bdf7ae5bbd
Where no extra implementation is needed, fall back to CPUClass::set_pc(). Acked-by: Michael Walle <michael@walle.cc> (for lm32) Signed-off-by: Andreas Färber <afaerber@suse.de>
519 lines
14 KiB
C
519 lines
14 KiB
C
/*
|
|
* Alpha emulation cpu definitions for qemu.
|
|
*
|
|
* Copyright (c) 2007 Jocelyn Mayer
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#if !defined (__CPU_ALPHA_H__)
|
|
#define __CPU_ALPHA_H__
|
|
|
|
#include "config.h"
|
|
#include "qemu-common.h"
|
|
|
|
#define TARGET_LONG_BITS 64
|
|
|
|
#define CPUArchState struct CPUAlphaState
|
|
|
|
#include "exec/cpu-defs.h"
|
|
|
|
#include "fpu/softfloat.h"
|
|
|
|
#define TARGET_HAS_ICE 1
|
|
|
|
#define ELF_MACHINE EM_ALPHA
|
|
|
|
#define ICACHE_LINE_SIZE 32
|
|
#define DCACHE_LINE_SIZE 32
|
|
|
|
#define TARGET_PAGE_BITS 13
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
/* ??? The kernel likes to give addresses in high memory. If the host has
|
|
more virtual address space than the guest, this can lead to impossible
|
|
allocations. Honor the long-standing assumption that only kernel addrs
|
|
are negative, but otherwise allow allocations anywhere. This could lead
|
|
to tricky emulation problems for programs doing tagged addressing, but
|
|
that's far fewer than encounter the impossible allocation problem. */
|
|
#define TARGET_PHYS_ADDR_SPACE_BITS 63
|
|
#define TARGET_VIRT_ADDR_SPACE_BITS 63
|
|
#else
|
|
/* ??? EV4 has 34 phys addr bits, EV5 has 40, EV6 has 44. */
|
|
#define TARGET_PHYS_ADDR_SPACE_BITS 44
|
|
#define TARGET_VIRT_ADDR_SPACE_BITS (30 + TARGET_PAGE_BITS)
|
|
#endif
|
|
|
|
/* Alpha major type */
|
|
enum {
|
|
ALPHA_EV3 = 1,
|
|
ALPHA_EV4 = 2,
|
|
ALPHA_SIM = 3,
|
|
ALPHA_LCA = 4,
|
|
ALPHA_EV5 = 5, /* 21164 */
|
|
ALPHA_EV45 = 6, /* 21064A */
|
|
ALPHA_EV56 = 7, /* 21164A */
|
|
};
|
|
|
|
/* EV4 minor type */
|
|
enum {
|
|
ALPHA_EV4_2 = 0,
|
|
ALPHA_EV4_3 = 1,
|
|
};
|
|
|
|
/* LCA minor type */
|
|
enum {
|
|
ALPHA_LCA_1 = 1, /* 21066 */
|
|
ALPHA_LCA_2 = 2, /* 20166 */
|
|
ALPHA_LCA_3 = 3, /* 21068 */
|
|
ALPHA_LCA_4 = 4, /* 21068 */
|
|
ALPHA_LCA_5 = 5, /* 21066A */
|
|
ALPHA_LCA_6 = 6, /* 21068A */
|
|
};
|
|
|
|
/* EV5 minor type */
|
|
enum {
|
|
ALPHA_EV5_1 = 1, /* Rev BA, CA */
|
|
ALPHA_EV5_2 = 2, /* Rev DA, EA */
|
|
ALPHA_EV5_3 = 3, /* Pass 3 */
|
|
