673652a785
This merge fixes a semantic conflict with the trivial tree. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
721 lines
20 KiB
C
721 lines
20 KiB
C
/*
|
|
* QTest testcase for the MC146818 real-time clock
|
|
*
|
|
* Copyright IBM, Corp. 2012
|
|
*
|
|
* Authors:
|
|
* Anthony Liguori <aliguori@us.ibm.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
|
|
#include "libqtest-single.h"
|
|
#include "qemu/timer.h"
|
|
#include "hw/rtc/mc146818rtc.h"
|
|
#include "hw/rtc/mc146818rtc_regs.h"
|
|
|
|
#define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
|
|
|
|
static uint8_t base = 0x70;
|
|
|
|
static int bcd2dec(int value)
|
|
{
|
|
return (((value >> 4) & 0x0F) * 10) + (value & 0x0F);
|
|
}
|
|
|
|
static uint8_t cmos_read(uint8_t reg)
|
|
{
|
|
outb(base + 0, reg);
|
|
return inb(base + 1);
|
|
}
|
|
|
|
static void cmos_write(uint8_t reg, uint8_t val)
|
|
{
|
|
outb(base + 0, reg);
|
|
outb(base + 1, val);
|
|
}
|
|
|
|
static int tm_cmp(struct tm *lhs, struct tm *rhs)
|
|
{
|
|
time_t a, b;
|
|
struct tm d1, d2;
|
|
|
|
memcpy(&d1, lhs, sizeof(d1));
|
|
memcpy(&d2, rhs, sizeof(d2));
|
|
|
|
a = mktime(&d1);
|
|
b = mktime(&d2);
|
|
|
|
if (a < b) {
|
|
return -1;
|
|
} else if (a > b) {
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if 0
|
|
static void print_tm(struct tm *tm)
|
|
{
|
|
printf("%04d-%02d-%02d %02d:%02d:%02d\n",
|
|
tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
|
|
tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff);
|
|
}
|
|
#endif
|
|
|
|
static void cmos_get_date_time(struct tm *date)
|
|
{
|
|
int base_year = 2000, hour_offset;
|
|
int sec, min, hour, mday, mon, year;
|
|
time_t ts;
|
|
struct tm dummy;
|
|
|
|
sec = cmos_read(RTC_SECONDS);
|
|
min = cmos_read(RTC_MINUTES);
|
|
hour = cmos_read(RTC_HOURS);
|
|
mday = cmos_read(RTC_DAY_OF_MONTH);
|
|
mon = cmos_read(RTC_MONTH);
|
|
year = cmos_read(RTC_YEAR);
|
|
|
|
if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) {
|
|
sec = bcd2dec(sec);
|
|
min = bcd2dec(min);
|
|
hour = bcd2dec(hour);
|
|
mday = bcd2dec(mday);
|
|
mon = bcd2dec(mon);
|
|
year = bcd2dec(year);
|
|
hour_offset = 80;
|
|
} else {
|
|
hour_offset = 0x80;
|
|
}
|
|
|
|
if ((cmos_read(0x0B) & REG_B_24H) == 0) {
|
|
if (hour >= hour_offset) {
|
|
hour -= hour_offset;
|
|
hour += 12;
|
|
}
|
|
}
|
|
|
|
ts = time(NULL);
|
|
localtime_r(&ts, &dummy);
|
|
|
|
date->tm_isdst = dummy.tm_isdst;
|
|
date->tm_sec = sec;
|
|
date->tm_min = min;
|
|
date->tm_hour = hour;
|
|
date->tm_mday = mday;
|
|
date->tm_mon = mon - 1;
|
|
date->tm_year = base_year + year - 1900;
|
|
#ifndef __sun__
|
|
date->tm_gmtoff = 0;
|
|
#endif
|
|
|
|
ts = mktime(date);
|
|
}
|
|
|
|
static void check_time(int wiggle)
|
|
{
|
|
struct tm start, date[4], end;
|
|
struct tm *datep;
|
|
time_t ts;
|
|
|
|
/*
|
|
* This check assumes a few things. First, we cannot guarantee that we get
|
|
* a consistent reading from the wall clock because we may hit an edge of
|
|
* the clock while reading. To work around this, we read four clock readings
|
|
* such that at least two of them should match. We need to assume that one
|
|
* reading is corrupt so we need four readings to ensure that we have at
|
|
* least two consecutive identical readings
|
|
*
|
|
* It's also possible that we'll cross an edge reading the host clock so
|
|
* simply check to make sure that the clock reading is within the period of
|
|
* when we expect it to be.
