d90f154867
Here's the first ppc pull request for qemu-6.1. It has a wide variety of stuff accumulated during the 6.0 freeze. Highlights are: * Multi-phase reset cleanups for PAPR * Preliminary cleanups towards allowing !CONFIG_TCG for the ppc target * Cleanup of AIL logic and extension to POWER10 * Further improvements to handling of hot unplug failures on PAPR * Allow much larger numbers of CPU on pseries * Support for the H_SCM_HEALTH hypercall * Add support for the Pegasos II board * Substantial cleanup to hflag handling * Assorted minor fixes and cleanups -----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEEdfRlhq5hpmzETofcbDjKyiDZs5IFAmCQ4ScACgkQbDjKyiDZ s5KmNhAAsICdDqeu/jm1uhRCr0DDT/Wa6KE1xlglQ53ybWb5Hm2ae0Uwzti5ZWkt T9yryObX++wiugbU5Dlx9eXTiJIPgTbDoBV1wfOa3a1BAxSEES1t70jwuwAXXBpX mgU++SurQB70IB7vVvyXDi2Z592qGvMiKXqT0sdkfoexPHzAL0+KkQPyJZLeFchM Ap/zRHAodXf9SuWAl+LwLXeb350jivXYXBWNcFRrBbOGpbVT0AJMYrk/TEa2ZIpi SvbzAWuW+9mX0EOmk7JK5JfkT41cGNdcBcwd0bt4xyvUpmkXLaTMFDLVHj3HWSUn PFA4RB3uKXyTfISVtWdxJBbFOzMpchI6lEiRJHCS+KuY7UsACqV1T/y54ATOUauC ycLc9APgRaStdNPxfDl+xeFfoVb/f0mQsNwcmY1tv7z+3qE/trY9bMyrbgaebBFn /TAkmPvXfwtAREnx8xF/57poarWUkvupGTQkANNosdFokpExmrLj8T0sKv90hh5Y vkGf5zP4pYGN1Rs8qhOdHu+IjhVJvUl/L3LZYWcoMI6E61D8rGRc0Dkacx7gcja+ sluFi5Yh2fQn55y6LTi3049cB1wMd6wly0214F11RKoBswguiGuaqJmL4sNDO/s4 IcMCy5mg6C0jNZA5kHcdWmqsVzD2+XwP5J29n/LedlmgXoHYF+M= =N0qr -----END PGP SIGNATURE----- Merge remote-tracking branch 'remotes/dg-gitlab/tags/ppc-for-6.1-20210504' into staging ppc patch queue 2021-05-04 Here's the first ppc pull request for qemu-6.1. It has a wide variety of stuff accumulated during the 6.0 freeze. Highlights are: * Multi-phase reset cleanups for PAPR * Preliminary cleanups towards allowing !CONFIG_TCG for the ppc target * Cleanup of AIL logic and extension to POWER10 * Further improvements to handling of hot unplug failures on PAPR * Allow much larger numbers of CPU on pseries * Support for the H_SCM_HEALTH hypercall * Add support for the Pegasos II board * Substantial cleanup to hflag handling * Assorted minor fixes and cleanups # gpg: Signature made Tue 04 May 2021 06:52:39 BST # gpg: using RSA key 75F46586AE61A66CC44E87DC6C38CACA20D9B392 # gpg: Good signature from "David Gibson <david@gibson.dropbear.id.au>" [full] # gpg: aka "David Gibson (Red Hat) <dgibson@redhat.com>" [full] # gpg: aka "David Gibson (ozlabs.org) <dgibson@ozlabs.org>" [full] # gpg: aka "David Gibson (kernel.org) <dwg@kernel.org>" [unknown] # Primary key fingerprint: 75F4 6586 AE61 A66C C44E 87DC 6C38 CACA 20D9 B392 * remotes/dg-gitlab/tags/ppc-for-6.1-20210504: (46 commits) hw/ppc/pnv_psi: Use device_cold_reset() instead of device_legacy_reset() hw/ppc/spapr_vio: Reset TCE table object with device_cold_reset() hw/intc/spapr_xive: Use device_cold_reset() instead of device_legacy_reset() target/ppc: removed VSCR from SPR registration target/ppc: Reduce the size of ppc_spr_t target/ppc: Clean up _spr_register et al target/ppc: Add