qemu-e2k/hw/char/cadence_uart.c
Peter Maydell 5ee0abed51 clock: Add ClockEvent parameter to callbacks
The Clock framework allows users to specify a callback which is
called after the clock's period has been updated.  Some users need to
also have a callback which is called before the clock period is
updated.

As the first step in adding support for notifying Clock users on
pre-update events, add an argument to the ClockCallback to specify
what event is being notified, and add an argument to the various
functions for registering a callback to specify which events are
of interest to that callback.

Note that the documentation update renders correct the previously
incorrect claim in 'Adding a new clock' that callbacks "will be
explained in a following section".

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Luc Michel <luc@lmichel.fr>
Tested-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20210219144617.4782-2-peter.maydell@linaro.org
2021-03-08 17:20:01 +00:00

624 lines
17 KiB
C

/*
* Device model for Cadence UART
*
* Reference: Xilinx Zynq 7000 reference manual
* - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
* - Chapter 19 UART Controller
* - Appendix B for Register details
*
* Copyright (c) 2010 Xilinx Inc.
* Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
* Copyright (c) 2012 PetaLogix Pty Ltd.
* Written by Haibing Ma
* M.Habib
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "chardev/char-fe.h"
#include "chardev/char-serial.h"
#include "qemu/timer.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/char/cadence_uart.h"
#include "hw/irq.h"
#include "hw/qdev-clock.h"
#include "hw/qdev-properties-system.h"
#include "trace.h"
#ifdef CADENCE_UART_ERR_DEBUG
#define DB_PRINT(...) do { \
fprintf(stderr, ": %s: ", __func__); \
fprintf(stderr, ## __VA_ARGS__); \
} while (0)
#else
#define DB_PRINT(...)
#endif
#define UART_SR_INTR_RTRIG 0x00000001
#define UART_SR_INTR_REMPTY 0x00000002
#define UART_SR_INTR_RFUL 0x00000004
#define UART_SR_INTR_TEMPTY 0x00000008
#define UART_SR_INTR_TFUL 0x00000010
/* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
#define UART_SR_TTRIG 0x00002000
#define UART_INTR_TTRIG 0x00000400
/* bits fields in CSR that correlate to CISR. If any of these bits are set in
* SR, then the same bit in CISR is set high too */
#define UART_SR_TO_CISR_MASK 0x0000001F
#define UART_INTR_ROVR 0x00000020
#define UART_INTR_FRAME 0x00000040
#define UART_INTR_PARE 0x00000080
#define UART_INTR_TIMEOUT 0x00000100
#define UART_INTR_DMSI 0x00000200
#define UART_INTR_TOVR 0x00001000
#define UART_SR_RACTIVE 0x00000400
#define UART_SR_TACTIVE 0x00000800
#define UART_SR_FDELT 0x00001000
#define UART_CR_RXRST 0x00000001
#define UART_CR_TXRST 0x00000002
#define UART_CR_RX_EN 0x00000004
#define UART_CR_RX_DIS 0x00000008
#define UART_CR_TX_EN 0x00000010
#define UART_CR_TX_DIS 0x00000020
#define UART_CR_RST_TO 0x00000040
#define UART_CR_STARTBRK 0x00000080
#define UART_CR_STOPBRK 0x00000100
#define UART_MR_CLKS 0x00000001
#define UART_MR_CHRL 0x00000006
#define UART_MR_CHRL_SH 1
#define UART_MR_PAR 0x00000038
#define UART_MR_PAR_SH 3
#define UART_MR_NBSTOP 0x000000C0
#define UART_MR_NBSTOP_SH 6
#define UART_MR_CHMODE 0x00000300
#define UART_MR_CHMODE_SH 8
#define UART_MR_UCLKEN 0x00000400
#define UART_MR_IRMODE 0x00000800
#define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
#define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
#define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
#define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
#define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
#define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
#define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
#define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
#define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
#define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
#define UART_DEFAULT_REF_CLK (50 * 1000 * 1000)
#define R_CR (0x00/4)
#define R_MR (0x04/4)
#define R_IER (0x08/4)
#define R_IDR (0x0C/4)
#define R_IMR (0x10/4)
#define R_CISR (0x14/4)
#define R_BRGR (0x18/4)
#define R_RTOR (0x1C/4)
#define R_RTRIG (0x20/4)
#define R_MCR (0x24/4)
#define R_MSR (0x28/4)
#define R_SR (0x2C/4)
#define R_TX_RX (0x30/4)
#define R_BDIV (0x34/4)
#define R_FDEL (0x38/4)
#define R_PMIN (0x3C/4)
#define R_PWID (0x40/4)
#define R_TTRIG (0x44/4)
static void uart_update_status(CadenceUARTState *s)
{
s->r[R_SR] = 0;
s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
: 0;
s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
: 0;
s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
}
static void fifo_trigger_update(void *opaque)
{
CadenceUARTState *s = opaque;
if (s->r[R_RTOR]) {
s->r[R_CISR] |= UART_INTR_TIMEOUT;
