_add = as_memory_range_add,
.range_del = as_memory_range_del,
.log_start = as_memory_log_start,
.log_stop = as_memory_log_stop,
.ioeventfd_add = as_memory_ioeventfd_add,
.ioeventfd_del = as_memory_ioeventfd_del,
};
static AddressSpace address_space_memory = {
.ops = &address_space_ops_memory,
};
static const MemoryRegionPortio *find_portio(MemoryRegion *mr, uint64_t offset,
unsigned width, bool write)
{
const MemoryRegionPortio *mrp;
for (mrp = mr->ops->old_portio; mrp->size; ++mrp) {
if (offset >= mrp->offset && offset < mrp->offset + mrp->len
&& width == mrp->size
&& (write ? (bool)mrp->write : (bool)mrp->read)) {
return mrp;
}
}
return NULL;
}
static void memory_region_iorange_read(IORange *iorange,
uint64_t offset,
unsigned width,
uint64_t *data)
{
MemoryRegion *mr = container_of(iorange, MemoryRegion, iorange);
if (mr->ops->old_portio) {
const MemoryRegionPortio *mrp = find_portio(mr, offset, width, false);
*data = ((uint64_t)1 << (width * 8)) - 1;
if (mrp) {
*data = mrp->read(mr->opaque, offset + mr->offset);
} else if (width == 2) {
mrp = find_portio(mr, offset, 1, false);
assert(mrp);
*data = mrp->read(mr->opaque, offset + mr->offset) |
(mrp->read(mr->opaque, offset + mr->offset + 1) << 8);
}
return;
}
*data = 0;
access_with_adjusted_size(offset + mr->offset, data, width,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_read_accessor, mr);
}
static void memory_region_iorange_write(IORange *iorange,
uint64_t offset,
unsigned width,
uint64_t data)
{
MemoryRegion *mr = container_of(iorange, MemoryRegion, iorange);
if (mr->ops->old_portio) {
const MemoryRegionPortio *mrp = find_portio(mr, offset, width, true);
if (mrp) {
mrp->write(mr->opaque, offset + mr->offset, data);
} else if (width == 2) {
mrp = find_portio(mr, offset, 1, false);
assert(mrp);
mrp->write(mr->opaque, offset + mr->offset, data & 0xff);
mrp->write(mr->opaque, offset + mr->offset + 1, data >> 8);
}
return;
}
access_with_adjusted_size(offset + mr->offset, &data, width,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_write_accessor, mr);
}
static const IORangeOps memory_region_iorange_ops = {
.read = memory_region_iorange_read,
.write = memory_region_iorange_write,
};
static void as_io_range_add(AddressSpace *as, FlatRange *fr)
{
iorange_init(&fr->mr->iorange, &memory_region_iorange_ops,
int128_get64(fr->addr.start), int128_get64(fr->addr.size));
ioport_register(&fr->mr->iorange);
}
static void as_io_range_del(AddressSpace *as, FlatRange *fr)
{
isa_unassign_ioport(int128_get64(fr->addr.start),
int128_get64(fr->addr.size));
}
static void as_io_ioeventfd_add(AddressSpace *as, MemoryRegionIoeventfd *fd)
{
int r;
assert(fd->match_data && int128_get64(fd->addr.size) == 2);
r = kvm_set_ioeventfd_pio_word(fd->fd, int128_get64(fd->addr.start),
fd->data, true);
if (r < 0) {
abort();
}
}
static void as_io_ioeventfd_del(AddressSpace *as, MemoryRegionIoeventfd *fd)
{
int r;
r = kvm_set_ioeventfd_pio_word(fd->fd, int128_get64(fd->addr.start),
fd->data, false);
if (r < 0) {
abort();
}
}
static const AddressSpaceOps address_space_ops_io = {
.range_add = as_io_range_add,
.range_del = as_io_range_del,
.ioeventfd_add = as_io_ioeventfd_add,
.ioeventfd_del = as_io_ioeventfd_del,
};
static AddressSpace address_space_io = {
.ops = &address_space_ops_io,
};
static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
{
while (mr->parent) {
mr = mr->parent;
}
if (mr == address_space_memory.root) {
return &address_space_memory;
}
if (mr == address_space_io.root) {
return &address_space_io;
}
abort();
}
/* Render a memory region into the global view. Ranges in @view obscure
* ranges in @mr.