POWER10 exception model target/ppc: rework AIL logic in interrupt delivery target/ppc: move opcode table logic to translate.c target/ppc: code motion from translate_init.c.inc to gdbstub.c spapr_drc.c: handle hotunplug errors in drc_unisolate_logical() spapr.h: increase FDT_MAX_SIZE spapr.c: do not use MachineClass::max_cpus to limit CPUs ppc: Rename current DAWR macros and variables target/ppc: POWER10 supports scv target/ppc: Fix POWER9 radix guest HV interrupt AIL behaviour docs/system: ppc: Add documentation for ppce500 machine roms/u-boot: Bump ppce500 u-boot to v2021.04 to fix broken pci support roms/Makefile: Update ppce500 u-boot build directory name ppc/spapr: Add support for implement support for H_SCM_HEALTH ... Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2091 lines
62 KiB
C
2091 lines
62 KiB
C
#include "qemu/osdep.h"
|
|
#include "qemu/cutils.h"
|
|
#include "qapi/error.h"
|
|
#include "sysemu/hw_accel.h"
|
|
#include "sysemu/runstate.h"
|
|
#include "qemu/log.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "qemu/module.h"
|
|
#include "qemu/error-report.h"
|
|
#include "exec/exec-all.h"
|
|
#include "helper_regs.h"
|
|
#include "hw/ppc/spapr.h"
|
|
#include "hw/ppc/spapr_cpu_core.h"
|
|
#include "mmu-hash64.h"
|
|
#include "cpu-models.h"
|
|
#include "trace.h"
|
|
#include "kvm_ppc.h"
|
|
#include "hw/ppc/fdt.h"
|
|
#include "hw/ppc/spapr_ovec.h"
|
|
#include "mmu-book3s-v3.h"
|
|
#include "hw/mem/memory-device.h"
|
|
|
|
static bool has_spr(PowerPCCPU *cpu, int spr)
|
|
{
|
|
/* We can test whether the SPR is defined by checking for a valid name */
|
|
return cpu->env.spr_cb[spr].name != NULL;
|
|
}
|
|
|
|
static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
|
|
{
|
|
/*
|
|
* hash value/pteg group index is normalized by HPT mask
|
|
*/
|
|
if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
|
|
{
|
|
MachineState *machine = MACHINE(spapr);
|
|
DeviceMemoryState *dms = machine->device_memory;
|
|
|
|
if (addr < machine->ram_size) {
|
|
return true;
|
|
}
|
|
if ((addr >= dms->base)
|
|
&& ((addr - dms->base) < memory_region_size(&dms->mr))) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static target_ulong h_enter(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_ulong flags = args[0];
|
|
target_ulong ptex = args[1];
|
|
target_ulong pteh = args[2];
|
|
target_ulong ptel = args[3];
|
|
unsigned apshift;
|
|
target_ulong raddr;
|
|
target_ulong slot;
|
|
const ppc_hash_pte64_t *hptes;
|
|
|
|
apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
|
|
if (!apshift) {
|
|
/* Bad page size encoding */
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
|
|
|
|
if (is_ram_address(spapr, raddr)) {
|
|
/* Regular RAM - should have WIMG=0010 */
|
|
if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
|
|
return H_PARAMETER;
|
|
}
|
|
} else {
|
|
target_ulong wimg_flags;
|
|
/* Looks like an IO address */
|
|
/* FIXME: What WIMG combinations could be sensible for IO?