ALPHA_EV5_4 = 4, /* Pass 3.2 */
|
|
ALPHA_EV5_5 = 5, /* Pass 4 */
|
|
};
|
|
|
|
/* EV45 minor type */
|
|
enum {
|
|
ALPHA_EV45_1 = 1, /* Pass 1 */
|
|
ALPHA_EV45_2 = 2, /* Pass 1.1 */
|
|
ALPHA_EV45_3 = 3, /* Pass 2 */
|
|
};
|
|
|
|
/* EV56 minor type */
|
|
enum {
|
|
ALPHA_EV56_1 = 1, /* Pass 1 */
|
|
ALPHA_EV56_2 = 2, /* Pass 2 */
|
|
};
|
|
|
|
enum {
|
|
IMPLVER_2106x = 0, /* EV4, EV45 & LCA45 */
|
|
IMPLVER_21164 = 1, /* EV5, EV56 & PCA45 */
|
|
IMPLVER_21264 = 2, /* EV6, EV67 & EV68x */
|
|
IMPLVER_21364 = 3, /* EV7 & EV79 */
|
|
};
|
|
|
|
enum {
|
|
AMASK_BWX = 0x00000001,
|
|
AMASK_FIX = 0x00000002,
|
|
AMASK_CIX = 0x00000004,
|
|
AMASK_MVI = 0x00000100,
|
|
AMASK_TRAP = 0x00000200,
|
|
AMASK_PREFETCH = 0x00001000,
|
|
};
|
|
|
|
enum {
|
|
VAX_ROUND_NORMAL = 0,
|
|
VAX_ROUND_CHOPPED,
|
|
};
|
|
|
|
enum {
|
|
IEEE_ROUND_NORMAL = 0,
|
|
IEEE_ROUND_DYNAMIC,
|
|
IEEE_ROUND_PLUS,
|
|
IEEE_ROUND_MINUS,
|
|
IEEE_ROUND_CHOPPED,
|
|
};
|
|
|
|
/* IEEE floating-point operations encoding */
|
|
/* Trap mode */
|
|
enum {
|
|
FP_TRAP_I = 0x0,
|
|
FP_TRAP_U = 0x1,
|
|
FP_TRAP_S = 0x4,
|
|
FP_TRAP_SU = 0x5,
|
|
FP_TRAP_SUI = 0x7,
|
|
};
|
|
|
|
/* Rounding mode */
|
|
enum {
|
|
FP_ROUND_CHOPPED = 0x0,
|
|
FP_ROUND_MINUS = 0x1,
|
|
FP_ROUND_NORMAL = 0x2,
|
|
FP_ROUND_DYNAMIC = 0x3,
|
|
};
|
|
|
|
/* FPCR bits */
|
|
#define FPCR_SUM (1ULL << 63)
|
|
#define FPCR_INED (1ULL << 62)
|
|
#define FPCR_UNFD (1ULL << 61)
|
|
#define FPCR_UNDZ (1ULL << 60)
|
|
#define FPCR_DYN_SHIFT 58
|
|
#define FPCR_DYN_CHOPPED (0ULL << FPCR_DYN_SHIFT)
|
|
#define FPCR_DYN_MINUS (1ULL << FPCR_DYN_SHIFT)
|
|
#define FPCR_DYN_NORMAL (2ULL << FPCR_DYN_SHIFT)
|
|
#define FPCR_DYN_PLUS (3ULL << FPCR_DYN_SHIFT)
|
|
#define FPCR_DYN_MASK (3ULL << FPCR_DYN_SHIFT)
|
|
#define FPCR_IOV (1ULL << 57)
|
|
#define FPCR_INE (1ULL << 56)
|
|
#define FPCR_UNF (1ULL << 55)
|
|
#define FPCR_OVF (1ULL << 54)
|
|
#define FPCR_DZE (1ULL << 53)
|
|
#define FPCR_INV (1ULL << 52)
|
|
#define FPCR_OVFD (1ULL << 51)
|
|
#define FPCR_DZED (1ULL << 50)
|
|
#define FPCR_INVD (1ULL << 49)
|
|
#define FPCR_DNZ (1ULL << 48)
|
|
#define FPCR_DNOD (1ULL << 47)
|
|
#define FPCR_STATUS_MASK (FPCR_IOV | FPCR_INE | FPCR_UNF \
|
|
| FPCR_OVF | FPCR_DZE | FPCR_INV)
|
|
|
|
/* The silly software trap enables implemented by the kernel emulation.
