06955739a2
If we have PSCI v0.2 emulation available for KVM ARM/ARM64 or TCG then we need to provide PSCI v0.2 compatible string via generated DTB. Signed-off-by: Pranavkumar Sawargaonkar <pranavkumar@linaro.org> Signed-off-by: Anup Patel <anup.patel@linaro.org> Reviewed-by: Rob Herring <rob.herring@linaro.org> Message-id: 1402901605-24551-9-git-send-email-pranavkumar@linaro.org Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
502 lines
17 KiB
C
502 lines
17 KiB
C
/*
|
|
* ARM mach-virt emulation
|
|
*
|
|
* Copyright (c) 2013 Linaro Limited
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2 or later, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Emulate a virtual board which works by passing Linux all the information
|
|
* it needs about what devices are present via the device tree.
|
|
* There are some restrictions about what we can do here:
|
|
* + we can only present devices whose Linux drivers will work based
|
|
* purely on the device tree with no platform data at all
|
|
* + we want to present a very stripped-down minimalist platform,
|
|
* both because this reduces the security attack surface from the guest
|
|
* and also because it reduces our exposure to being broken when
|
|
* the kernel updates its device tree bindings and requires further
|
|
* information in a device binding that we aren't providing.
|
|
* This is essentially the same approach kvmtool uses.
|
|
*/
|
|
|
|
#include "hw/sysbus.h"
|
|
#include "hw/arm/arm.h"
|
|
#include "hw/arm/primecell.h"
|
|
#include "hw/devices.h"
|
|
#include "net/net.h"
|
|
#include "sysemu/device_tree.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "hw/boards.h"
|
|
#include "exec/address-spaces.h"
|
|
#include "qemu/bitops.h"
|
|
#include "qemu/error-report.h"
|
|
|
|
#define NUM_VIRTIO_TRANSPORTS 32
|
|
|
|
/* Number of external interrupt lines to configure the GIC with */
|
|
#define NUM_IRQS 128
|
|
|
|
#define GIC_FDT_IRQ_TYPE_SPI 0
|
|
#define GIC_FDT_IRQ_TYPE_PPI 1
|
|
|
|
#define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
|
|
#define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
|
|
#define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
|
|
#define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
|
|
|
|
#define GIC_FDT_IRQ_PPI_CPU_START 8
|
|
#define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
|
|
|
|
enum {
|
|
VIRT_FLASH,
|
|
VIRT_MEM,
|
|
VIRT_CPUPERIPHS,
|
|
VIRT_GIC_DIST,
|
|
VIRT_GIC_CPU,
|
|
VIRT_UART,
|
|
VIRT_MMIO,
|
|
};
|
|
|
|
typedef struct MemMapEntry {
|
|
hwaddr base;
|
|
hwaddr size;
|
|
} MemMapEntry;
|
|
|
|
typedef struct VirtBoardInfo {
|
|
struct arm_boot_info bootinfo;
|
|
const char *cpu_model;
|
|
const MemMapEntry *memmap;
|
|
const int *irqmap;
|
|
int smp_cpus;
|
|
void *fdt;
|
|
int fdt_size;
|
|
uint32_t clock_phandle;
|
|
} VirtBoardInfo;
|
|
|
|
/* Addresses and sizes of our components.
|
|
* 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
|
|
* 128MB..256MB is used for miscellaneous device I/O.
|
|
* 256MB..1GB is reserved for possible future PCI support (ie where the
|
|
* PCI memory window will go if we add a PCI host controller).
|
|
* 1GB and up is RAM (which may happily spill over into the
|
|
* high memory region beyond 4GB).
|
|
* This represents a compromise between how much RAM can be given to
|
|
* a 32 bit VM and leaving space for expansion and in particular for PCI.