*/
static void render_memory_region(FlatView *view,
MemoryRegion *mr,
Int128 base,
AddrRange clip,
bool readonly)
{
MemoryRegion *subregion;
unsigned i;
target_phys_addr_t offset_in_region;
Int128 remain;
Int128 now;
FlatRange fr;
AddrRange tmp;
if (!mr->enabled) {
return;
}
int128_addto(&base, int128_make64(mr->addr));
readonly |= mr->readonly;
tmp = addrrange_make(base, mr->size);
if (!addrrange_intersects(tmp, clip)) {
return;
}
clip = addrrange_intersection(tmp, clip);
if (mr->alias) {
int128_subfrom(&base, int128_make64(mr->alias->addr));
int128_subfrom(&base, int128_make64(mr->alias_offset));
render_memory_region(view, mr->alias, base, clip, readonly);
return;
}
/* Render subregions in priority order. */
QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
render_memory_region(view, subregion, base, clip, readonly);
}
if (!mr->terminates) {
return;
}
offset_in_region = int128_get64(int128_sub(clip.start, base));
base = clip.start;
remain = clip.size;
/* Render the region itself into any gaps left by the current view. */
for (i = 0; i < view->nr && int128_nz(remain); ++i) {
if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
continue;
}
if (int128_lt(base, view->ranges[i].addr.start)) {
now = int128_min(remain,
int128_sub(view->ranges[i].addr.start, base));
fr.mr = mr;
fr.offset_in_region = offset_in_region;
fr.addr = addrrange_make(base, now);
fr.dirty_log_mask = mr->dirty_log_mask;
fr.readable = mr->readable;
fr.readonly = readonly;
flatview_insert(view, i, &fr);
++i;
int128_addto(&base, now);
offset_in_region += int128_get64(now);
int128_subfrom(&remain, now);
}
if (int128_eq(base, view->ranges[i].addr.start)) {
now = int128_min(remain, view->ranges[i].addr.size);
int128_addto(&base, now);
offset_in_region += int128_get64(now);
int128_subfrom(&remain, now);
}
}
if (int128_nz(remain)) {
fr.mr = mr;
fr.offset_in_region = offset_in_region;
fr.addr = addrrange_make(base, remain);
fr.dirty_log_mask = mr->dirty_log_mask;
fr.readable = mr->readable;
fr.readonly = readonly;
flatview_insert(view, i, &fr);
}
}
/* Render a memory topology into a list of disjoint absolute ranges. */
static FlatView generate_memory_topology(MemoryRegion *mr)
{
FlatView view;
flatview_init(&view);
render_memory_region(&view, mr, int128_zero(),
addrrange_make(int128_zero(), int128_2_64()), false);
flatview_simplify(&view);
return view;
}
static void address_space_add_del_ioeventfds(AddressSpace *as,
MemoryRegionIoeventfd *fds_new,
unsigned fds_new_nb,
MemoryRegionIoeventfd *fds_old,
unsigned fds_old_nb)
{
unsigned iold, inew;
/* Generate a symmetric difference of the old and new fd sets, adding
* and deleting as necessary.