|
|
*/
|
|
|
|
ts = time(NULL);
|
|
gmtime_r(&ts, &start);
|
|
|
|
cmos_get_date_time(&date[0]);
|
|
cmos_get_date_time(&date[1]);
|
|
cmos_get_date_time(&date[2]);
|
|
cmos_get_date_time(&date[3]);
|
|
|
|
ts = time(NULL);
|
|
gmtime_r(&ts, &end);
|
|
|
|
if (tm_cmp(&date[0], &date[1]) == 0) {
|
|
datep = &date[0];
|
|
} else if (tm_cmp(&date[1], &date[2]) == 0) {
|
|
datep = &date[1];
|
|
} else if (tm_cmp(&date[2], &date[3]) == 0) {
|
|
datep = &date[2];
|
|
} else {
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) {
|
|
long t, s;
|
|
|
|
start.tm_isdst = datep->tm_isdst;
|
|
|
|
t = (long)mktime(datep);
|
|
s = (long)mktime(&start);
|
|
if (t < s) {
|
|
g_test_message("RTC is %ld second(s) behind wall-clock", (s - t));
|
|
} else {
|
|
g_test_message("RTC is %ld second(s) ahead of wall-clock", (t - s));
|
|
}
|
|
|
|
g_assert_cmpint(ABS(t - s), <=, wiggle);
|
|
}
|
|
}
|
|
|
|
static int wiggle = 2;
|
|
|
|
static void set_year_20xx(void)
|
|
{
|
|
/* Set BCD mode */
|
|
cmos_write(RTC_REG_B, REG_B_24H);
|
|
cmos_write(RTC_REG_A, 0x76);
|
|
cmos_write(RTC_YEAR, 0x11);
|
|
cmos_write(RTC_CENTURY, 0x20);
|
|
cmos_write(RTC_MONTH, 0x02);
|
|
cmos_write(RTC_DAY_OF_MONTH, 0x02);
|
|
cmos_write(RTC_HOURS, 0x02);
|
|
cmos_write(RTC_MINUTES, 0x04);
|
|
cmos_write(RTC_SECONDS, 0x58);
|
|
cmos_write(RTC_REG_A, 0x26);
|
|
|
|
g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
|
|
g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
|
|
g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
|
|
g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
|
|
|
|
if (sizeof(time_t) == 4) {
|
|
return;
|
|
}
|
|
|
|
/* Set a date in 2080 to ensure there is no year-2038 overflow. */
|
|
cmos_write(RTC_REG_A, 0x76);
|
|
cmos_write(RTC_YEAR, 0x80);
|
|
cmos_write(RTC_REG_A, 0x26);
|
|
|
|
g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
|
|
g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
|
|
g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
|
|
g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
|
|
|
|
cmos_write(RTC_REG_A, 0x76);
|
|
cmos_write(RTC_YEAR, 0x11);
|
|
cmos_write(RTC_REG_A, 0x26);
|
|
|
|
g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
|
|
g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
|
|
g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
|
|
g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
|
|
}
|
|
|
|
static void set_year_1980(void)
|
|
{
|
|
/* Set BCD mode */
|
|
cmos_write(RTC_REG_B, REG_B_24H);
|
|
