qemu-e2k/target-ppc/op.c
bellard fb0eaffc6d PowerPC fixes (Jocelyn Mayer)
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@483 c046a42c-6fe2-441c-8c8c-71466251a162
2004-01-04 14:57:11 +00:00

1419 lines
26 KiB
C

/*
* PPC emulation micro-operations for qemu.
*
* Copyright (c) 2003 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#include "exec.h"
#define regs (env)
#define Ts0 (int32_t)T0
#define Ts1 (int32_t)T1
#define Ts2 (int32_t)T2
#define FT0 (env->ft0)
#define FT1 (env->ft1)
#define FT2 (env->ft2)
#define FTS0 ((float)env->ft0)
#define FTS1 ((float)env->ft1)
#define FTS2 ((float)env->ft2)
#define PPC_OP(name) void op_##name(void)
#define REG 0
#include "op_template.h"
#define REG 1
#include "op_template.h"
#define REG 2
#include "op_template.h"
#define REG 3
#include "op_template.h"
#define REG 4
#include "op_template.h"
#define REG 5
#include "op_template.h"
#define REG 6
#include "op_template.h"
#define REG 7
#include "op_template.h"
#define REG 8
#include "op_template.h"
#define REG 9
#include "op_template.h"
#define REG 10
#include "op_template.h"
#define REG 11
#include "op_template.h"
#define REG 12
#include "op_template.h"
#define REG 13
#include "op_template.h"
#define REG 14
#include "op_template.h"
#define REG 15
#include "op_template.h"
#define REG 16
#include "op_template.h"
#define REG 17
#include "op_template.h"
#define REG 18
#include "op_template.h"
#define REG 19
#include "op_template.h"
#define REG 20
#include "op_template.h"
#define REG 21
#include "op_template.h"
#define REG 22
#include "op_template.h"
#define REG 23
#include "op_template.h"
#define REG 24
#include "op_template.h"
#define REG 25
#include "op_template.h"
#define REG 26
#include "op_template.h"
#define REG 27
#include "op_template.h"
#define REG 28
#include "op_template.h"
#define REG 29
#include "op_template.h"
#define REG 30
#include "op_template.h"
#define REG 31
#include "op_template.h"
/* PPC state maintenance operations */
/* set_Rc0 */
PPC_OP(set_Rc0)
{
uint32_t tmp;
if (Ts0 < 0) {
tmp = 0x08;
} else if (Ts0 > 0) {
tmp = 0x04;
} else {
tmp = 0x02;
}
set_CRn(0, tmp);
RETURN();
}
PPC_OP(set_Rc0_ov)
{
uint32_t tmp;
if (Ts0 < 0) {
tmp = 0x08;
} else if (Ts0 > 0) {
tmp = 0x04;
} else {
tmp = 0x02;
}
tmp |= xer_ov;
set_CRn(0, tmp);
RETURN();
}
/* reset_Rc0 */
PPC_OP(reset_Rc0)
{
set_CRn(0, 0x02 | xer_ov);
RETURN();
}
/* set_Rc0_1 */
PPC_OP(set_Rc0_1)
{
set_CRn(0, 0x04 | xer_ov);
RETURN();
}
/* Set Rc1 (for floating point arithmetic) */
PPC_OP(set_Rc1)
{
env->crf[1] = regs->fpscr[7];