*/
iold = inew = 0;
while (iold < fds_old_nb || inew < fds_new_nb) {
if (iold < fds_old_nb
&& (inew == fds_new_nb
|| memory_region_ioeventfd_before(fds_old[iold],
fds_new[inew]))) {
as->ops->ioeventfd_del(as, &fds_old[iold]);
++iold;
} else if (inew < fds_new_nb
&& (iold == fds_old_nb
|| memory_region_ioeventfd_before(fds_new[inew],
fds_old[iold]))) {
as->ops->ioeventfd_add(as, &fds_new[inew]);
++inew;
} else {
++iold;
++inew;
}
}
}
static void address_space_update_ioeventfds(AddressSpace *as)
{
FlatRange *fr;
unsigned ioeventfd_nb = 0;
MemoryRegionIoeventfd *ioeventfds = NULL;
AddrRange tmp;
unsigned i;
FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
int128_sub(fr->addr.start,
int128_make64(fr->offset_in_region)));
if (addrrange_intersects(fr->addr, tmp)) {
++ioeventfd_nb;
ioeventfds = g_realloc(ioeventfds,
ioeventfd_nb * sizeof(*ioeventfds));
ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
ioeventfds[ioeventfd_nb-1].addr = tmp;
}
}
}
address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
as->ioeventfds, as->ioeventfd_nb);
g_free(as->ioeventfds);
as->ioeventfds = ioeventfds;
as->ioeventfd_nb = ioeventfd_nb;
}
typedef void ListenerCallback(MemoryListener *listener,
MemoryRegionSection *mrs);
/* Want "void (&MemoryListener::*callback)(const MemoryRegionSection& s)" */
static void memory_listener_update_region(FlatRange *fr, AddressSpace *as,
size_t callback_offset)
{
MemoryRegionSection section = {
.mr = fr->mr,
.address_space = as->root,
.offset_within_region = fr->offset_in_region,
.size = int128_get64(fr->addr.size),
.offset_within_address_space = int128_get64(fr->addr.start),
};
MemoryListener *listener;
QLIST_FOREACH(listener, &memory_listeners, link) {
ListenerCallback *callback
= *(ListenerCallback **)((void *)listener + callback_offset);
callback(listener, &section);
}
}
#define MEMORY_LISTENER_UPDATE_REGION(fr, as, callback) \
memory_listener_update_region(fr, as, offsetof(MemoryListener, callback))
static void address_space_update_topology_pass(AddressSpace *as,
FlatView old_view,
FlatView new_view,
bool adding)
{
unsigned iold, inew;
FlatRange *frold, *frnew;
/* Generate a symmetric difference of the old and new memory maps.
* Kill ranges in the old map, and instantiate ranges in the new map.
*/
iold = inew = 0;
while (iold < old_view.nr || inew < new_view.nr) {
if (iold < old_view.nr) {
frold = &old_view.ranges[iold];
} else {
frold = NULL;
}
if (inew < new_view.nr) {
frnew = &new_view.ranges[inew];
} else {
frnew = NULL;
}
if (frold
&& (!frnew
|| int128_lt(frold->addr.start, frnew->addr.start)
|| (int128_eq(frold->addr.start, frnew->addr.start)
&& !flatrange_equal(frold, frnew)))) {
/* In old, but (not in new, or in new but attributes changed). */
if (!adding) {
MEMORY_LISTENER_UPDATE_REGION(frold, as, region_del);
as->ops->range_del(as, frold);
}
++iold;
} else if (frold && frnew && flatrange_equal(frold, frnew)) {
/* In both (logging may have changed) */
if (adding) {
if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, log_stop);
as->ops->log_stop(as, frnew);
} else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
as->ops->log_start(as, frnew);
MEMORY_LISTENER_UPDATE_REGION(frnew, as, log_start);
}
}
++iold;
++inew;
} else {
/* In new */
if (adding) {
as->ops->range_add(as, frnew);
MEMORY_LISTENER_UPDATE_REGION(frnew, as, region_add);
}
++inew;
}
}
}
static void address_space_update_topology(AddressSpace *as)
{
FlatView old_view = as->current_map;
FlatView new_view = generate_memory_topology(as->root);
address_space_update_topology_pass(as, old_view, new_view, false);
address_space_update_topology_pass(as, old_view, new_view, true);
as->current_map = new_view;
flatview_destroy(&old_view);
address_space_update_ioeventfds(as);
}
static void memory_region_update_topology(MemoryRegion *mr)
{
if (memory_region_transaction_depth) {