cmos_write(RTC_REG_A, 0x76);
|
|
cmos_write(RTC_YEAR, 0x80);
|
|
cmos_write(RTC_CENTURY, 0x19);
|
|
cmos_write(RTC_MONTH, 0x02);
|
|
cmos_write(RTC_DAY_OF_MONTH, 0x02);
|
|
cmos_write(RTC_HOURS, 0x02);
|
|
cmos_write(RTC_MINUTES, 0x04);
|
|
cmos_write(RTC_SECONDS, 0x58);
|
|
cmos_write(RTC_REG_A, 0x26);
|
|
|
|
g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
|
|
g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
|
|
g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
|
|
g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x19);
|
|
}
|
|
|
|
static void bcd_check_time(void)
|
|
{
|
|
/* Set BCD mode */
|
|
cmos_write(RTC_REG_B, REG_B_24H);
|
|
check_time(wiggle);
|
|
}
|
|
|
|
static void dec_check_time(void)
|
|
{
|
|
/* Set DEC mode */
|
|
cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
|
|
check_time(wiggle);
|
|
}
|
|
|
|
static void alarm_time(void)
|
|
{
|
|
struct tm now;
|
|
time_t ts;
|
|
int i;
|
|
|
|
ts = time(NULL);
|
|
gmtime_r(&ts, &now);
|
|
|
|
/* set DEC mode */
|
|
cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
|
|
|
|
g_assert(!get_irq(RTC_ISA_IRQ));
|
|
cmos_read(RTC_REG_C);
|
|
|
|
now.tm_sec = (now.tm_sec + 2) % 60;
|
|
cmos_write(RTC_SECONDS_ALARM, now.tm_sec);
|
|
cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE);
|
|
cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE);
|
|
cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE);
|
|
|
|
for (i = 0; i < 2 + wiggle; i++) {
|
|
if (get_irq(RTC_ISA_IRQ)) {
|
|
break;
|
|
}
|
|
|
|
clock_step(1000000000);
|
|
}
|
|
|
|
g_assert(get_irq(RTC_ISA_IRQ));
|
|
g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
|
|
g_assert(cmos_read(RTC_REG_C) == 0);
|
|
}
|
|
|
|
static void set_time_regs(int h, int m, int s)
|
|
{
|
|
cmos_write(RTC_HOURS, h);
|
|
cmos_write(RTC_MINUTES, m);
|
|
cmos_write(RTC_SECONDS, s);
|
|
}
|
|
|
|
static void set_time(int mode, int h, int m, int s)
|
|
{
|
|
cmos_write(RTC_REG_B, mode);
|
|
cmos_write(RTC_REG_A, 0x76);
|
|
set_time_regs(h, m, s);
|
|
cmos_write(RTC_REG_A, 0x26);
|
|
}
|
|
|
|
static void set_datetime_bcd(int h, int min, int s, int d, int m, int y)
|
|
{
|
|
cmos_write(RTC_HOURS, h);
|
|
cmos_write(RTC_MINUTES, min);
|
|
cmos_write(RTC_SECONDS, s);
|
|
cmos_write(RTC_YEAR, y & 0xFF);
|
|
cmos_write(RTC_CENTURY, y >> 8);
|
|
cmos_write(RTC_MONTH, m);
|
|
cmos_write(RTC_DAY_OF_MONTH, d);
|
|
}
|
|
|
|
static void set_datetime_dec(int h, int min, int s, int d, int m, int y)
|
|
{
|
|
cmos_write(RTC_HOURS, h);
|
|
cmos_write(RTC_MINUTES, min);