RETURN();
}
PPC_OP(set_T0)
{
T0 = PARAM(1);
RETURN();
}
PPC_OP(set_T1)
{
T1 = PARAM(1);
RETURN();
}
PPC_OP(set_T2)
{
T2 = PARAM(1);
RETURN();
}
/* Update time base */
PPC_OP(update_tb)
{
T0 = regs->spr[SPR_ENCODE(268)];
T1 = T0;
T0 += PARAM(1);
if (T0 < T1) {
T1 = regs->spr[SPR_ENCODE(269)] + 1;
regs->spr[SPR_ENCODE(269)] = T1;
}
regs->spr[SPR_ENCODE(268)] = T0;
RETURN();
}
PPC_OP(raise_exception)
{
raise_exception(PARAM(1));
RETURN();
}
PPC_OP(exit_tb)
{
EXIT_TB();
}
PPC_OP(load_cr)
{
T0 = do_load_cr();
RETURN();
}
PPC_OP(store_cr)
{
do_store_cr(PARAM(1), T0);
RETURN();
}
PPC_OP(load_xer_cr)
{
T0 = (xer_so << 3) | (xer_ov << 2) | (xer_ca << 1);
RETURN();
}
PPC_OP(clear_xer_cr)
{
xer_so = 0;
xer_ov = 0;
xer_ca = 0;
RETURN();
}
PPC_OP(load_xer_bc)
{
T0 = xer_bc;
RETURN();
}
PPC_OP(load_xer)
{
T0 = do_load_xer();
RETURN();
}
PPC_OP(store_xer)
{
do_store_xer(T0);
RETURN();
}
PPC_OP(load_msr)
{
T0 = do_load_msr();
RETURN();
}
PPC_OP(store_msr)
{
do_store_msr(T0);
RETURN();
}
PPC_OP(load_lr)
{
regs->LR = PARAM(1);
RETURN();
}
/* FPSCR */
PPC_OP(load_fpscr)
{
do_load_fpscr();
RETURN();
}
PPC_OP(store_fpscr)
{
do_store_fpscr(PARAM(1));
RETURN();
}
PPC_OP(reset_scrfx)
{
regs->fpscr[7] &= ~0x8;
RETURN();
}
/* Set reservation */
PPC_OP(set_reservation)
{
regs->reserve = T1 & ~0x03;
RETURN();
}
/* Reset reservation */
PPC_OP(reset_reservation)
{
regs->reserve = 0;
RETURN();
}
/* crf operations */
PPC_OP(getbit_T0)
{
T0 = (T0 >> PARAM(1)) & 1;
RETURN();
}
PPC_OP(getbit_T1)
{
T1 = (T1 >> PARAM(1)) & 1;
RETURN();
}
PPC_OP(setcrfbit)
{
T1 = (T1 & PARAM(1)) | (T0 << PARAM(2));
RETURN();
}
/* Branch */
#define __PPC_OP_B(name, target) \
PPC_OP(name) \
{ \
regs->nip = (target); \
RETURN(); \
}
#define __PPC_OP_BL(name, target) \
PPC_OP(name) \
{ \
regs->LR = PARAM(1); \
regs->nip = (target); \
RETURN(); \
}
#define PPC_OP_B(name, target) \
__PPC_OP_B(name, target); \
__PPC_OP_BL(name##l, target)
#define __PPC_OP_BC(name, cond, target) \
PPC_OP(name) \
{ \
if (cond) { \
T0 = (target); \
} else { \
T0 = PARAM(1); \
} \
regs->nip = T0; \
RETURN(); \
}
#define __PPC_OP_BCL(name, cond, target) \
PPC_OP(name) \
{ \
if (cond) { \
T0 = (target); \
regs->LR = PARAM(1); \
} else { \
T0 = PARAM(1); \
} \
regs->nip = T0; \
RETURN(); \
}
#define _PPC_OP_BC(name, namel, cond, target) \
__PPC_OP_BC(name, cond, target); \
__PPC_OP_BCL(namel, cond, target)
/* Branch to target */
#define PPC_OP_BC(name, cond) \
_PPC_OP_BC(b_##name, bl_##name, cond, PARAM(2))
PPC_OP_B(b, PARAM(1));