memory_region_update_pending |= !mr || mr->enabled;
return;
}
if (mr && !mr->enabled) {
return;
}
if (address_space_memory.root) {
address_space_update_topology(&address_space_memory);
}
if (address_space_io.root) {
address_space_update_topology(&address_space_io);
}
memory_region_update_pending = false;
}
void memory_region_transaction_begin(void)
{
++memory_region_transaction_depth;
}
void memory_region_transaction_commit(void)
{
assert(memory_region_transaction_depth);
--memory_region_transaction_depth;
if (!memory_region_transaction_depth && memory_region_update_pending) {
memory_region_update_topology(NULL);
}
}
static void memory_region_destructor_none(MemoryRegion *mr)
{
}
static void memory_region_destructor_ram(MemoryRegion *mr)
{
qemu_ram_free(mr->ram_addr);
}
static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
{
qemu_ram_free_from_ptr(mr->ram_addr);
}
static void memory_region_destructor_iomem(MemoryRegion *mr)
{
cpu_unregister_io_memory(mr->ram_addr);
}
static void memory_region_destructor_rom_device(MemoryRegion *mr)
{
qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
cpu_unregister_io_memory(mr->ram_addr & ~TARGET_PAGE_MASK);
}
static bool memory_region_wrong_endianness(MemoryRegion *mr)
{
#ifdef TARGET_WORDS_BIGENDIAN
return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
#else
return mr->ops->endianness == DEVICE_BIG_ENDIAN;
#endif
}
void memory_region_init(MemoryRegion *mr,
const char *name,
uint64_t size)
{
mr->ops = NULL;
mr->parent = NULL;
mr->size = int128_make64(size);
if (size == UINT64_MAX) {
mr->size = int128_2_64();
}
mr->addr = 0;
mr->offset = 0;
mr->subpage = false;
mr->enabled = true;
mr->terminates = false;
mr->ram = false;
mr->readable = true;
mr->readonly = false;
mr->rom_device = false;
mr->destructor = memory_region_destructor_none;
mr->priority = 0;
mr->may_overlap = false;
mr->alias = NULL;
QTAILQ_INIT(&mr->subregions);
memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
QTAILQ_INIT(&mr->coalesced);
mr->name = g_strdup(name);
mr->dirty_log_mask = 0;
mr->ioeventfd_nb = 0;
mr->ioeventfds = NULL;
}
static bool memory_region_access_valid(MemoryRegion *mr,
target_phys_addr_t addr,
unsigned size,
bool is_write)
{
if (mr->ops->valid.accepts
&& !mr->ops->valid.accepts(mr->opaque, addr, size, is_write)) {
return false;
}
if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
return false;
}
/* Treat zero as compatibility all valid */
if (!mr->ops->valid.max_access_size) {
return true;
}
if (size > mr->ops->valid.max_access_size
|| size < mr->ops->valid.min_access_size) {
return false;
}
return true;
}
static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
target_phys_addr_t addr,
unsigned size)
{
uint64_t data = 0;
if (!memory_region_access_valid(mr, addr, size, false)) {
return -1U; /* FIXME: better signalling */
}
if (!mr->ops->read) {
return mr->ops->old_mmio.read[bitops_ffsl(size)](mr->opaque, addr);
}
/* FIXME: support unaligned access */
access_with_adjusted_size(addr + mr->offset, &data, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_read_accessor, mr);
return data;
}
static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
{
if (memory_region_wrong_endianness(mr)) {
switch (size) {
case 1:
break;
case 2:
*data = bswap16(*data);
break;
case 4:
*data = bswap32(*data);
break;
default:
abort();
}
}
}
static uint64_t memory_region_dispatch_read(MemoryRegion *mr,
target_phys_addr_t addr,
unsigned size)
{
uint64_t ret;
ret = memory_region_dispatch_read1(mr, addr, size);
adjust_endianness(mr, &ret, size);
return ret;
}
static void memory_region_dispatch_write(MemoryRegion *mr,
target_phys_addr_t addr,
uint64_t data,
unsigned size)
{
if (!memory_region_access_valid(mr, addr, size, true)) {
return; /* FIXME: better signalling */
}
adjust_endianness(mr, &data, size);