|
|
cmos_write(RTC_SECONDS, s);
|
|
cmos_write(RTC_YEAR, y % 100);
|
|
cmos_write(RTC_CENTURY, y / 100);
|
|
cmos_write(RTC_MONTH, m);
|
|
cmos_write(RTC_DAY_OF_MONTH, d);
|
|
}
|
|
|
|
static void set_datetime(int mode, int h, int min, int s, int d, int m, int y)
|
|
{
|
|
cmos_write(RTC_REG_B, mode);
|
|
|
|
cmos_write(RTC_REG_A, 0x76);
|
|
if (mode & REG_B_DM) {
|
|
set_datetime_dec(h, min, s, d, m, y);
|
|
} else {
|
|
set_datetime_bcd(h, min, s, d, m, y);
|
|
}
|
|
cmos_write(RTC_REG_A, 0x26);
|
|
}
|
|
|
|
#define assert_time(h, m, s) \
|
|
do { \
|
|
g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
|
|
g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \
|
|
g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
|
|
} while(0)
|
|
|
|
#define assert_datetime_bcd(h, min, s, d, m, y) \
|
|
do { \
|
|
g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
|
|
g_assert_cmpint(cmos_read(RTC_MINUTES), ==, min); \
|
|
g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
|
|
g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, d); \
|
|
g_assert_cmpint(cmos_read(RTC_MONTH), ==, m); \
|
|
g_assert_cmpint(cmos_read(RTC_YEAR), ==, (y & 0xFF)); \
|
|
g_assert_cmpint(cmos_read(RTC_CENTURY), ==, (y >> 8)); \
|
|
} while(0)
|
|
|
|
static void basic_12h_bcd(void)
|
|
{
|
|
/* set BCD 12 hour mode */
|
|
set_time(0, 0x81, 0x59, 0x00);
|
|
clock_step(1000000000LL);
|
|
assert_time(0x81, 0x59, 0x01);
|
|
clock_step(59000000000LL);
|
|
assert_time(0x82, 0x00, 0x00);
|
|
|
|
/* test BCD wraparound */
|
|
set_time(0, 0x09, 0x59, 0x59);
|
|
clock_step(60000000000LL);
|
|
assert_time(0x10, 0x00, 0x59);
|
|
|
|
/* 12 AM -> 1 AM */
|
|
set_time(0, 0x12, 0x59, 0x59);
|
|
clock_step(1000000000LL);
|
|
assert_time(0x01, 0x00, 0x00);
|
|
|
|
/* 12 PM -> 1 PM */
|
|
set_time(0, 0x92, 0x59, 0x59);
|
|
clock_step(1000000000LL);
|
|
assert_time(0x81, 0x00, 0x00);
|
|
|
|
/* 11 AM -> 12 PM */
|
|
set_time(0, 0x11, 0x59, 0x59);
|
|
clock_step(1000000000LL);
|
|
assert_time(0x92, 0x00, 0x00);
|
|
/* TODO: test day wraparound */
|
|
|
|
/* 11 PM -> 12 AM */
|
|
set_time(0, 0x91, 0x59, 0x59);
|
|
clock_step(1000000000LL);
|
|
assert_time(0x12, 0x00, 0x00);
|
|
/* TODO: test day wraparound */
|
|
}
|
|
|
|
static void basic_12h_dec(void)
|
|
{
|
|
/* set decimal 12 hour mode */
|
|
set_time(REG_B_DM, 0x81, 59, 0);
|
|
clock_step(1000000000LL);
|
|
assert_time(0x81, 59, 1);
|
|
clock_step(59000000000LL);
|
|
assert_time(0x82, 0, 0);
|
|
|
|
/* 12 PM -> 1 PM */
|
|