PPC_OP_BC(ctr, (regs->CTR != 0));
PPC_OP_BC(ctr_true, (regs->CTR != 0 && (T0 & PARAM(3)) != 0));
PPC_OP_BC(ctr_false, (regs->CTR != 0 && (T0 & PARAM(3)) == 0));
PPC_OP_BC(ctrz, (regs->CTR == 0));
PPC_OP_BC(ctrz_true, (regs->CTR == 0 && (T0 & PARAM(3)) != 0));
PPC_OP_BC(ctrz_false, (regs->CTR == 0 && (T0 & PARAM(3)) == 0));
PPC_OP_BC(true, ((T0 & PARAM(3)) != 0));
PPC_OP_BC(false, ((T0 & PARAM(3)) == 0));
/* Branch to CTR */
#define PPC_OP_BCCTR(name, cond) \
_PPC_OP_BC(bctr_##name, bctrl_##name, cond, regs->CTR & ~0x03)
PPC_OP_B(bctr, regs->CTR & ~0x03);
PPC_OP_BCCTR(ctr, (regs->CTR != 0));
PPC_OP_BCCTR(ctr_true, (regs->CTR != 0 && (T0 & PARAM(2)) != 0));
PPC_OP_BCCTR(ctr_false, (regs->CTR != 0 && (T0 & PARAM(2)) == 0));
PPC_OP_BCCTR(ctrz, (regs->CTR == 0));
PPC_OP_BCCTR(ctrz_true, (regs->CTR == 0 && (T0 & PARAM(2)) != 0));
PPC_OP_BCCTR(ctrz_false, (regs->CTR == 0 && (T0 & PARAM(2)) == 0));
PPC_OP_BCCTR(true, ((T0 & PARAM(2)) != 0));
PPC_OP_BCCTR(false, ((T0 & PARAM(2)) == 0));
/* Branch to LR */
#define PPC_OP_BCLR(name, cond) \
_PPC_OP_BC(blr_##name, blrl_##name, cond, regs->LR & ~0x03)
PPC_OP_B(blr, regs->LR & ~0x03);
PPC_OP_BCLR(ctr, (regs->CTR != 0));
PPC_OP_BCLR(ctr_true, (regs->CTR != 0 && (T0 & PARAM(2)) != 0));
PPC_OP_BCLR(ctr_false, (regs->CTR != 0 && (T0 & PARAM(2)) == 0));
PPC_OP_BCLR(ctrz, (regs->CTR == 0));
PPC_OP_BCLR(ctrz_true, (regs->CTR == 0 && (T0 & PARAM(2)) != 0));
PPC_OP_BCLR(ctrz_false, (regs->CTR == 0 && (T0 & PARAM(2)) == 0));
PPC_OP_BCLR(true, ((T0 & PARAM(2)) != 0));
PPC_OP_BCLR(false, ((T0 & PARAM(2)) == 0));
/* CTR maintenance */
PPC_OP(dec_ctr)
{
regs->CTR--;
RETURN();
}
/*** Integer arithmetic ***/
/* add */
PPC_OP(add)
{
T0 += T1;
RETURN();
}
PPC_OP(addo)
{
T2 = T0;
T0 += T1;
if ((T2 ^ T1 ^ (-1)) & (T2 ^ T0) & (1 << 31)) {
xer_so = 1;
xer_ov = 1;
} else {
xer_ov = 0;
}
RETURN();
}
/* add carrying */
PPC_OP(addc)
{
T2 = T0;
T0 += T1;
if (T0 < T2) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
PPC_OP(addco)
{
T2 = T0;
T0 += T1;
if (T0 < T2) {
xer_ca = 1;
} else {
xer_ca = 0;
}
if ((T2 ^ T1 ^ (-1)) & (T2 ^ T0) & (1 << 31)) {
xer_so = 1;
xer_ov = 1;
} else {
xer_ov = 0;
}
RETURN();
}
/* add extended */
/* candidate for helper (too long) */
PPC_OP(adde)
{
T2 = T0;
T0 += T1 + xer_ca;
if (T0 < T2 || (xer_ca == 1 && T0 == T2)) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
PPC_OP(addeo)
{
T2 = T0;
T0 += T1 + xer_ca;
if (T0 < T2 || (xer_ca == 1 && T0 == T2)) {
xer_ca = 1;
} else {
xer_ca = 0;
}
if ((T2 ^ T1 ^ (-1)) & (T2 ^ T0) & (1 << 31)) {
xer_so = 1;