if (!mr->ops->write) {
mr->ops->old_mmio.write[bitops_ffsl(size)](mr->opaque, addr, data);
return;
}
/* FIXME: support unaligned access */
access_with_adjusted_size(addr + mr->offset, &data, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_write_accessor, mr);
}
void memory_region_init_io(MemoryRegion *mr,
const MemoryRegionOps *ops,
void *opaque,
const char *name,
uint64_t size)
{
memory_region_init(mr, name, size);
mr->ops = ops;
mr->opaque = opaque;
mr->terminates = true;
mr->destructor = memory_region_destructor_iomem;
mr->ram_addr = cpu_register_io_memory(mr);
}
void memory_region_init_ram(MemoryRegion *mr,
const char *name,
uint64_t size)
{
memory_region_init(mr, name, size);
mr->ram = true;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram;
mr->ram_addr = qemu_ram_alloc(size, mr);
}
void memory_region_init_ram_ptr(MemoryRegion *mr,
const char *name,
uint64_t size,
void *ptr)
{
memory_region_init(mr, name, size);
mr->ram = true;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram_from_ptr;
mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
}
void memory_region_init_alias(MemoryRegion *mr,
const char *name,
MemoryRegion *orig,
target_phys_addr_t offset,
uint64_t size)
{
memory_region_init(mr, name, size);
mr->alias = orig;
mr->alias_offset = offset;
}
void memory_region_init_rom_device(MemoryRegion *mr,
const MemoryRegionOps *ops,
void *opaque,
const char *name,
uint64_t size)
{
memory_region_init(mr, name, size);
mr->ops = ops;
mr->opaque = opaque;
mr->terminates = true;
mr->rom_device = true;
mr->destructor = memory_region_destructor_rom_device;
mr->ram_addr = qemu_ram_alloc(size, mr);
mr->ram_addr |= cpu_register_io_memory(mr);
}
void memory_region_destroy(MemoryRegion *mr)
{
assert(QTAILQ_EMPTY(&mr->subregions));
mr->destructor(mr);
memory_region_clear_coalescing(mr);
g_free((char *)mr->name);
g_free(mr->ioeventfds);
}
uint64_t memory_region_size(MemoryRegion *mr)
{
if (int128_eq(mr->size, int128_2_64())) {
return UINT64_MAX;
}
return int128_get64(mr->size);
}
const char *memory_region_name(MemoryRegion *mr)
{
return mr->name;
}
bool memory_region_is_ram(MemoryRegion *mr)
{
return mr->ram;
}
bool memory_region_is_logging(MemoryRegion *mr)
{
return mr->dirty_log_mask;
}
bool memory_region_is_rom(MemoryRegion *mr)
{
return mr->ram && mr->readonly;
}
void memory_region_set_offset(MemoryRegion *mr, target_phys_addr_t offset)
{
mr->offset = offset;
}
void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
{
uint8_t mask = 1 << client;
mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
memory_region_update_topology(mr);
}
bool memory_region_get_dirty(MemoryRegion *mr, target_phys_addr_t addr,
unsigned client)
{
assert(mr->terminates);
return cpu_physical_memory_get_dirty(mr->ram_addr + addr, 1 << client);
}
void memory_region_set_dirty(MemoryRegion *mr, target_phys_addr_t addr)
{
assert(mr->terminates);
return cpu_physical_memory_set_dirty(mr->ram_addr + addr);
}
void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
{
FlatRange *fr;
FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
if (fr->mr == mr) {
MEMORY_LISTENER_UPDATE_REGION(fr, &address_space_memory, log_sync);
}
}
}
void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
{
if (mr->readonly != readonly) {
mr->readonly = readonly;
memory_region_update_topology(mr);
}
}
void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable)
{
if (mr->readable != readable) {
mr->readable = readable;
memory_region_update_topology(mr);
}
}
void memory_region_reset_dirty(MemoryRegion *mr, target_phys_addr_t addr,
target_phys_addr_t size, unsigned client)
{
assert(mr->terminates);
cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
mr->ram_addr + addr + size,
1 << client);
}
void *memory_region_get_ram_ptr(MemoryRegion *mr)
{
if (mr->alias) {
return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