uart_update_status(s);
}
}
static void uart_rx_reset(CadenceUARTState *s)
{
s->rx_wpos = 0;
s->rx_count = 0;
qemu_chr_fe_accept_input(&s->chr);
}
static void uart_tx_reset(CadenceUARTState *s)
{
s->tx_count = 0;
}
static void uart_send_breaks(CadenceUARTState *s)
{
int break_enabled = 1;
qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
&break_enabled);
}
static void uart_parameters_setup(CadenceUARTState *s)
{
QEMUSerialSetParams ssp;
unsigned int baud_rate, packet_size, input_clk;
input_clk = clock_get_hz(s->refclk);
baud_rate = (s->r[R_MR] & UART_MR_CLKS) ? input_clk / 8 : input_clk;
baud_rate /= (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
trace_cadence_uart_baudrate(baud_rate);
ssp.speed = baud_rate;
packet_size = 1;
switch (s->r[R_MR] & UART_MR_PAR) {
case UART_PARITY_EVEN:
ssp.parity = 'E';
packet_size++;
break;
case UART_PARITY_ODD:
ssp.parity = 'O';
packet_size++;
break;
default:
ssp.parity = 'N';
break;
}
switch (s->r[R_MR] & UART_MR_CHRL) {
case UART_DATA_BITS_6:
ssp.data_bits = 6;
break;
case UART_DATA_BITS_7:
ssp.data_bits = 7;
break;
default:
ssp.data_bits = 8;
break;
}
switch (s->r[R_MR] & UART_MR_NBSTOP) {
case UART_STOP_BITS_1:
ssp.stop_bits = 1;
break;
default:
ssp.stop_bits = 2;
break;
}
packet_size += ssp.data_bits + ssp.stop_bits;
if (ssp.speed == 0) {
/*
* Avoid division-by-zero below.
* TODO: find something better
*/
ssp.speed = 1;
}
s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
}
static int uart_can_receive(void *opaque)
{
CadenceUARTState *s = opaque;
int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
}
if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
}
return ret;
}
static void uart_ctrl_update(CadenceUARTState *s)
{
if (s->r[R_CR] & UART_CR_TXRST) {
uart_tx_reset(s);
}
if (s->r[R_CR] & UART_CR_RXRST) {
uart_rx_reset(s);
}
s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
uart_send_breaks(s);
}
}
static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
{
CadenceUARTState *s = opaque;
uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
int i;
if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
return;
}
if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
s->r[R_CISR] |= UART_INTR_ROVR;
} else {
for (i = 0; i < size; i++) {
s->rx_fifo[s->rx_wpos] = buf[i];
s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
s->rx_count++;
}
timer_mod(s->fifo_trigger_handle, new_rx_time +
(s->char_tx_time * 4));
}
uart_update_status(s);
}
static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
void *opaque)
{
CadenceUARTState *s = opaque;
int ret;
/* instant drain the fifo when there's no back-end */
if (!qemu_chr_fe_backend_connected(&s->chr)) {
s->tx_count = 0;
return FALSE;
}
if (!s->tx_count) {
return FALSE;
}
ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
if (ret >= 0) {
s->tx_count -= ret;
memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
}
if (s->tx_count) {
guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
cadence_uart_xmit, s);
if (!r) {
s->tx_count = 0;
return FALSE;
}
}
uart_update_status(s);
return FALSE;
}
static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
int size)
{
if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
return;
}
if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
/*
* This can only be a guest error via a bad tx fifo register push,
* as can_receive() should stop remote loop and echo modes ever getting
* us to here.
*/
qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
s->r[R_CISR] |= UART_INTR_ROVR;
}
memcpy(s->tx_fifo + s->tx_count, buf, size);
s->tx_count += size;
cadence_uart_xmit(NULL, G_IO_OUT, s);
}
static void uart_receive(void *opaque, const uint8_t *buf, int size)
{
CadenceUARTState *s = opaque;
uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
/* ignore characters when unclocked or in reset */
if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
return;
}
if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
uart_write_rx_fifo(opaque, buf, size);
}
if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
uart_write_tx_fifo(s, buf, size);
}
}
static void uart_event(void *opaque, QEMUChrEvent event)
{
CadenceUARTState *s = opaque;
uint8_t buf = '\0';
/* ignore characters when unclocked or in reset */
if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
return;
}
if (event == CHR_EVENT_BREAK) {
uart_write_rx_fifo(opaque, &buf, 1);
}
uart_update_status(s);
}
static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
{
if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
return;
}
if (s->rx_count) {
uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
*c = s->rx_fifo[rx_rpos];
s->rx_count--;
qemu_chr_fe_accept_input(&s->chr);
} else {
*c = 0;
}
uart_update_status(s);
}
static void uart_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