xer_ov = 1;
} else {
xer_ov = 0;
}
RETURN();
}
/* add immediate */
PPC_OP(addi)
{
T0 += PARAM(1);
RETURN();
}
/* add immediate carrying */
PPC_OP(addic)
{
T1 = T0;
T0 += PARAM(1);
if (T0 < T1) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
/* add to minus one extended */
PPC_OP(addme)
{
T1 = T0;
T0 += xer_ca + (-1);
if (T1 != 0)
xer_ca = 1;
RETURN();
}
PPC_OP(addmeo)
{
T1 = T0;
T0 += xer_ca + (-1);
if (T1 & (T1 ^ T0) & (1 << 31)) {
xer_so = 1;
xer_ov = 1;
} else {
xer_ov = 0;
}
if (T1 != 0)
xer_ca = 1;
RETURN();
}
/* add to zero extended */
PPC_OP(addze)
{
T1 = T0;
T0 += xer_ca;
if (T0 < T1) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
PPC_OP(addzeo)
{
T1 = T0;
T0 += xer_ca;
if ((T1 ^ (-1)) & (T1 ^ T0) & (1 << 31)) {
xer_so = 1;
xer_ov = 1;
} else {
xer_ov = 0;
}
if (T0 < T1) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
/* divide word */
/* candidate for helper (too long) */
PPC_OP(divw)
{
if ((Ts0 == INT32_MIN && Ts1 == -1) || Ts1 == 0) {
Ts0 = (-1) * (T0 >> 31);
} else {
Ts0 /= Ts1;
}
RETURN();
}
PPC_OP(divwo)
{
if ((Ts0 == INT32_MIN && Ts1 == -1) || Ts1 == 0) {
xer_so = 1;
xer_ov = 1;
T0 = (-1) * (T0 >> 31);
} else {
xer_ov = 0;
Ts0 /= Ts1;
}
RETURN();
}
/* divide word unsigned */
PPC_OP(divwu)
{
if (T1 == 0) {
T0 = 0;
} else {
T0 /= T1;
}
RETURN();
}
PPC_OP(divwuo)
{
if (T1 == 0) {
xer_so = 1;
xer_ov = 1;
T0 = 0;
} else {
xer_ov = 0;
T0 /= T1;
}
RETURN();
}
/* multiply high word */
PPC_OP(mulhw)
{
Ts0 = ((int64_t)Ts0 * (int64_t)Ts1) >> 32;
RETURN();
}
/* multiply high word unsigned */
PPC_OP(mulhwu)
{
T0 = ((uint64_t)T0 * (uint64_t)T1) >> 32;
RETURN();
}
/* multiply low immediate */
PPC_OP(mulli)
{
Ts0 *= SPARAM(1);
RETURN();
}
/* multiply low word */
PPC_OP(mullw)
{
T0 *= T1;
RETURN();
}
PPC_OP(mullwo)
{
int64_t res = (int64_t)Ts0 * (int64_t)Ts1;
if ((int32_t)res != res) {
xer_ov = 1;
xer_so = 1;
} else {
xer_ov = 0;
}
Ts0 = res;
RETURN();
}
/* negate */
PPC_OP(neg)
{
if (T0 != 0x80000000) {
Ts0 = -Ts0;
}
RETURN();
}
PPC_OP(nego)
{
if (T0 == 0x80000000) {
xer_ov = 1;
xer_so = 1;
} else {
xer_ov = 0;
Ts0 = -Ts0;
}
RETURN();
}
/* substract from */
PPC_OP(subf)
{
T0 = T1 - T0;
RETURN();
}
PPC_OP(subfo)
{
T2 = T0;
T0 = T1 - T0;
if (((~T2) ^ T1 ^ (-1)) & ((~T2) ^ T0) & (1 << 31)) {
xer_so = 1;
xer_ov = 1;
} else {
xer_ov = 0;
}
RETURN();
}
/* substract from carrying */
PPC_OP(subfc)
{
T0 = T1 - T0;
if (T0 <= T1) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
PPC_OP(subfco)
{
T2 = T0;
T0 = T1 - T0;
if (T0 <= T1) {
xer_ca = 1;
} else {