}
assert(mr->terminates);
return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
}
static void memory_region_update_coalesced_range(MemoryRegion *mr)
{
FlatRange *fr;
CoalescedMemoryRange *cmr;
AddrRange tmp;
FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
if (fr->mr == mr) {
qemu_unregister_coalesced_mmio(int128_get64(fr->addr.start),
int128_get64(fr->addr.size));
QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
tmp = addrrange_shift(cmr->addr,
int128_sub(fr->addr.start,
int128_make64(fr->offset_in_region)));
if (!addrrange_intersects(tmp, fr->addr)) {
continue;
}
tmp = addrrange_intersection(tmp, fr->addr);
qemu_register_coalesced_mmio(int128_get64(tmp.start),
int128_get64(tmp.size));
}
}
}
}
void memory_region_set_coalescing(MemoryRegion *mr)
{
memory_region_clear_coalescing(mr);
memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
}
void memory_region_add_coalescing(MemoryRegion *mr,
target_phys_addr_t offset,
uint64_t size)
{
CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
memory_region_update_coalesced_range(mr);
}
void memory_region_clear_coalescing(MemoryRegion *mr)
{
CoalescedMemoryRange *cmr;
while (!QTAILQ_EMPTY(&mr->coalesced)) {
cmr = QTAILQ_FIRST(&mr->coalesced);
QTAILQ_REMOVE(&mr->coalesced, cmr, link);
g_free(cmr);
}
memory_region_update_coalesced_range(mr);
}
void memory_region_add_eventfd(MemoryRegion *mr,
target_phys_addr_t addr,
unsigned size,
bool match_data,
uint64_t data,
int fd)
{
MemoryRegionIoeventfd mrfd = {
.addr.start = int128_make64(addr),
.addr.size = int128_make64(size),
.match_data = match_data,
.data = data,
.fd = fd,
};
unsigned i;
for (i = 0; i < mr->ioeventfd_nb; ++i) {
if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
break;
}
}
++mr->ioeventfd_nb;
mr->ioeventfds = g_realloc(mr->ioeventfds,
sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
mr->ioeventfds[i] = mrfd;
memory_region_update_topology(mr);
}
void memory_region_del_eventfd(MemoryRegion *mr,
target_phys_addr_t addr,
unsigned size,
bool match_data,
uint64_t data,
int fd)
{
MemoryRegionIoeventfd mrfd = {
.addr.start = int128_make64(addr),
.addr.size = int128_make64(size),
.match_data = match_data,
.data = data,
.fd = fd,
};
unsigned i;
for (i = 0; i < mr->ioeventfd_nb; ++i) {
if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
break;
}
}
assert(i != mr->ioeventfd_nb);
memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
--mr->ioeventfd_nb;
mr->ioeventfds = g_realloc(mr->ioeventfds,
sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
memory_region_update_topology(mr);
}
static void memory_region_add_subregion_common(MemoryRegion *mr,
target_phys_addr_t offset,
MemoryRegion *subregion)
{
MemoryRegion *other;
assert(!subregion->parent);
subregion->parent = mr;
subregion->addr = offset;
QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
if (subregion->may_overlap || other->may_overlap) {
continue;
}
if (int128_gt(int128_make64(offset),
int128_add(int128_make64(other->addr), other->size))
|| int128_le(int128_add(int128_make64(offset), subregion->size),
int128_make64(other->addr))) {
continue;
}
#if 0
printf("warning: subregion collision %llx/%llx (%s) "
"vs %llx/%llx (%s)\n",
(unsigned long long)offset,
(unsigned long long)int128_get64(subregion->size),
subregion->name,
(unsigned long long)other->addr,
(unsigned long long)int128_get64(other->size),
other->name);
#endif
}
QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
if (subregion->priority >= other->priority) {
QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
goto done;
}
}
QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
done:
memory_region_update_topology(mr);
}
void memory_region_add_subregion(MemoryRegion *mr,
target_phys_addr_t offset,
MemoryRegion *subregion)
{
subregion->may_overlap = false;