set_time(REG_B_DM, 0x8c, 59, 59);
|
|
clock_step(1000000000LL);
|
|
assert_time(0x81, 0, 0);
|
|
|
|
/* 12 AM -> 1 AM */
|
|
set_time(REG_B_DM, 0x0c, 59, 59);
|
|
clock_step(1000000000LL);
|
|
assert_time(0x01, 0, 0);
|
|
|
|
/* 11 AM -> 12 PM */
|
|
set_time(REG_B_DM, 0x0b, 59, 59);
|
|
clock_step(1000000000LL);
|
|
assert_time(0x8c, 0, 0);
|
|
|
|
/* 11 PM -> 12 AM */
|
|
set_time(REG_B_DM, 0x8b, 59, 59);
|
|
clock_step(1000000000LL);
|
|
assert_time(0x0c, 0, 0);
|
|
/* TODO: test day wraparound */
|
|
}
|
|
|
|
static void basic_24h_bcd(void)
|
|
{
|
|
/* set BCD 24 hour mode */
|
|
set_time(REG_B_24H, 0x09, 0x59, 0x00);
|
|
clock_step(1000000000LL);
|
|
assert_time(0x09, 0x59, 0x01);
|
|
clock_step(59000000000LL);
|
|
assert_time(0x10, 0x00, 0x00);
|
|
|
|
/* test BCD wraparound */
|
|
set_time(REG_B_24H, 0x09, 0x59, 0x00);
|
|
clock_step(60000000000LL);
|
|
assert_time(0x10, 0x00, 0x00);
|
|
|
|
/* TODO: test day wraparound */
|
|
set_time(REG_B_24H, 0x23, 0x59, 0x00);
|
|
clock_step(60000000000LL);
|
|
assert_time(0x00, 0x00, 0x00);
|
|
}
|
|
|
|
static void basic_24h_dec(void)
|
|
{
|
|
/* set decimal 24 hour mode */
|
|
set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
|
|
clock_step(1000000000LL);
|
|
assert_time(9, 59, 1);
|
|
clock_step(59000000000LL);
|
|
assert_time(10, 0, 0);
|
|
|
|
/* test BCD wraparound */
|
|
set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
|
|
clock_step(60000000000LL);
|
|
assert_time(10, 0, 0);
|
|
|
|
/* TODO: test day wraparound */
|
|
set_time(REG_B_24H | REG_B_DM, 23, 59, 0);
|
|
clock_step(60000000000LL);
|
|
assert_time(0, 0, 0);
|
|
}
|
|
|
|
static void am_pm_alarm(void)
|
|
{
|
|
cmos_write(RTC_MINUTES_ALARM, 0xC0);
|
|
cmos_write(RTC_SECONDS_ALARM, 0xC0);
|
|
|
|
/* set BCD 12 hour mode */
|
|
cmos_write(RTC_REG_B, 0);
|
|
|
|
/* Set time and alarm hour. */
|
|
cmos_write(RTC_REG_A, 0x76);
|
|
cmos_write(RTC_HOURS_ALARM, 0x82);
|
|
cmos_write(RTC_HOURS, 0x81);
|
|
cmos_write(RTC_MINUTES, 0x59);
|
|
cmos_write(RTC_SECONDS, 0x00);
|
|
cmos_read(RTC_REG_C);
|
|
cmos_write(RTC_REG_A, 0x26);
|
|
|
|
/* Check that alarm triggers when AM/PM is set. */
|
|
clock_step(60000000000LL);
|
|
g_assert(cmos_read(RTC_HOURS) == 0x82);
|
|
g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
|
|
|
|
/*
|
|
* Each of the following two tests takes over 60 seconds due to the time
|
|
* needed to report the PIT interrupts. Unfortunately, our PIT device
|
|
* model keeps counting even when GATE=0, so we cannot simply disable
|
|
* it in main().