xer_ca = 0;
}
if (((~T2) ^ T1 ^ (-1)) & ((~T2) ^ T0) & (1 << 31)) {
xer_so = 1;
xer_ov = 1;
} else {
xer_ov = 0;
}
RETURN();
}
/* substract from extended */
/* candidate for helper (too long) */
PPC_OP(subfe)
{
T0 = T1 + ~T0 + xer_ca;
if (T0 < T1 || (xer_ca == 1 && T0 == T1)) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
PPC_OP(subfeo)
{
T2 = T0;
T0 = T1 + ~T0 + xer_ca;
if ((~T2 ^ T1 ^ (-1)) & (~T2 ^ T0) & (1 << 31)) {
xer_so = 1;
xer_ov = 1;
} else {
xer_ov = 0;
}
if (T0 < T1 || (xer_ca == 1 && T0 == T1)) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
/* substract from immediate carrying */
PPC_OP(subfic)
{
T0 = PARAM(1) + ~T0 + 1;
if (T0 <= PARAM(1)) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
/* substract from minus one extended */
PPC_OP(subfme)
{
T0 = ~T0 + xer_ca - 1;
if (T0 != -1)
xer_ca = 1;
RETURN();
}
PPC_OP(subfmeo)
{
T1 = T0;
T0 = ~T0 + xer_ca - 1;
if (~T1 & (~T1 ^ T0) & (1 << 31)) {
xer_so = 1;
xer_ov = 1;
} else {
xer_ov = 0;
}
if (T1 != -1)
xer_ca = 1;
RETURN();
}
/* substract from zero extended */
PPC_OP(subfze)
{
T1 = ~T0;
T0 = T1 + xer_ca;
if (T0 < T1) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
PPC_OP(subfzeo)
{
T1 = T0;
T0 = ~T0 + xer_ca;
if ((~T1 ^ (-1)) & ((~T1) ^ T0) & (1 << 31)) {
xer_ov = 1;
xer_so = 1;
} else {
xer_ov = 0;
}
if (T0 < ~T1) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
/*** Integer comparison ***/
/* compare */
PPC_OP(cmp)
{
if (Ts0 < Ts1) {
T0 = 0x08;
} else if (Ts0 > Ts1) {
T0 = 0x04;
} else {
T0 = 0x02;
}
RETURN();
}
/* compare immediate */
PPC_OP(cmpi)
{
if (Ts0 < SPARAM(1)) {
T0 = 0x08;
} else if (Ts0 > SPARAM(1)) {
T0 = 0x04;
} else {
T0 = 0x02;
}
RETURN();
}
/* compare logical */
PPC_OP(cmpl)
{
if (T0 < T1) {
T0 = 0x08;
} else if (T0 > T1) {
T0 = 0x04;
} else {
T0 = 0x02;
}
RETURN();
}
/* compare logical immediate */
PPC_OP(cmpli)
{
if (T0 < PARAM(1)) {
T0 = 0x08;
} else if (T0 > PARAM(1)) {
T0 = 0x04;
} else {
T0 = 0x02;
}
RETURN();
}
/*** Integer logical ***/
/* and */
PPC_OP(and)
{
T0 &= T1;
RETURN();
}
/* andc */
PPC_OP(andc)
{
T0 &= ~T1;
RETURN();
}
/* andi. */
PPC_OP(andi_)
{
T0 &= PARAM(1);
RETURN();
}
/* count leading zero */
PPC_OP(cntlzw)
{
T1 = T0;
for (T0 = 32; T1 > 0; T0--)
T1 = T1 >> 1;
RETURN();
}
/* eqv */
PPC_OP(eqv)
{
T0 = ~(T0 ^ T1);
RETURN();
}
/* extend sign byte */
PPC_OP(extsb)
{
Ts0 = s_ext8(Ts0);
RETURN();
}
/* extend sign half word */
PPC_OP(extsh)
{
Ts0 = s_ext16(Ts0);
RETURN();
}
/* nand */
PPC_OP(nand)
{
T0 = ~(T0 & T1);
RETURN();
}
/* nor */
PPC_OP(nor)
{