|
|
*/
|
|
static const MemMapEntry a15memmap[] = {
|
|
/* Space up to 0x8000000 is reserved for a boot ROM */
|
|
[VIRT_FLASH] = { 0, 0x8000000 },
|
|
[VIRT_CPUPERIPHS] = { 0x8000000, 0x20000 },
|
|
/* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
|
|
[VIRT_GIC_DIST] = { 0x8000000, 0x10000 },
|
|
[VIRT_GIC_CPU] = { 0x8010000, 0x10000 },
|
|
[VIRT_UART] = { 0x9000000, 0x1000 },
|
|
[VIRT_MMIO] = { 0xa000000, 0x200 },
|
|
/* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
|
|
/* 0x10000000 .. 0x40000000 reserved for PCI */
|
|
[VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
|
|
};
|
|
|
|
static const int a15irqmap[] = {
|
|
[VIRT_UART] = 1,
|
|
[VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
|
|
};
|
|
|
|
static VirtBoardInfo machines[] = {
|
|
{
|
|
.cpu_model = "cortex-a15",
|
|
.memmap = a15memmap,
|
|
.irqmap = a15irqmap,
|
|
},
|
|
{
|
|
.cpu_model = "cortex-a57",
|
|
.memmap = a15memmap,
|
|
.irqmap = a15irqmap,
|
|
},
|
|
{
|
|
.cpu_model = "host",
|
|
.memmap = a15memmap,
|
|
.irqmap = a15irqmap,
|
|
},
|
|
};
|
|
|
|
static VirtBoardInfo *find_machine_info(const char *cpu)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(machines); i++) {
|
|
if (strcmp(cpu, machines[i].cpu_model) == 0) {
|
|
return &machines[i];
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void create_fdt(VirtBoardInfo *vbi)
|
|
{
|
|
void *fdt = create_device_tree(&vbi->fdt_size);
|
|
|
|
if (!fdt) {
|
|
error_report("create_device_tree() failed");
|
|
exit(1);
|
|
}
|
|
|
|
vbi->fdt = fdt;
|
|
|
|
/* Header */
|
|
qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
|
|
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
|
|
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
|
|
|
|
/*
|
|
* /chosen and /memory nodes must exist for load_dtb
|
|
* to fill in necessary properties later
|
|
*/
|
|
qemu_fdt_add_subnode(fdt, "/chosen");
|
|
qemu_fdt_add_subnode(fdt, "/memory");
|
|
qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
|
|
|
|
/* Clock node, for the benefit of the UART. The kernel device tree
|
|
* binding documentation claims the PL011 node clock properties are
|
|
* optional but in practice if you omit them the kernel refuses to
|
|
* probe for the device.
|
|
*/
|
|
vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
|
|
qemu_fdt_add_subnode(fdt, "/apb-pclk");
|
|
qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
|
|
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
|
|
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
|
|
qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
|
|
"clk24mhz");
|
|
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
|
|
|
|
}
|
|
|
|
static void fdt_add_psci_node(const VirtBoardInfo *vbi)
|
|
{
|
|
void *fdt = vbi->fdt;
|
|
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
|
|
|
|
/* No PSCI for TCG yet */
|
|
if (kvm_enabled()) {
|
|
qemu_fdt_add_subnode(fdt, "/psci");
|
|
if (armcpu->psci_version == 2) {
|
|
const char comp[] = "arm,psci-0.2\0arm,psci";
|
|
qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
|
|
} else {
|
|
qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
|
|
}
|
|
|
|
qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
|
|
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend",
|
|
PSCI_FN_CPU_SUSPEND);
|
|
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", PSCI_FN_CPU_OFF);
|
|
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", PSCI_FN_CPU_ON);
|
|
qemu_fdt_setprop_cell(fdt, "/psci", "migrate", PSCI_FN_MIGRATE);
|
|
}
|
|
}
|
|
|
|
static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
|
|
{
|
|
/* Note that on A15 h/w these interrupts are level-triggered,
|
|
* but for the GIC implementation provided by both QEMU and KVM
|
|
* they are edge-triggered.
|
|
*/
|
|
uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
|
|
|
|
irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
|
|
GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
|
|
|
|
qemu_fdt_add_subnode(vbi->fdt, "/timer");
|
|
qemu_fdt_setprop_string(vbi->fdt, "/timer",
|
|
"compatible", "arm,armv7-timer");
|
|
qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
|
|
GIC_FDT_IRQ_TYPE_PPI, 13, irqflags,
|
|
GIC_FDT_IRQ_TYPE_PPI, 14, irqflags,
|
|
GIC_FDT_IRQ_TYPE_PPI, 11, irqflags,
|
|
GIC_FDT_IRQ_TYPE_PPI, 10, irqflags);
|
|
}
|
|
|
|
static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
|
|
{
|
|
int cpu;
|
|
|
|
qemu_fdt_add_subnode(vbi->fdt, "/cpus");
|
|
qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
|
|
qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
|
|
|