|
|
These are more or less architecturally required, since the real hardware
|
|
has read-as-zero bits in the FPCR when the features aren't implemented.
|
|
For the purposes of QEMU, we pretend the FPCR can hold everything. */
|
|
#define SWCR_TRAP_ENABLE_INV (1ULL << 1)
|
|
#define SWCR_TRAP_ENABLE_DZE (1ULL << 2)
|
|
#define SWCR_TRAP_ENABLE_OVF (1ULL << 3)
|
|
#define SWCR_TRAP_ENABLE_UNF (1ULL << 4)
|
|
#define SWCR_TRAP_ENABLE_INE (1ULL << 5)
|
|
#define SWCR_TRAP_ENABLE_DNO (1ULL << 6)
|
|
#define SWCR_TRAP_ENABLE_MASK ((1ULL << 7) - (1ULL << 1))
|
|
|
|
#define SWCR_MAP_DMZ (1ULL << 12)
|
|
#define SWCR_MAP_UMZ (1ULL << 13)
|
|
#define SWCR_MAP_MASK (SWCR_MAP_DMZ | SWCR_MAP_UMZ)
|
|
|
|
#define SWCR_STATUS_INV (1ULL << 17)
|
|
#define SWCR_STATUS_DZE (1ULL << 18)
|
|
#define SWCR_STATUS_OVF (1ULL << 19)
|
|
#define SWCR_STATUS_UNF (1ULL << 20)
|
|
#define SWCR_STATUS_INE (1ULL << 21)
|
|
#define SWCR_STATUS_DNO (1ULL << 22)
|
|
#define SWCR_STATUS_MASK ((1ULL << 23) - (1ULL << 17))
|
|
|
|
#define SWCR_MASK (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK | SWCR_STATUS_MASK)
|
|
|
|
/* MMU modes definitions */
|
|
|
|
/* Alpha has 5 MMU modes: PALcode, kernel, executive, supervisor, and user.
|
|
The Unix PALcode only exposes the kernel and user modes; presumably
|
|
executive and supervisor are used by VMS.
|
|
|
|
PALcode itself uses physical mode for code and kernel mode for data;
|
|
there are PALmode instructions that can access data via physical mode
|
|
or via an os-installed "alternate mode", which is one of the 4 above.
|
|
|
|
QEMU does not currently properly distinguish between code/data when
|
|
looking up addresses. To avoid having to address this issue, our
|
|
emulated PALcode will cheat and use the KSEG mapping for its code+data
|
|
rather than physical addresses.
|
|
|
|
Moreover, we're only emulating Unix PALcode, and not attempting VMS.
|
|
|
|
All of which allows us to drop all but kernel and user modes.