subregion->priority = 0;
memory_region_add_subregion_common(mr, offset, subregion);
}
void memory_region_add_subregion_overlap(MemoryRegion *mr,
target_phys_addr_t offset,
MemoryRegion *subregion,
unsigned priority)
{
subregion->may_overlap = true;
subregion->priority = priority;
memory_region_add_subregion_common(mr, offset, subregion);
}
void memory_region_del_subregion(MemoryRegion *mr,
MemoryRegion *subregion)
{
assert(subregion->parent == mr);
subregion->parent = NULL;
QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
memory_region_update_topology(mr);
}
void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
{
if (enabled == mr->enabled) {
return;
}
mr->enabled = enabled;
memory_region_update_topology(NULL);
}
void memory_region_set_address(MemoryRegion *mr, target_phys_addr_t addr)
{
MemoryRegion *parent = mr->parent;
unsigned priority = mr->priority;
bool may_overlap = mr->may_overlap;
if (addr == mr->addr || !parent) {
mr->addr = addr;
return;
}
memory_region_transaction_begin();
memory_region_del_subregion(parent, mr);
if (may_overlap) {
memory_region_add_subregion_overlap(parent, addr, mr, priority);
} else {
memory_region_add_subregion(parent, addr, mr);
}
memory_region_transaction_commit();
}
void memory_region_set_alias_offset(MemoryRegion *mr, target_phys_addr_t offset)
{
target_phys_addr_t old_offset = mr->alias_offset;
assert(mr->alias);
mr->alias_offset = offset;
if (offset == old_offset || !mr->parent) {
return;
}
memory_region_update_topology(mr);
}
ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
{
return mr->ram_addr;
}
static int cmp_flatrange_addr(const void *addr_, const void *fr_)
{
const AddrRange *addr = addr_;
const FlatRange *fr = fr_;
if (int128_le(addrrange_end(*addr), fr->addr.start)) {
return -1;
} else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
return 1;
}
return 0;
}
static FlatRange *address_space_lookup(AddressSpace *as, AddrRange addr)
{
return bsearch(&addr, as->current_map.ranges, as->current_map.nr,
sizeof(FlatRange), cmp_flatrange_addr);
}
MemoryRegionSection memory_region_find(MemoryRegion *address_space,
target_phys_addr_t addr, uint64_t size)
{
AddressSpace *as = memory_region_to_address_space(address_space);
AddrRange range = addrrange_make(int128_make64(addr),
int128_make64(size));
FlatRange *fr = address_space_lookup(as, range);
MemoryRegionSection ret = { .mr = NULL, .size = 0 };
if (!fr) {
return ret;
}
while (fr > as->current_map.ranges
&& addrrange_intersects(fr[-1].addr, range)) {
--fr;
}
ret.mr = fr->mr;
range = addrrange_intersection(range, fr->addr);
ret.offset_within_region = fr->offset_in_region;
ret.offset_within_region += int128_get64(int128_sub(range.start,
fr->addr.start));
ret.size = int128_get64(range.size);
ret.offset_within_address_space = int128_get64(range.start);
return ret;
}
void memory_global_sync_dirty_bitmap(MemoryRegion *address_space)
{
AddressSpace *as = memory_region_to_address_space(address_space);
FlatRange *fr;
FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
MEMORY_LISTENER_UPDATE_REGION(fr, as, log_sync);
}
}
void memory_global_dirty_log_start(void)
{
MemoryListener *listener;
cpu_physical_memory_set_dirty_tracking(1);
global_dirty_log = true;
QLIST_FOREACH(listener, &memory_listeners, link) {
listener->log_global_start(listener);
}
}
void memory_global_dirty_log_stop(void)
{
MemoryListener *listener;
global_dirty_log = false;
QLIST_FOREACH(listener, &memory_listeners, link) {
listener->log_global_stop(listener);
}
cpu_physical_memory_set_dirty_tracking(0);
}
static void listener_add_address_space(MemoryListener *listener,
AddressSpace *as)
{
FlatRange *fr;
if (global_dirty_log) {
listener->log_global_start(listener);
}
FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
MemoryRegionSection section = {
.mr = fr->mr,
.address_space = as->root,