|
for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
|
|
char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
|
|
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
|
|
|
|
qemu_fdt_add_subnode(vbi->fdt, nodename);
|
|
qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
|
|
qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
|
|
armcpu->dtb_compatible);
|
|
|
|
if (vbi->smp_cpus > 1) {
|
|
qemu_fdt_setprop_string(vbi->fdt, nodename,
|
|
"enable-method", "psci");
|
|
}
|
|
|
|
qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
|
|
g_free(nodename);
|
|
}
|
|
}
|
|
|
|
static void fdt_add_gic_node(const VirtBoardInfo *vbi)
|
|
{
|
|
uint32_t gic_phandle;
|
|
|
|
gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
|
|
qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle);
|
|
|
|
qemu_fdt_add_subnode(vbi->fdt, "/intc");
|
|
/* 'cortex-a15-gic' means 'GIC v2' */
|
|
qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
|
|
"arm,cortex-a15-gic");
|
|
qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
|
|
qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
|
|
qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
|
|
2, vbi->memmap[VIRT_GIC_DIST].base,
|
|
2, vbi->memmap[VIRT_GIC_DIST].size,
|
|
2, vbi->memmap[VIRT_GIC_CPU].base,
|
|
2, vbi->memmap[VIRT_GIC_CPU].size);
|
|
qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle);
|
|
}
|
|
|
|
static void create_gic(const VirtBoardInfo *vbi, qemu_irq *pic)
|
|
{
|
|
/* We create a standalone GIC v2 */
|
|
DeviceState *gicdev;
|
|
SysBusDevice *gicbusdev;
|
|
const char *gictype = "arm_gic";
|
|
int i;
|
|
|
|
if (kvm_irqchip_in_kernel()) {
|
|
gictype = "kvm-arm-gic";
|
|
}
|
|
|
|
gicdev = qdev_create(NULL, gictype);
|
|
qdev_prop_set_uint32(gicdev, "revision", 2);
|
|
qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
|
|
/* Note that the num-irq property counts both internal and external
|
|
* interrupts; there are always 32 of the former (mandated by GIC spec).
|
|
*/
|
|
qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
|
|
qdev_init_nofail(gicdev);
|
|
gicbusdev = SYS_BUS_DEVICE(gicdev);
|
|
sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
|
|
sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
|
|
|
|
/* Wire the outputs from each CPU's generic timer to the
|
|
* appropriate GIC PPI inputs, and the GIC's IRQ output to
|
|
* the CPU's IRQ input.
|
|
*/
|
|
for (i = 0; i < smp_cpus; i++) {
|
|
DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
|
|
int ppibase = NUM_IRQS + i * 32;
|
|
/* physical timer; we wire it up to the non-secure timer's ID,
|
|
* since a real A15 always has TrustZone but QEMU doesn't.
|
|
*/
|
|
qdev_connect_gpio_out(cpudev, 0,
|
|
qdev_get_gpio_in(gicdev, ppibase + 30));
|
|
/* virtual timer */
|
|
qdev_connect_gpio_out(cpudev, 1,
|
|
qdev_get_gpio_in(gicdev, ppibase + 27));
|
|
|
|
sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
|
|
}
|
|
|
|
for (i = 0; i < NUM_IRQS; i++) {
|
|
pic[i] = qdev_get_gpio_in(gicdev, i);
|
|
}
|
|
|
|
fdt_add_gic_node(vbi);
|
|
}
|
|
|
|
static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
|
|
{
|
|
char *nodename;
|
|
hwaddr base = vbi->memmap[VIRT_UART].base;
|
|
hwaddr size = vbi->memmap[VIRT_UART].size;
|
|
int irq = vbi->irqmap[VIRT_UART];
|
|
const char compat[] = "arm,pl011\0arm,primecell";
|
|
const char clocknames[] = "uartclk\0apb_pclk";
|
|
|
|
sysbus_create_simple("pl011", base, pic[irq]);
|
|
|
|
nodename = g_strdup_printf("/pl011@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(vbi->fdt, nodename);
|
|
/* Note that we can't use setprop_string because of the embedded NUL */
|
|
qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
|
|
compat, sizeof(compat));
|
|
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
|
|
2, base, 2, size);
|
|
qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
|
|
GIC_FDT_IRQ_TYPE_SPI, irq,
|
|
GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
|
|
qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
|
|
vbi->clock_phandle, vbi->clock_phandle);
|
|
qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
|
|
clocknames, sizeof(clocknames));
|
|
g_free(nodename);
|
|
}
|
|
|
|
static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
|
|
{
|
|
int i;
|
|
hwaddr size = vbi->memmap[VIRT_MMIO].size;
|
|
|
|
/* Note that we have to create the transports in forwards order
|
|
* so that command line devices are inserted lowest address first,
|
|
* and then add dtb nodes in reverse order so that they appear in
|
|
* the finished device tree lowest address first.