|
|
*/
|
|
if (g_test_quick()) {
|
|
return;
|
|
}
|
|
|
|
/* set DEC 12 hour mode */
|
|
cmos_write(RTC_REG_B, REG_B_DM);
|
|
|
|
/* Set time and alarm hour. */
|
|
cmos_write(RTC_REG_A, 0x76);
|
|
cmos_write(RTC_HOURS_ALARM, 0x82);
|
|
cmos_write(RTC_HOURS, 3);
|
|
cmos_write(RTC_MINUTES, 0);
|
|
cmos_write(RTC_SECONDS, 0);
|
|
cmos_read(RTC_REG_C);
|
|
cmos_write(RTC_REG_A, 0x26);
|
|
|
|
/* Check that alarm triggers. */
|
|
clock_step(3600 * 11 * 1000000000LL);
|
|
g_assert(cmos_read(RTC_HOURS) == 0x82);
|
|
g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
|
|
|
|
/* Same as above, with inverted HOURS and HOURS_ALARM. */
|
|
cmos_write(RTC_REG_A, 0x76);
|
|
cmos_write(RTC_HOURS_ALARM, 2);
|
|
cmos_write(RTC_HOURS, 3);
|
|
cmos_write(RTC_MINUTES, 0);
|
|
cmos_write(RTC_SECONDS, 0);
|
|
cmos_read(RTC_REG_C);
|
|
cmos_write(RTC_REG_A, 0x26);
|
|
|
|
/* Check that alarm does not trigger if hours differ only by AM/PM. */
|
|
clock_step(3600 * 11 * 1000000000LL);
|
|
g_assert(cmos_read(RTC_HOURS) == 0x82);
|
|
g_assert((cmos_read(RTC_REG_C) & REG_C_AF) == 0);
|
|
}
|
|
|
|
/* success if no crash or abort */
|
|
static void fuzz_registers(void)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < 1000; i++) {
|
|
uint8_t reg, val;
|
|
|
|
reg = (uint8_t)g_test_rand_int_range(0, 16);
|
|
val = (uint8_t)g_test_rand_int_range(0, 256);
|
|
|
|
cmos_write(reg, val);
|
|
cmos_read(reg);
|
|
}
|
|
}
|
|
|
|
static void register_b_set_flag(void)
|
|
{
|
|
if (cmos_read(RTC_REG_A) & REG_A_UIP) {
|
|
clock_step(UIP_HOLD_LENGTH + NANOSECONDS_PER_SECOND / 5);
|
|
}
|
|
g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
|
|
|
|
/* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/
|
|
cmos_write(RTC_REG_B, REG_B_24H | REG_B_SET);
|
|
|
|
set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
|
|
|
|
assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
|
|
|
|
/* Since SET flag is still enabled, time does not advance. */
|
|
clock_step(1000000000LL);
|
|
assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
|
|
|
|
/* Disable SET flag in Register B */
|
|
cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_SET);
|
|
|
|
assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
|
|
|
|
/* Since SET flag is disabled, the clock now advances. */
|
|
clock_step(1000000000LL);
|
|
assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
|
|
}
|
|
|
|
static void divider_reset(void)
|
|
{
|
|
/* Enable binary-coded decimal (BCD) mode in Register B*/
|
|
cmos_write(RTC_REG_B, REG_B_24H);
|
|
|
|
/* Enter divider reset */
|
|
cmos_write(RTC_REG_A, 0x76);
|
|
set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
|
|
|
|
assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
|
|
|
|
/* Since divider reset flag is still enabled, these are equality checks. */
|
|
clock_step(1000000000LL);
|
|
assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
|
|
|
|
/* The first update ends 500 ms after divider reset */
|
|
cmos_write(RTC_REG_A, 0x26);
|
|
clock_step(500000000LL - UIP_HOLD_LENGTH - 1);
|
|
g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
|
|
assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
|
|
|
|
clock_step(1);
|
|
g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0);
|
|
clock_step(UIP_HOLD_LENGTH);
|
|
g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
|
|
|
|
assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
|
|
}
|
|
|
|
static void uip_stuck(void)
|
|
{
|
|
set_datetime(REG_B_24H, 0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
