qemu-e2k/helper2-i386.c
bellard 3f33731662 pop ss, mov ss, x and sti disable irqs for the next instruction - began dispatch optimization by adding new x86 cpu 'hidden' flags
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@372 c046a42c-6fe2-441c-8c8c-71466251a162
2003-08-20 23:02:09 +00:00

391 lines
11 KiB
C

/*
* i386 helpers (without register variable usage)
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include <signal.h>
#include <assert.h>
#include <sys/mman.h>
#include "cpu-i386.h"
#include "exec.h"
//#define DEBUG_MMU
CPUX86State *cpu_x86_init(void)
{
CPUX86State *env;
int i;
static int inited;
cpu_exec_init();
env = malloc(sizeof(CPUX86State));
if (!env)
return NULL;
memset(env, 0, sizeof(CPUX86State));
/* basic FPU init */
for(i = 0;i < 8; i++)
env->fptags[i] = 1;
env->fpuc = 0x37f;
/* flags setup : we activate the IRQs by default as in user mode */
env->eflags = 0x2 | IF_MASK;
tlb_flush(env);
#ifdef CONFIG_SOFTMMU
env->hflags |= HF_SOFTMMU_MASK;
#endif
/* init various static tables */
if (!inited) {
inited = 1;
optimize_flags_init();
}
return env;
}
void cpu_x86_close(CPUX86State *env)
{
free(env);
}
/***********************************************************/
/* x86 debug */
static const char *cc_op_str[] = {
"DYNAMIC",
"EFLAGS",
"MUL",
"ADDB",
"ADDW",
"ADDL",
"ADCB",
"ADCW",
"ADCL",
"SUBB",
"SUBW",
"SUBL",
"SBBB",
"SBBW",
"SBBL",
"LOGICB",
"LOGICW",
"LOGICL",
"INCB",
"INCW",
"INCL",
"DECB",
"DECW",
"DECL",
"SHLB",
"SHLW",
"SHLL",
"SARB",
"SARW",
"SARL",
};
void cpu_x86_dump_state(CPUX86State *env, FILE *f, int flags)
{
int eflags;
char cc_op_name[32];
eflags = env->eflags;
fprintf(f, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n"
"ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n"
"EIP=%08x EFL=%08x [%c%c%c%c%c%c%c]\n",
env->regs[R_EAX], env->regs[R_EBX], env->regs[R_ECX], env->regs[R_EDX],
env->regs[R_ESI], env->regs[R_EDI], env->regs[R_EBP], env->regs[R_ESP],
env->eip, eflags,
eflags & DF_MASK ? 'D' : '-',
eflags & CC_O ? 'O' : '-',
eflags & CC_S ? 'S' : '-',
eflags & CC_Z ? 'Z' : '-',
eflags & CC_A ? 'A' : '-',
eflags & CC_P ? 'P' : '-',
eflags & CC_C ? 'C' : '-');
fprintf(f, "CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x\n",
env->segs[R_CS].selector,
env->segs[R_SS].selector,
env->segs[R_DS].selector,
env->segs[R_ES].selector,
env->segs[R_FS].selector,
env->segs[R_GS].selector);
if (flags & X86_DUMP_CCOP) {
if ((unsigned)env->cc_op < CC_OP_NB)
strcpy(cc_op_name, cc_op_str[env->cc_op]);
else
snprintf(cc_op_name, sizeof(cc_op_name), "[%d]", env->cc_op);
fprintf(f, "CCS=%08x CCD=%08x CCO=%-8s\n",
env->cc_src, env->cc_dst, cc_op_name);
}
if (flags & X86_DUMP_FPU) {
fprintf(f, "ST0=%f ST1=%f ST2=%f ST3=%f\n",
(double)env->fpregs[0],
(double)env->fpregs[1],
(double)env->fpregs[2],
(double)env->fpregs[3]);