|
|
*/
|
|
for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
|
|
int irq = vbi->irqmap[VIRT_MMIO] + i;
|
|
hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
|
|
|
|
sysbus_create_simple("virtio-mmio", base, pic[irq]);
|
|
}
|
|
|
|
for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
|
|
char *nodename;
|
|
int irq = vbi->irqmap[VIRT_MMIO] + i;
|
|
hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
|
|
|
|
nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(vbi->fdt, nodename);
|
|
qemu_fdt_setprop_string(vbi->fdt, nodename,
|
|
"compatible", "virtio,mmio");
|
|
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
|
|
2, base, 2, size);
|
|
qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
|
|
GIC_FDT_IRQ_TYPE_SPI, irq,
|
|
GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
|
|
g_free(nodename);
|
|
}
|
|
}
|
|
|
|
static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
|
|
{
|
|
const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
|
|
|
|
*fdt_size = board->fdt_size;
|
|
return board->fdt;
|
|
}
|
|
|
|
static void machvirt_init(MachineState *machine)
|
|
{
|
|
qemu_irq pic[NUM_IRQS];
|
|
MemoryRegion *sysmem = get_system_memory();
|
|
int n;
|
|
MemoryRegion *ram = g_new(MemoryRegion, 1);
|
|
const char *cpu_model = machine->cpu_model;
|
|
VirtBoardInfo *vbi;
|
|
|
|
if (!cpu_model) {
|
|
cpu_model = "cortex-a15";
|
|
}
|
|
|
|
vbi = find_machine_info(cpu_model);
|
|
|
|
if (!vbi) {
|
|
error_report("mach-virt: CPU %s not supported", cpu_model);
|
|
exit(1);
|
|
}
|
|
|
|
vbi->smp_cpus = smp_cpus;
|
|
|
|
/*
|
|
* Only supported method of starting secondary CPUs is PSCI and
|
|
* PSCI is not yet supported with TCG, so limit smp_cpus to 1
|
|
* if we're not using KVM.
|
|
*/
|
|
if (!kvm_enabled() && smp_cpus > 1) {
|
|
error_report("mach-virt: must enable KVM to use multiple CPUs");
|
|
exit(1);
|
|
}
|
|
|
|
if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
|
|
error_report("mach-virt: cannot model more than 30GB RAM");
|
|
exit(1);
|
|
}
|
|
|
|
create_fdt(vbi);
|
|
fdt_add_timer_nodes(vbi);
|
|
|
|
for (n = 0; n < smp_cpus; n++) {
|
|
ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
|
|
Object *cpuobj;
|
|
|
|
if (!oc) {
|
|
fprintf(stderr, "Unable to find CPU definition\n");
|
|
exit(1);
|
|
}
|
|
cpuobj = object_new(object_class_get_name(oc));
|
|
|
|
/* Secondary CPUs start in PSCI powered-down state */
|
|
if (n > 0) {
|
|
object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
|
|
}
|
|
|
|
if (object_property_find(cpuobj, "reset-cbar", NULL)) {
|
|
object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
|
|
"reset-cbar", &error_abort);
|
|
}
|
|
|
|
object_property_set_bool(cpuobj, true, "realized", NULL);
|
|
}
|
|
fdt_add_cpu_nodes(vbi);
|
|
fdt_add_psci_node(vbi);
|
|
|
|
memory_region_init_ram(ram, NULL, "mach-virt.ram", machine->ram_size);
|
|
vmstate_register_ram_global(ram);
|
|
memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
|
|
|
|
create_gic(vbi, pic);
|
|
|
|
create_uart(vbi, pic);
|
|
|
|
/* Create mmio transports, so the user can create virtio backends
|
|
* (which will be automatically plugged in to the transports). If
|
|
* no backend is created the transport will just sit harmlessly idle.
|
|
*/
|
|
create_virtio_devices(vbi, pic);
|
|
|
|
vbi->bootinfo.ram_size = machine->ram_size;
|
|
vbi->bootinfo.kernel_filename = machine->kernel_filename;
|
|
vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
|
|
vbi->bootinfo.initrd_filename = machine->initrd_filename;
|
|
vbi->bootinfo.nb_cpus = smp_cpus;
|
|
vbi->bootinfo.board_id = -1;
|
|
vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
|
|
vbi->bootinfo.get_dtb = machvirt_dtb;
|
|
arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
|
|
}
|
|
|
|
static QEMUMachine machvirt_a15_machine = {
|
|
.name = "virt",
|
|
.desc = "ARM Virtual Machine",
|
|
.init = machvirt_init,
|
|
.max_cpus = 4,
|
|
};
|
|
|
|
static void machvirt_machine_init(void)
|
|
{
|
|
qemu_register_machine(&machvirt_a15_machine);
|
|
}
|
|
|
|
machine_init(machvirt_machine_init);
|