|
|
Elide the unused MMU modes to save space. */
|
|
|
|
#define NB_MMU_MODES 2
|
|
|
|
#define MMU_MODE0_SUFFIX _kernel
|
|
#define MMU_MODE1_SUFFIX _user
|
|
#define MMU_KERNEL_IDX 0
|
|
#define MMU_USER_IDX 1
|
|
|
|
typedef struct CPUAlphaState CPUAlphaState;
|
|
|
|
struct CPUAlphaState {
|
|
uint64_t ir[31];
|
|
float64 fir[31];
|
|
uint64_t pc;
|
|
uint64_t unique;
|
|
uint64_t lock_addr;
|
|
uint64_t lock_st_addr;
|
|
uint64_t lock_value;
|
|
float_status fp_status;
|
|
/* The following fields make up the FPCR, but in FP_STATUS format. */
|
|
uint8_t fpcr_exc_status;
|
|
uint8_t fpcr_exc_mask;
|
|
uint8_t fpcr_dyn_round;
|
|
uint8_t fpcr_flush_to_zero;
|
|
uint8_t fpcr_dnod;
|
|
uint8_t fpcr_undz;
|
|
|
|
/* The Internal Processor Registers. Some of these we assume always
|
|
exist for use in user-mode. */
|
|
uint8_t ps;
|
|
uint8_t intr_flag;
|
|
uint8_t pal_mode;
|
|
uint8_t fen;
|
|
|
|
uint32_t pcc_ofs;
|
|
|
|
/* These pass data from the exception logic in the translator and
|
|
helpers to the OS entry point. This is used for both system
|
|
emulation and user-mode. */
|
|
uint64_t trap_arg0;
|
|
uint64_t trap_arg1;
|
|
uint64_t trap_arg2;
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
/* The internal data required by our emulation of the Unix PALcode. */
|
|
uint64_t exc_addr;
|
|
uint64_t palbr;
|
|
uint64_t ptbr;
|
|
uint64_t vptptr;
|
|
uint64_t sysval;
|
|
uint64_t usp;
|
|
uint64_t shadow[8];
|
|
uint64_t scratch[24];
|
|
#endif
|
|
|
|
/* This alarm doesn't exist in real hardware; we wish it did. */
|
|
uint64_t alarm_expire;
|
|
|
|
/* Those resources are used only in QEMU core */
|
|
CPU_COMMON
|
|
|
|
int error_code;
|
|
|
|
uint32_t features;
|
|
uint32_t amask;
|
|
int implver;
|
|
};
|
|
|
|
#define cpu_list alpha_cpu_list
|
|
#define cpu_exec cpu_alpha_exec
|
|
#define cpu_gen_code cpu_alpha_gen_code
|
|
#define cpu_signal_handler cpu_alpha_signal_handler
|
|
|
|
#include "exec/cpu-all.h"
|
|
#include "cpu-qom.h"
|
|
|
|
enum {
|
|
FEATURE_ASN = 0x00000001,
|
|
FEATURE_SPS = 0x00000002,
|
|
FEATURE_VIRBND = 0x00000004,
|
|
FEATURE_TBCHK = 0x00000008,
|
|
};
|
|
|
|
enum {
|
|
EXCP_RESET,
|
|
EXCP_MCHK,
|
|
EXCP_SMP_INTERRUPT,
|
|
EXCP_CLK_INTERRUPT,
|
|
EXCP_DEV_INTERRUPT,
|
|
EXCP_MMFAULT,
|
|
EXCP_UNALIGN,
|
|
EXCP_OPCDEC,
|
|
EXCP_ARITH,
|
|
EXCP_FEN,
|
|
EXCP_CALL_PAL,
|
|
/* For Usermode emulation. */
|
|
EXCP_STL_C,
|
|
EXCP_STQ_C,
|
|
};
|
|
|
|
/* Alpha-specific interrupt pending bits. */
|
|
#define CPU_INTERRUPT_TIMER CPU_INTERRUPT_TGT_EXT_0
|
|
#define CPU_INTERRUPT_SMP CPU_INTERRUPT_TGT_EXT_1
|
|
#define CPU_INTERRUPT_MCHK CPU_INTERRUPT_TGT_EXT_2
|