CadenceUARTState *s = opaque;
DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
offset >>= 2;
if (offset >= CADENCE_UART_R_MAX) {
return;
}
switch (offset) {
case R_IER: /* ier (wts imr) */
s->r[R_IMR] |= value;
break;
case R_IDR: /* idr (wtc imr) */
s->r[R_IMR] &= ~value;
break;
case R_IMR: /* imr (read only) */
break;
case R_CISR: /* cisr (wtc) */
s->r[R_CISR] &= ~value;
break;
case R_TX_RX: /* UARTDR */
switch (s->r[R_MR] & UART_MR_CHMODE) {
case NORMAL_MODE:
uart_write_tx_fifo(s, (uint8_t *) &value, 1);
break;
case LOCAL_LOOPBACK:
uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
break;
}
break;
case R_BRGR: /* Baud rate generator */
if (value >= 0x01) {
s->r[offset] = value & 0xFFFF;
}
break;
case R_BDIV: /* Baud rate divider */
if (value >= 0x04) {
s->r[offset] = value & 0xFF;
}
break;
default:
s->r[offset] = value;
}
switch (offset) {
case R_CR:
uart_ctrl_update(s);
break;
case R_MR:
uart_parameters_setup(s);
break;
}
uart_update_status(s);
}
static uint64_t uart_read(void *opaque, hwaddr offset,
unsigned size)
{
CadenceUARTState *s = opaque;
uint32_t c = 0;
offset >>= 2;
if (offset >= CADENCE_UART_R_MAX) {
c = 0;
} else if (offset == R_TX_RX) {
uart_read_rx_fifo(s, &c);
} else {
c = s->r[offset];
}
DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
return c;
}
static const MemoryRegionOps uart_ops = {
.read = uart_read,
.write = uart_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void cadence_uart_reset_init(Object *obj, ResetType type)
{
CadenceUARTState *s = CADENCE_UART(obj);
s->r[R_CR] = 0x00000128;
s->r[R_IMR] = 0;
s->r[R_CISR] = 0;
s->r[R_RTRIG] = 0x00000020;
s->r[R_BRGR] = 0x0000028B;
s->r[R_BDIV] = 0x0000000F;
s->r[R_TTRIG] = 0x00000020;
}
static void cadence_uart_reset_hold(Object *obj)
{
CadenceUARTState *s = CADENCE_UART(obj);
uart_rx_reset(s);
uart_tx_reset(s);
uart_update_status(s);
}
static void cadence_uart_realize(DeviceState *dev, Error **errp)
{
CadenceUARTState *s = CADENCE_UART(dev);
s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
fifo_trigger_update, s);
qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
uart_event, NULL, s, NULL, true);
}
static void cadence_uart_refclk_update(void *opaque, ClockEvent event)
{
CadenceUARTState *s = opaque;
/* recompute uart's speed on clock change */
uart_parameters_setup(s);
}
static void cadence_uart_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
CadenceUARTState *s = CADENCE_UART(obj);
memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->irq);
s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk",
cadence_uart_refclk_update, s, ClockUpdate);
/* initialize the frequency in case the clock remains unconnected */
clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK);
s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
}
static int cadence_uart_pre_load(void *opaque)
{
CadenceUARTState *s = opaque;
/* the frequency will be overriden if the refclk field is present */
clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK);
return 0;
}
static int cadence_uart_post_load(void *opaque, int version_id)
{
CadenceUARTState *s = opaque;
/* Ensure these two aren't invalid numbers */
if (s->r[R_BRGR] < 1 || s->r[R_BRGR] & ~0xFFFF ||
s->r[R_BDIV] <= 3 || s->r[R_BDIV] & ~0xFF) {
/* Value is invalid, abort */
return 1;
}
uart_parameters_setup(s);
uart_update_status(s);
return 0;
}
static const VMStateDescription vmstate_cadence_uart = {
.name = "cadence_uart",
.version_id = 3,
.minimum_version_id = 2,
.pre_load = cadence_uart_pre_load,
.post_load = cadence_uart_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
CADENCE_UART_RX_FIFO_SIZE),
VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
CADENCE_UART_TX_FIFO_SIZE),
VMSTATE_UINT32(rx_count, CadenceUARTState),
VMSTATE_UINT32(tx_count, CadenceUARTState),
VMSTATE_UINT32(rx_wpos, CadenceUARTState),
VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
VMSTATE_CLOCK_V(refclk, CadenceUARTState, 3),
VMSTATE_END_OF_LIST()
},
};
static Property cadence_uart_properties[] = {
DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
DEFINE_PROP_END_OF_LIST(),
};
static void cadence_uart_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
dc->realize = cadence_uart_realize;
dc->vmsd = &vmstate_cadence_uart;
rc->phases.enter = cadence_uart_reset_init;
rc->phases.hold = cadence_uart_reset_hold;
device_class_set_props(dc, cadence_uart_properties);
}
static const TypeInfo cadence_uart_info = {
.name = TYPE_CADENCE_UART,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(CadenceUARTState),
.instance_init = cadence_uart_init,
.class_init = cadence_uart_class_init,
};
static void cadence_uart_register_types(void)
{
type_register_static(&cadence_uart_info);
}
type_init(cadence_uart_register_types)