|
|
|
|
/* The first update ends 500 ms after divider reset */
|
|
(void)cmos_read(RTC_REG_C);
|
|
clock_step(500000000LL);
|
|
g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
|
|
assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
|
|
|
|
/* UF is now set. */
|
|
cmos_write(RTC_HOURS_ALARM, 0x02);
|
|
cmos_write(RTC_MINUTES_ALARM, 0xC0);
|
|
cmos_write(RTC_SECONDS_ALARM, 0xC0);
|
|
|
|
/* Because the alarm will fire soon, reading register A will latch UIP. */
|
|
clock_step(1000000000LL - UIP_HOLD_LENGTH / 2);
|
|
g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0);
|
|
|
|
/* Move the alarm far away. This must not cause UIP to remain stuck! */
|
|
cmos_write(RTC_HOURS_ALARM, 0x03);
|
|
clock_step(UIP_HOLD_LENGTH);
|
|
g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
|
|
}
|
|
|
|
#define RTC_PERIOD_CODE1 13 /* 8 Hz */
|
|
#define RTC_PERIOD_CODE2 15 /* 2 Hz */
|
|
|
|
#define RTC_PERIOD_TEST_NR 50
|
|
|
|
static uint64_t wait_periodic_interrupt(uint64_t real_time)
|
|
{
|
|
while (!get_irq(RTC_ISA_IRQ)) {
|
|
real_time = clock_step_next();
|
|
}
|
|
|
|
g_assert((cmos_read(RTC_REG_C) & REG_C_PF) != 0);
|
|
return real_time;
|
|
}
|
|
|
|
static void periodic_timer(void)
|
|
{
|
|
int i;
|
|
uint64_t period_clocks, period_time, start_time, real_time;
|
|
|
|
/* disable all interrupts. */
|
|
cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) &
|
|
~(REG_B_PIE | REG_B_AIE | REG_B_UIE));
|
|
cmos_write(RTC_REG_A, RTC_PERIOD_CODE1);
|
|
/* enable periodic interrupt after properly configure the period. */
|
|
cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_PIE);
|
|
|
|
start_time = real_time = clock_step_next();
|
|
|
|
for (i = 0; i < RTC_PERIOD_TEST_NR; i++) {
|
|
cmos_write(RTC_REG_A, RTC_PERIOD_CODE1);
|
|
real_time = wait_periodic_interrupt(real_time);
|
|
cmos_write(RTC_REG_A, RTC_PERIOD_CODE2);
|
|
real_time = wait_periodic_interrupt(real_time);
|
|
}
|
|
|
|
period_clocks = periodic_period_to_clock(RTC_PERIOD_CODE1) +
|
|
periodic_period_to_clock(RTC_PERIOD_CODE2);
|
|
period_clocks *= RTC_PERIOD_TEST_NR;
|
|
period_time = periodic_clock_to_ns(period_clocks);
|
|
|
|
real_time -= start_time;
|
|
g_assert_cmpint(ABS((int64_t)(real_time - period_time)), <=,
|
|
NANOSECONDS_PER_SECOND * 0.5);
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
QTestState *s = NULL;
|
|
int ret;
|
|
|
|
g_test_init(&argc, &argv, NULL);
|
|
|
|
s = qtest_start("-rtc clock=vm");
|
|
qtest_irq_intercept_in(s, "ioapic");
|
|
|
|
qtest_add_func("/rtc/check-time/bcd", bcd_check_time);
|
|
qtest_add_func("/rtc/check-time/dec", dec_check_time);
|
|
qtest_add_func("/rtc/alarm/interrupt", alarm_time);
|
|
qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm);
|
|
qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec);
|
|
qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd);
|
|
qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec);
|
|
qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd);
|
|
qtest_add_func("/rtc/set-year/20xx", set_year_20xx);
|
|
qtest_add_func("/rtc/set-year/1980", set_year_1980);
|
|
qtest_add_func("/rtc/update/register_b_set_flag", register_b_set_flag);
|
|
qtest_add_func("/rtc/update/divider-reset", divider_reset);
|
|
qtest_add_func("/rtc/update/uip-stuck", uip_stuck);
|
|
qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers);
|
|
qtest_add_func("/rtc/periodic/interrupt", periodic_timer);
|
|
|
|
ret = g_test_run();
|
|
|
|
if (s) {
|
|
qtest_quit(s);
|
|
}
|
|
|
|
return ret;
|
|
}
|