|
|
|
/* OSF/1 Page table bits. */
|
|
enum {
|
|
PTE_VALID = 0x0001,
|
|
PTE_FOR = 0x0002, /* used for page protection (fault on read) */
|
|
PTE_FOW = 0x0004, /* used for page protection (fault on write) */
|
|
PTE_FOE = 0x0008, /* used for page protection (fault on exec) */
|
|
PTE_ASM = 0x0010,
|
|
PTE_KRE = 0x0100,
|
|
PTE_URE = 0x0200,
|
|
PTE_KWE = 0x1000,
|
|
PTE_UWE = 0x2000
|
|
};
|
|
|
|
/* Hardware interrupt (entInt) constants. */
|
|
enum {
|
|
INT_K_IP,
|
|
INT_K_CLK,
|
|
INT_K_MCHK,
|
|
INT_K_DEV,
|
|
INT_K_PERF,
|
|
};
|
|
|
|
/* Memory management (entMM) constants. */
|
|
enum {
|
|
MM_K_TNV,
|
|
MM_K_ACV,
|
|
MM_K_FOR,
|
|
MM_K_FOE,
|
|
MM_K_FOW
|
|
};
|
|
|
|
/* Arithmetic exception (entArith) constants. */
|
|
enum {
|
|
EXC_M_SWC = 1, /* Software completion */
|
|
EXC_M_INV = 2, /* Invalid operation */
|
|
EXC_M_DZE = 4, /* Division by zero */
|
|
EXC_M_FOV = 8, /* Overflow */
|
|
EXC_M_UNF = 16, /* Underflow */
|
|
EXC_M_INE = 32, /* Inexact result */
|
|
EXC_M_IOV = 64 /* Integer Overflow */
|
|
};
|
|
|
|
/* Processor status constants. */
|
|
enum {
|
|
/* Low 3 bits are interrupt mask level. */
|
|
PS_INT_MASK = 7,
|
|
|
|
/* Bits 4 and 5 are the mmu mode. The VMS PALcode uses all 4 modes;
|
|
The Unix PALcode only uses bit 4. */
|
|
PS_USER_MODE = 8
|
|
};
|
|
|
|
static inline int cpu_mmu_index(CPUAlphaState *env)
|
|
{
|
|
if (env->pal_mode) {
|
|
return MMU_KERNEL_IDX;
|
|
} else if (env->ps & PS_USER_MODE) {
|
|
return MMU_USER_IDX;
|
|
} else {
|
|
return MMU_KERNEL_IDX;
|
|
}
|
|
}
|
|
|
|
enum {
|
|
IR_V0 = 0,
|
|
IR_T0 = 1,
|
|
IR_T1 = 2,
|
|
IR_T2 = 3,
|
|
IR_T3 = 4,
|
|
IR_T4 = 5,
|
|
IR_T5 = 6,
|
|
IR_T6 = 7,
|
|
IR_T7 = 8,
|
|
IR_S0 = 9,
|
|
IR_S1 = 10,
|
|
IR_S2 = 11,
|
|
IR_S3 = 12,
|
|
IR_S4 = 13,
|
|
IR_S5 = 14,
|
|
IR_S6 = 15,
|
|
IR_FP = IR_S6,
|
|
IR_A0 = 16,
|
|
IR_A1 = 17,
|
|
IR_A2 = 18,
|
|
IR_A3 = 19,
|
|
IR_A4 = 20,
|
|
IR_A5 = 21,
|
|
IR_T8 = 22,
|
|
IR_T9 = 23,
|
|
IR_T10 = 24,
|
|
IR_T11 = 25,
|
|
IR_RA = 26,
|
|
IR_T12 = 27,
|
|
IR_PV = IR_T12,
|
|
IR_AT = 28,
|
|
IR_GP = 29,
|
|
IR_SP = 30,
|
|
IR_ZERO = 31,
|
|
};
|
|
|
|
void alpha_translate_init(void);
|
|
|
|
AlphaCPU *cpu_alpha_init(const char *cpu_model);
|
|
|
|
static inline CPUAlphaState *cpu_init(const char *cpu_model)
|
|
{
|
|
AlphaCPU *cpu = cpu_alpha_init(cpu_model);
|
|
if (cpu == NULL) {
|
|
return NULL;
|
|
}
|
|
return &cpu->env;
|
|
}
|
|
|
|
void alpha_cpu_list(FILE *f, fprintf_function cpu_fprintf);
|
|
int cpu_alpha_exec(CPUAlphaState *s);
|
|
/* you can call this signal handler from your SIGBUS and SIGSEGV
|
|
signal handlers to inform the virtual CPU of exceptions. non zero