fprintf(f, "ST4=%f ST5=%f ST6=%f ST7=%f\n",
(double)env->fpregs[4],
(double)env->fpregs[5],
(double)env->fpregs[7],
(double)env->fpregs[8]);
}
}
/***********************************************************/
/* x86 mmu */
/* XXX: add PGE support */
/* called when cr3 or PG bit are modified */
static int last_pg_state = -1;
static int last_pe_state = 0;
int phys_ram_size;
int phys_ram_fd;
uint8_t *phys_ram_base;
void cpu_x86_update_cr0(CPUX86State *env)
{
int pg_state, pe_state;
#ifdef DEBUG_MMU
printf("CR0 update: CR0=0x%08x\n", env->cr[0]);
#endif
pg_state = env->cr[0] & CR0_PG_MASK;
if (pg_state != last_pg_state) {
page_unmap();
tlb_flush(env);
last_pg_state = pg_state;
}
pe_state = env->cr[0] & CR0_PE_MASK;
if (last_pe_state != pe_state) {
tb_flush();
last_pe_state = pe_state;
}
}
void cpu_x86_update_cr3(CPUX86State *env)
{
if (env->cr[0] & CR0_PG_MASK) {
#if defined(DEBUG_MMU)
printf("CR3 update: CR3=%08x\n", env->cr[3]);
#endif
page_unmap();
tlb_flush(env);
}
}
void cpu_x86_init_mmu(CPUX86State *env)
{
last_pg_state = -1;
cpu_x86_update_cr0(env);
}
/* XXX: also flush 4MB pages */
void cpu_x86_flush_tlb(CPUX86State *env, uint32_t addr)
{
int flags;
unsigned long virt_addr;
tlb_flush_page(env, addr);
flags = page_get_flags(addr);
if (flags & PAGE_VALID) {
virt_addr = addr & ~0xfff;
munmap((void *)virt_addr, 4096);
page_set_flags(virt_addr, virt_addr + 4096, 0);
}
}
/* return value:
-1 = cannot handle fault
0 = nothing more to do
1 = generate PF fault
2 = soft MMU activation required for this block
*/
int cpu_x86_handle_mmu_fault(CPUX86State *env, uint32_t addr, int is_write)
{
uint8_t *pde_ptr, *pte_ptr;
uint32_t pde, pte, virt_addr;
int cpl, error_code, is_dirty, is_user, prot, page_size, ret;
unsigned long pd;
cpl = env->hflags & HF_CPL_MASK;
is_user = (cpl == 3);
#ifdef DEBUG_MMU
printf("MMU fault: addr=0x%08x w=%d u=%d eip=%08x\n",
addr, is_write, is_user, env->eip);
#endif
if (env->user_mode_only) {
/* user mode only emulation */
error_code = 0;
goto do_fault;
}
if (!(env->cr[0] & CR0_PG_MASK)) {
pte = addr;
virt_addr = addr & ~0xfff;
prot = PROT_READ | PROT_WRITE;
page_size = 4096;
goto do_mapping;
}
/* page directory entry */
pde_ptr = phys_ram_base + ((env->cr[3] & ~0xfff) + ((addr >> 20) & ~3));
pde = ldl(pde_ptr);
if (!(pde & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
if (is_user) {
if (!(pde & PG_USER_MASK))
goto do_fault_protect;
if (is_write && !(pde & PG_RW_MASK))
goto do_fault_protect;
} else {
if ((env->cr[0] & CR0_WP_MASK) && (pde & PG_USER_MASK) &&
is_write && !(pde & PG_RW_MASK))
goto do_fault_protect;
}
/* if PSE bit is set, then we use a 4MB page */
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
is_dirty = is_write && !(pde & PG_DIRTY_MASK);
if (!(pde & PG_ACCESSED_MASK)) {
pde |= PG_ACCESSED_MASK;
if (is_dirty)
pde |= PG_DIRTY_MASK;
stl(pde_ptr, pde);