T0 = ~(T0 | T1);
RETURN();
}
/* or */
PPC_OP(or)
{
T0 |= T1;
RETURN();
}
/* orc */
PPC_OP(orc)
{
T0 |= ~T1;
RETURN();
}
/* ori */
PPC_OP(ori)
{
T0 |= PARAM(1);
RETURN();
}
/* xor */
PPC_OP(xor)
{
T0 ^= T1;
RETURN();
}
/* xori */
PPC_OP(xori)
{
T0 ^= PARAM(1);
RETURN();
}
/*** Integer rotate ***/
/* rotate left word immediate then mask insert */
PPC_OP(rlwimi)
{
T0 = (rotl(T0, PARAM(1)) & PARAM(2)) | (T1 & PARAM(3));
RETURN();
}
/* rotate left immediate then and with mask insert */
PPC_OP(rotlwi)
{
T0 = rotl(T0, PARAM(1));
RETURN();
}
PPC_OP(slwi)
{
T0 = T0 << PARAM(1);
RETURN();
}
PPC_OP(srwi)
{
T0 = T0 >> PARAM(1);
RETURN();
}
/* rotate left word then and with mask insert */
PPC_OP(rlwinm)
{
T0 = rotl(T0, PARAM(1)) & PARAM(2);
RETURN();
}
PPC_OP(rotl)
{
T0 = rotl(T0, T1);
RETURN();
}
PPC_OP(rlwnm)
{
T0 = rotl(T0, T1) & PARAM(1);
RETURN();
}
/*** Integer shift ***/
/* shift left word */
PPC_OP(slw)
{
if (T1 & 0x20) {
T0 = 0;
} else {
T0 = T0 << T1;
}
RETURN();
}
/* shift right algebraic word */
PPC_OP(sraw)
{
Ts0 = do_sraw(Ts0, T1);
RETURN();
}
/* shift right algebraic word immediate */
PPC_OP(srawi)
{
Ts1 = Ts0;
Ts0 = Ts0 >> PARAM(1);
if (Ts1 < 0 && (Ts1 & PARAM(2)) != 0) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
/* shift right word */
PPC_OP(srw)
{
if (T1 & 0x20) {
T0 = 0;
} else {
T0 = T0 >> T1;
}
RETURN();
}
/*** Floating-Point arithmetic ***/
/*** Floating-Point multiply-and-add ***/
/*** Floating-Point round & convert ***/
/*** Floating-Point compare ***/
/*** Floating-Point status & ctrl register ***/
/*** Integer load ***/
#define ld16x(x) s_ext16(ld16(x))
#define PPC_ILD_OPX(name, op) \
PPC_OP(l##name##x_z) \
{ \
T1 = op(T0); \
RETURN(); \
} \
PPC_OP(l##name##x) \
{ \
T0 += T1; \
T1 = op(T0); \
RETURN(); \
}
#define PPC_ILD_OP(name, op) \
PPC_OP(l##name##_z) \
{ \
T1 = op(SPARAM(1)); \
RETURN(); \
} \
PPC_OP(l##name) \
{ \
T0 += SPARAM(1); \
T1 = op(T0); \
RETURN(); \
} \
PPC_ILD_OPX(name, op)
PPC_ILD_OP(bz, ld8);
PPC_ILD_OP(ha, ld16x);
PPC_ILD_OP(hz, ld16);
PPC_ILD_OP(wz, ld32);
/*** Integer store ***/
#define PPC_IST_OPX(name, op) \
PPC_OP(st##name##x_z) \
{ \
op(T0, T1); \
RETURN(); \
} \
PPC_OP(st##name##x) \
{ \
T0 += T1; \
op(T0, T2); \
RETURN(); \
}
#define PPC_IST_OP(name, op) \
PPC_OP(st##name##_z) \
{ \
op(SPARAM(1), T0); \
RETURN(); \
} \
PPC_OP(st##name) \
{ \
T0 += SPARAM(1); \
op(T0, T1); \
RETURN(); \
} \
PPC_IST_OPX(name, op);
PPC_IST_OP(b, st8);
PPC_IST_OP(h, st16);
PPC_IST_OP(w, st32);
/*** Integer load and store with byte reverse ***/