.offset_within_region = fr->offset_in_region,
.size = int128_get64(fr->addr.size),
.offset_within_address_space = int128_get64(fr->addr.start),
};
listener->region_add(listener, &section);
}
}
void memory_listener_register(MemoryListener *listener)
{
QLIST_INSERT_HEAD(&memory_listeners, listener, link);
listener_add_address_space(listener, &address_space_memory);
listener_add_address_space(listener, &address_space_io);
}
void memory_listener_unregister(MemoryListener *listener)
{
QLIST_REMOVE(listener, link);
}
void set_system_memory_map(MemoryRegion *mr)
{
address_space_memory.root = mr;
memory_region_update_topology(NULL);
}
void set_system_io_map(MemoryRegion *mr)
{
address_space_io.root = mr;
memory_region_update_topology(NULL);
}
uint64_t io_mem_read(int io_index, target_phys_addr_t addr, unsigned size)
{
return memory_region_dispatch_read(io_mem_region[io_index], addr, size);
}
void io_mem_write(int io_index, target_phys_addr_t addr,
uint64_t val, unsigned size)
{
memory_region_dispatch_write(io_mem_region[io_index], addr, val, size);
}
typedef struct MemoryRegionList MemoryRegionList;
struct MemoryRegionList {
const MemoryRegion *mr;
bool printed;
QTAILQ_ENTRY(MemoryRegionList) queue;
};
typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
static void mtree_print_mr(fprintf_function mon_printf, void *f,
const MemoryRegion *mr, unsigned int level,
target_phys_addr_t base,
MemoryRegionListHead *alias_print_queue)
{
MemoryRegionList *new_ml, *ml, *next_ml;
MemoryRegionListHead submr_print_queue;
const MemoryRegion *submr;
unsigned int i;
if (!mr) {
return;
}
for (i = 0; i < level; i++) {
mon_printf(f, " ");
}
if (mr->alias) {
MemoryRegionList *ml;
bool found = false;
/* check if the alias is already in the queue */
QTAILQ_FOREACH(ml, alias_print_queue, queue) {
if (ml->mr == mr->alias && !ml->printed) {
found = true;
}
}
if (!found) {
ml = g_new(MemoryRegionList, 1);
ml->mr = mr->alias;
ml->printed = false;
QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
}
mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d): alias %s @%s "
TARGET_FMT_plx "-" TARGET_FMT_plx "\n",
base + mr->addr,
base + mr->addr
+ (target_phys_addr_t)int128_get64(mr->size) - 1,
mr->priority,
mr->name,
mr->alias->name,
mr->alias_offset,
mr->alias_offset
+ (target_phys_addr_t)int128_get64(mr->size) - 1);
} else {
mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d): %s\n",
base + mr->addr,
base + mr->addr
+ (target_phys_addr_t)int128_get64(mr->size) - 1,
mr->priority,
mr->name);
}
QTAILQ_INIT(&submr_print_queue);
QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
new_ml = g_new(MemoryRegionList, 1);
new_ml->mr = submr;
QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
if (new_ml->mr->addr < ml->mr->addr ||
(new_ml->mr->addr == ml->mr->addr &&
new_ml->mr->priority > ml->mr->priority)) {
QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
new_ml = NULL;
break;
}
}
if (new_ml) {
QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
}
}
QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
alias_print_queue);
}
QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
g_free(ml);
}
}
void mtree_info(fprintf_function mon_printf, void *f)
{
MemoryRegionListHead ml_head;
MemoryRegionList *ml, *ml2;
QTAILQ_INIT(&ml_head);
mon_printf(f, "memory\n");
mtree_print_mr(mon_printf, f, address_space_memory.root, 0, 0, &ml_head);
/* print aliased regions */
QTAILQ_FOREACH(ml, &ml_head, queue) {
if (!ml->printed) {
mon_printf(f, "%s\n", ml->mr->name);
mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
}
}
QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
g_free(ml);
}
if (address_space_io.root &&
!QTAILQ_EMPTY(&address_space_io.root->subregions)) {
QTAILQ_INIT(&ml_head);
mon_printf(f, "I/O\n");
mtree_print_mr(mon_printf, f, address_space_io.root, 0, 0, &ml_head);
}
}