}
pte = pde & ~0x003ff000; /* align to 4MB */
page_size = 4096 * 1024;
virt_addr = addr & ~0x003fffff;
} else {
if (!(pde & PG_ACCESSED_MASK)) {
pde |= PG_ACCESSED_MASK;
stl(pde_ptr, pde);
}
/* page directory entry */
pte_ptr = phys_ram_base + ((pde & ~0xfff) + ((addr >> 10) & 0xffc));
pte = ldl(pte_ptr);
if (!(pte & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
if (is_user) {
if (!(pte & PG_USER_MASK))
goto do_fault_protect;
if (is_write && !(pte & PG_RW_MASK))
goto do_fault_protect;
} else {
if ((env->cr[0] & CR0_WP_MASK) && (pte & PG_USER_MASK) &&
is_write && !(pte & PG_RW_MASK))
goto do_fault_protect;
}
is_dirty = is_write && !(pte & PG_DIRTY_MASK);
if (!(pte & PG_ACCESSED_MASK) || is_dirty) {
pte |= PG_ACCESSED_MASK;
if (is_dirty)
pte |= PG_DIRTY_MASK;
stl(pte_ptr, pte);
}
page_size = 4096;
virt_addr = addr & ~0xfff;
}
/* the page can be put in the TLB */
prot = PROT_READ;
if (is_user) {
if (pte & PG_RW_MASK)
prot |= PROT_WRITE;
} else {
if (!(env->cr[0] & CR0_WP_MASK) || !(pte & PG_USER_MASK) ||
(pte & PG_RW_MASK))
prot |= PROT_WRITE;
}
do_mapping:
if (env->hflags & HF_SOFTMMU_MASK) {
unsigned long paddr, vaddr, address, addend, page_offset;
int index;
/* software MMU case. Even if 4MB pages, we map only one 4KB
page in the cache to avoid filling it too fast */
page_offset = (addr & ~0xfff) & (page_size - 1);
paddr = (pte & ~0xfff) + page_offset;
vaddr = virt_addr + page_offset;
index = (addr >> 12) & (CPU_TLB_SIZE - 1);
pd = physpage_find(paddr);
if (pd & 0xfff) {
/* IO memory case */
address = vaddr | pd;
addend = paddr;
} else {
/* standard memory */
address = vaddr;
addend = (unsigned long)phys_ram_base + pd;
}
addend -= vaddr;
env->tlb_read[is_user][index].address = address;
env->tlb_read[is_user][index].addend = addend;
if (prot & PROT_WRITE) {
env->tlb_write[is_user][index].address = address;
env->tlb_write[is_user][index].addend = addend;
}
}
ret = 0;
/* XXX: incorrect for 4MB pages */
pd = physpage_find(pte & ~0xfff);
if ((pd & 0xfff) != 0) {
/* IO access: no mapping is done as it will be handled by the
soft MMU */
if (!(env->hflags & HF_SOFTMMU_MASK))
ret = 2;
} else {
void *map_addr;
map_addr = mmap((void *)virt_addr, page_size, prot,
MAP_SHARED | MAP_FIXED, phys_ram_fd, pd);
if (map_addr == MAP_FAILED) {
fprintf(stderr,
"mmap failed when mapped physical address 0x%08x to virtual address 0x%08x\n",
pte & ~0xfff, virt_addr);
exit(1);
}
#ifdef DEBUG_MMU
printf("mmaping 0x%08x to virt 0x%08x pse=%d\n",
pte & ~0xfff, virt_addr, (page_size != 4096));
#endif
page_set_flags(virt_addr, virt_addr + page_size,
PAGE_VALID | PAGE_EXEC | prot);
}
return ret;
do_fault_protect:
error_code = PG_ERROR_P_MASK;
do_fault:
env->cr[2] = addr;
env->error_code = (is_write << PG_ERROR_W_BIT) | error_code;
if (is_user)
env->error_code |= PG_ERROR_U_MASK;
return 1;
}