qemu-e2k/exec.h
bellard 3c1cf9fa86 dummy rdmsr and wrmsr support - xor reg, reg optimization
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@311 c046a42c-6fe2-441c-8c8c-71466251a162
2003-07-07 11:30:47 +00:00

359 lines
9.8 KiB
C

/*
* internal execution defines for qemu
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* allow to see translation results - the slowdown should be negligible, so we leave it */
#define DEBUG_DISAS
/* is_jmp field values */
#define DISAS_NEXT 0 /* next instruction can be analyzed */
#define DISAS_JUMP 1 /* only pc was modified dynamically */
#define DISAS_UPDATE 2 /* cpu state was modified dynamically */
#define DISAS_TB_JUMP 3 /* only pc was modified statically */
struct TranslationBlock;
/* XXX: make safe guess about sizes */
#define MAX_OP_PER_INSTR 32
#define OPC_BUF_SIZE 512
#define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
#define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * 3)
extern uint16_t gen_opc_buf[OPC_BUF_SIZE];
extern uint32_t gen_opparam_buf[OPPARAM_BUF_SIZE];
extern uint32_t gen_opc_pc[OPC_BUF_SIZE];
extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
#if defined(TARGET_I386)
#define GEN_FLAG_CODE32_SHIFT 0
#define GEN_FLAG_ADDSEG_SHIFT 1
#define GEN_FLAG_SS32_SHIFT 2
#define GEN_FLAG_VM_SHIFT 3
#define GEN_FLAG_ST_SHIFT 4
#define GEN_FLAG_TF_SHIFT 8 /* same position as eflags */
#define GEN_FLAG_CPL_SHIFT 9
#define GEN_FLAG_IOPL_SHIFT 12 /* same position as eflags */
#endif
extern FILE *logfile;
extern int loglevel;
int gen_intermediate_code(struct TranslationBlock *tb);
int gen_intermediate_code_pc(struct TranslationBlock *tb);
void dump_ops(const uint16_t *opc_buf, const uint32_t *opparam_buf);
int cpu_gen_code(struct TranslationBlock *tb,
int max_code_size, int *gen_code_size_ptr);
int cpu_restore_state(struct TranslationBlock *tb,
CPUState *env, unsigned long searched_pc);
void cpu_exec_init(void);
int page_unprotect(unsigned long address);
void page_unmap(void);
#define CODE_GEN_MAX_SIZE 65536
#define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
#define CODE_GEN_HASH_BITS 15
#define CODE_GEN_HASH_SIZE (1 << CODE_GEN_HASH_BITS)
/* maximum total translate dcode allocated */
#define CODE_GEN_BUFFER_SIZE (2048 * 1024)
//#define CODE_GEN_BUFFER_SIZE (128 * 1024)
#if defined(__powerpc__)
#define USE_DIRECT_JUMP
#endif
typedef struct TranslationBlock {
unsigned long pc; /* simulated PC corresponding to this block (EIP + CS base) */
unsigned long cs_base; /* CS base for this block */
unsigned int flags; /* flags defining in which context the code was generated */
uint16_t size; /* size of target code for this block (1 <=
size <= TARGET_PAGE_SIZE) */
uint8_t *tc_ptr; /* pointer to the translated code */
struct TranslationBlock *hash_next; /* next matching block */
struct TranslationBlock *page_next[2]; /* next blocks in even/odd page */
/* the following data are used to directly call another TB from
the code of this one. */
uint16_t tb_next_offset[2]; /* offset of original jump target */
#ifdef USE_DIRECT_JUMP
uint16_t tb_jmp_offset[2]; /* offset of jump instruction */
#else
uint32_t tb_next[2]; /* address of jump generated code */
#endif
/* list of TBs jumping to this one. This is a circular list using
the two least significant bits of the pointers to tell what is
the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
jmp_first */
struct TranslationBlock *jmp_next[2];
struct TranslationBlock *jmp_first;
} TranslationBlock;
static inline unsigned int tb_hash_func(unsigned long pc)
{
return pc & (CODE_GEN_HASH_SIZE - 1);
}
TranslationBlock *tb_alloc(unsigned long pc);
void tb_flush(void);
void tb_link(TranslationBlock *tb);
extern TranslationBlock *tb_hash[CODE_GEN_HASH_SIZE];
extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
extern uint8_t *code_gen_ptr;
/* find a translation block in the translation cache. If not found,
return NULL and the pointer to the last element of the list in pptb */
static inline TranslationBlock *tb_find(TranslationBlock ***pptb,
unsigned long pc,
unsigned long cs_base,
unsigned int flags)
{
TranslationBlock **ptb, *tb;