PPC_ILD_OPX(hbr, ld16r);
PPC_ILD_OPX(wbr, ld32r);
PPC_IST_OPX(hbr, st16r);
PPC_IST_OPX(wbr, st32r);
/*** Integer load and store multiple ***/
PPC_OP(lmw)
{
do_lmw(PARAM(1), SPARAM(2) + T0);
RETURN();
}
PPC_OP(stmw)
{
do_stmw(PARAM(1), SPARAM(2) + T0);
RETURN();
}
/*** Integer load and store strings ***/
PPC_OP(lswi)
{
do_lsw(PARAM(1), PARAM(2), T0);
RETURN();
}
PPC_OP(lswx)
{
do_lsw(PARAM(1), T0, T1 + T2);
RETURN();
}
PPC_OP(stswi_z)
{
do_stsw(PARAM(1), PARAM(2), 0);
RETURN();
}
PPC_OP(stswi)
{
do_stsw(PARAM(1), PARAM(2), T0);
RETURN();
}
PPC_OP(stswx_z)
{
do_stsw(PARAM(1), T0, T1);
RETURN();
}
PPC_OP(stswx)
{
do_stsw(PARAM(1), T0, T1 + T2);
RETURN();
}
/* SPR */
PPC_OP(load_spr)
{
T0 = regs->spr[PARAM(1)];
}
PPC_OP(store_spr)
{
regs->spr[PARAM(1)] = T0;
}
/*** Floating-point store ***/
PPC_OP(stfd_z_FT0)
{
stfq((void *)SPARAM(1), FT0);
}
PPC_OP(stfd_FT0)
{
T0 += SPARAM(1);
stfq((void *)T0, FT0);
}
PPC_OP(stfdx_z_FT0)
{
stfq((void *)T0, FT0);
}
PPC_OP(stfdx_FT0)
{
T0 += T1;
stfq((void *)T0, FT0);
}
PPC_OP(stfs_z_FT0)
{
float tmp = FT0;
stfl((void *)SPARAM(1), tmp);
}
PPC_OP(stfs_FT0)
{
float tmp = FT0;
T0 += SPARAM(1);
stfl((void *)T0, tmp);
}
PPC_OP(stfsx_z_FT0)
{
float tmp = FT0;
stfl((void *)T0, tmp);
}
PPC_OP(stfsx_FT0)
{
float tmp = FT0;
T0 += T1;
stfl((void *)T0, tmp);
}
/*** Floating-point load ***/
PPC_OP(lfd_z_FT0)
{
FT0 = ldfq((void *)SPARAM(1));
}
PPC_OP(lfd_FT0)
{
T0 += SPARAM(1);
FT0 = ldfq((void *)T0);
}
PPC_OP(lfdx_z_FT0)
{
FT0 = ldfq((void *)T0);
}
PPC_OP(lfdx_FT0)
{
T0 += T1;
FT0 = ldfq((void *)T0);
}
PPC_OP(lfs_z_FT0)
{
float tmp = ldfl((void *)SPARAM(1));
FT0 = tmp;
}
PPC_OP(lfs_FT0)
{
float tmp;
T0 += SPARAM(1);
tmp = ldfl((void *)T0);
FT0 = tmp;
}
PPC_OP(lfsx_z_FT0)
{
float tmp;
tmp = ldfl((void *)T0);
FT0 = tmp;
}
PPC_OP(lfsx_FT0)
{
float tmp;
T0 += T1;
tmp = ldfl((void *)T0);
FT0 = tmp;
}
PPC_OP(lwarx_z)
{
T1 = ld32(T0);
regs->reserve = T0;
RETURN();
}
PPC_OP(lwarx)
{
T0 += T1;
T1 = ld32(T0);
regs->reserve = T0;
RETURN();
}
PPC_OP(stwcx_z)
{
if (regs->reserve != T0) {
env->crf[0] = xer_ov;
} else {
st32(T0, T1);
env->crf[0] = xer_ov | 0x02;
}
regs->reserve = 0;
RETURN();
}
PPC_OP(stwcx)
{
T0 += T1;
if (regs->reserve != (T0 & ~0x03)) {
env->crf[0] = xer_ov;
} else {
st32(T0, T2);
env->crf[0] = xer_ov | 0x02;
}
regs->reserve = 0;
RETURN();
}
PPC_OP(dcbz_z)
{
do_dcbz();
RETURN();
}
PPC_OP(dcbz)
{
T0 += T1;
do_dcbz();
RETURN();
}
/* Instruction cache block invalidate */
PPC_OP(icbi_z)
{
do_icbi();
RETURN();
}
PPC_OP(icbi)
{
T0 += T1;
do_icbi();
RETURN();
}