|
|
is returned if the signal was handled by the virtual CPU. */
|
|
int cpu_alpha_signal_handler(int host_signum, void *pinfo,
|
|
void *puc);
|
|
int cpu_alpha_handle_mmu_fault (CPUAlphaState *env, uint64_t address, int rw,
|
|
int mmu_idx);
|
|
#define cpu_handle_mmu_fault cpu_alpha_handle_mmu_fault
|
|
void do_restore_state(CPUAlphaState *, uintptr_t retaddr);
|
|
void QEMU_NORETURN dynamic_excp(CPUAlphaState *, uintptr_t, int, int);
|
|
void QEMU_NORETURN arith_excp(CPUAlphaState *, uintptr_t, int, uint64_t);
|
|
|
|
uint64_t cpu_alpha_load_fpcr (CPUAlphaState *env);
|
|
void cpu_alpha_store_fpcr (CPUAlphaState *env, uint64_t val);
|
|
#ifndef CONFIG_USER_ONLY
|
|
void swap_shadow_regs(CPUAlphaState *env);
|
|
QEMU_NORETURN void alpha_cpu_unassigned_access(CPUState *cpu, hwaddr addr,
|
|
bool is_write, bool is_exec,
|
|
int unused, unsigned size);
|
|
#endif
|
|
|
|
/* Bits in TB->FLAGS that control how translation is processed. */
|
|
enum {
|
|
TB_FLAGS_PAL_MODE = 1,
|
|
TB_FLAGS_FEN = 2,
|
|
TB_FLAGS_USER_MODE = 8,
|
|
|
|
TB_FLAGS_AMASK_SHIFT = 4,
|
|
TB_FLAGS_AMASK_BWX = AMASK_BWX << TB_FLAGS_AMASK_SHIFT,
|
|
TB_FLAGS_AMASK_FIX = AMASK_FIX << TB_FLAGS_AMASK_SHIFT,
|
|
TB_FLAGS_AMASK_CIX = AMASK_CIX << TB_FLAGS_AMASK_SHIFT,
|
|
TB_FLAGS_AMASK_MVI = AMASK_MVI << TB_FLAGS_AMASK_SHIFT,
|
|
TB_FLAGS_AMASK_TRAP = AMASK_TRAP << TB_FLAGS_AMASK_SHIFT,
|
|
TB_FLAGS_AMASK_PREFETCH = AMASK_PREFETCH << TB_FLAGS_AMASK_SHIFT,
|
|
};
|
|
|
|
static inline void cpu_get_tb_cpu_state(CPUAlphaState *env, target_ulong *pc,
|
|
target_ulong *cs_base, int *pflags)
|
|
{
|
|
int flags = 0;
|
|
|
|
*pc = env->pc;
|
|
*cs_base = 0;
|
|
|
|
if (env->pal_mode) {
|
|
flags = TB_FLAGS_PAL_MODE;
|
|
} else {
|
|
flags = env->ps & PS_USER_MODE;
|
|
}
|
|
if (env->fen) {
|
|
flags |= TB_FLAGS_FEN;
|
|
}
|
|
flags |= env->amask << TB_FLAGS_AMASK_SHIFT;
|
|
|
|
*pflags = flags;
|
|
}
|
|
|
|
static inline bool cpu_has_work(CPUState *cpu)
|
|
{
|
|
/* Here we are checking to see if the CPU should wake up from HALT.
|
|
We will have gotten into this state only for WTINT from PALmode. */
|
|
/* ??? I'm not sure how the IPL state works with WTINT to keep a CPU
|
|
asleep even if (some) interrupts have been asserted. For now,
|
|
assume that if a CPU really wants to stay asleep, it will mask
|
|
interrupts at the chipset level, which will prevent these bits
|
|
from being set in the first place. */
|
|
return cpu->interrupt_request & (CPU_INTERRUPT_HARD
|
|
| CPU_INTERRUPT_TIMER
|
|
| CPU_INTERRUPT_SMP
|
|
| CPU_INTERRUPT_MCHK);
|
|
}
|
|
|
|
#include "exec/exec-all.h"
|
|
|
|
#endif /* !defined (__CPU_ALPHA_H__) */
|