unsigned int h;
h = tb_hash_func(pc);
ptb = &tb_hash[h];
for(;;) {
tb = *ptb;
if (!tb)
break;
if (tb->pc == pc && tb->cs_base == cs_base && tb->flags == flags)
return tb;
ptb = &tb->hash_next;
}
*pptb = ptb;
return NULL;
}
#if defined(__powerpc__)
static inline void tb_set_jmp_target(TranslationBlock *tb,
int n, unsigned long addr)
{
uint32_t val, *ptr;
unsigned long offset;
offset = (unsigned long)(tb->tc_ptr + tb->tb_jmp_offset[n]);
/* patch the branch destination */
ptr = (uint32_t *)offset;
val = *ptr;
val = (val & ~0x03fffffc) | ((addr - offset) & 0x03fffffc);
*ptr = val;
/* flush icache */
asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
asm volatile ("sync" : : : "memory");
asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
asm volatile ("sync" : : : "memory");
asm volatile ("isync" : : : "memory");
}
#else
/* set the jump target */
static inline void tb_set_jmp_target(TranslationBlock *tb,
int n, unsigned long addr)
{
tb->tb_next[n] = addr;
}
#endif
static inline void tb_add_jump(TranslationBlock *tb, int n,
TranslationBlock *tb_next)
{
/* NOTE: this test is only needed for thread safety */
if (!tb->jmp_next[n]) {
/* patch the native jump address */
tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
/* add in TB jmp circular list */
tb->jmp_next[n] = tb_next->jmp_first;
tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
}
}
TranslationBlock *tb_find_pc(unsigned long pc_ptr);
#ifndef offsetof
#define offsetof(type, field) ((size_t) &((type *)0)->field)
#endif
#if defined(__powerpc__)
/* on PowerPC we patch the jump instruction directly */
#define JUMP_TB(tbparam, n, eip)\
do {\
static void __attribute__((unused)) *__op_label ## n = &&label ## n;\
asm volatile ("b %0" : : "i" (&__op_jmp ## n));\
label ## n:\
T0 = (long)(tbparam) + (n);\
EIP = eip;\
} while (0)
#else
/* jump to next block operations (more portable code, does not need
cache flushing, but slower because of indirect jump) */
#define JUMP_TB(tbparam, n, eip)\
do {\
static void __attribute__((unused)) *__op_label ## n = &&label ## n;\
static void __attribute__((unused)) *dummy ## n = &&dummy_label ## n;\
goto *(void *)(((TranslationBlock *)tbparam)->tb_next[n]);\
label ## n:\
T0 = (long)(tbparam) + (n);\
EIP = eip;\
dummy_label ## n:\
} while (0)
#endif
#ifdef __powerpc__
static inline int testandset (int *p)
{
int ret;
__asm__ __volatile__ (
"0: lwarx %0,0,%1 ;"
" xor. %0,%3,%0;"
" bne 1f;"
" stwcx. %2,0,%1;"
" bne- 0b;"
"1: "
: "=&r" (ret)
: "r" (p), "r" (1), "r" (0)
: "cr0", "memory");
return ret;
}
#endif
#ifdef __i386__
static inline int testandset (int *p)
{
char ret;
long int readval;
__asm__ __volatile__ ("lock; cmpxchgl %3, %1; sete %0"
: "=q" (ret), "=m" (*p), "=a" (readval)
: "r" (1), "m" (*p), "a" (0)
: "memory");
return ret;
}
#endif
#ifdef __s390__
static inline int testandset (int *p)
{
int ret;
__asm__ __volatile__ ("0: cs %0,%1,0(%2)\n"
" jl 0b"
: "=&d" (ret)
: "r" (1), "a" (p), "0" (*p)
: "cc", "memory" );
return ret;
}
#endif
#ifdef __alpha__
static inline int testandset (int *p)
{
int ret;
unsigned long one;
__asm__ __volatile__ ("0: mov 1,%2\n"
" ldl_l %0,%1\n"
" stl_c %2,%1\n"
" beq %2,1f\n"
".subsection 2\n"
"1: br 0b\n"
".previous"
: "=r" (ret), "=m" (*p), "=r" (one)
: "m" (*p));
return ret;
}
#endif
#ifdef __sparc__
static inline int testandset (int *p)
{
int ret;
__asm__ __volatile__("ldstub [%1], %0"
: "=r" (ret)
: "r" (p)
: "memory");
return (ret ? 1 : 0);
}
#endif
#ifdef __arm__
static inline int testandset (int *spinlock)
{
register unsigned int ret;
__asm__ __volatile__("swp %0, %1, [%2]"
: "=r"(ret)
: "0"(1), "r"(spinlock));
return ret;
}
#endif
typedef int spinlock_t;
#define SPIN_LOCK_UNLOCKED 0
#if 1
static inline void spin_lock(spinlock_t *lock)
{
while (testandset(lock));
}
static inline void spin_unlock(spinlock_t *lock)
{
*lock = 0;
}
static inline int spin_trylock(spinlock_t *lock)
{
return !testandset(lock);
}
#else
static inline void spin_lock(spinlock_t *lock)
{
}
static inline void spin_unlock(spinlock_t *lock)
{
}
static inline int spin_trylock(spinlock_t *lock)
{
return 1;
}
#endif
extern spinlock_t tb_lock;