|
|
* For now we allow WIMG=010x, but are there others? */
|
|
/* FIXME: Should we check against registered IO addresses? */
|
|
wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
|
|
|
|
if (wimg_flags != HPTE64_R_I &&
|
|
wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
|
|
return H_PARAMETER;
|
|
}
|
|
}
|
|
|
|
pteh &= ~0x60ULL;
|
|
|
|
if (!valid_ptex(cpu, ptex)) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
slot = ptex & 7ULL;
|
|
ptex = ptex & ~7ULL;
|
|
|
|
if (likely((flags & H_EXACT) == 0)) {
|
|
hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
|
|
for (slot = 0; slot < 8; slot++) {
|
|
if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
|
|
break;
|
|
}
|
|
}
|
|
ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
|
|
if (slot == 8) {
|
|
return H_PTEG_FULL;
|
|
}
|
|
} else {
|
|
hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
|
|
if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
|
|
ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
|
|
return H_PTEG_FULL;
|
|
}
|
|
ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
|
|
}
|
|
|
|
spapr_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
|
|
|
|
args[0] = ptex + slot;
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
typedef enum {
|
|
REMOVE_SUCCESS = 0,
|
|
REMOVE_NOT_FOUND = 1,
|
|
REMOVE_PARM = 2,
|
|
REMOVE_HW = 3,
|
|
} RemoveResult;
|
|
|
|
static RemoveResult remove_hpte(PowerPCCPU *cpu
|
|
, target_ulong ptex,
|
|
target_ulong avpn,
|
|
target_ulong flags,
|
|
target_ulong *vp, target_ulong *rp)
|
|
{
|
|
const ppc_hash_pte64_t *hptes;
|
|
target_ulong v, r;
|
|
|
|
if (!valid_ptex(cpu, ptex)) {
|
|
return REMOVE_PARM;
|
|
}
|
|
|
|
hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
|
|
v = ppc_hash64_hpte0(cpu, hptes, 0);
|
|
r = ppc_hash64_hpte1(cpu, hptes, 0);
|
|
ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
|
|
|
|
if ((v & HPTE64_V_VALID) == 0 ||
|
|
((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
|
|
((flags & H_ANDCOND) && (v & avpn) != 0)) {
|
|
return REMOVE_NOT_FOUND;
|
|
}
|
|
*vp = v;
|
|
*rp = r;
|
|
spapr_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
|
|
ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
|
|
return REMOVE_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
target_ulong flags = args[0];
|
|
target_ulong ptex = args[1];
|
|
target_ulong avpn = args[2];
|
|
RemoveResult ret;
|
|
|
|
ret = remove_hpte(cpu, ptex, avpn, flags,
|
|
&args[0], &args[1]);
|
|
|
|
switch (ret) {
|
|
case REMOVE_SUCCESS:
|
|
check_tlb_flush(env, true);
|
|
return H_SUCCESS;
|
|
|
|
case REMOVE_NOT_FOUND:
|
|
return H_NOT_FOUND;
|
|
|
|
case REMOVE_PARM:
|
|
return H_PARAMETER;
|
|
|
|
case REMOVE_HW:
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
#define H_BULK_REMOVE_TYPE 0xc000000000000000ULL
|
|
#define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL
|
|
#define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL
|
|
#define H_BULK_REMOVE_END 0xc000000000000000ULL
|
|
#define H_BULK_REMOVE_CODE 0x3000000000000000ULL
|
|
#define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL
|
|
#define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL
|
|
#define H_BULK_REMOVE_PARM 0x2000000000000000ULL
|
|
#define H_BULK_REMOVE_HW 0x3000000000000000ULL
|
|
#define H_BULK_REMOVE_RC 0x0c00000000000000ULL
|
|
#define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL
|
|
#define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL
|
|
#define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL
|
|
#define H_BULK_REMOVE_AVPN 0x0200000000000000ULL
|
|
#define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL
|
|
|
|
#define H_BULK_REMOVE_MAX_BATCH 4
|
|
|
|
static target_ulong h_bulk_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
int i;
|
|
target_ulong rc = H_SUCCESS;
|
|
|
|
for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
|
|
target_ulong *tsh = &args[i*2];
|
|
target_ulong tsl = args[i*2 + 1];
|
|
target_ulong v, r, ret;
|
|
|
|
if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
|
|
break;
|
|
} else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
*tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
|
|
*tsh |= H_BULK_REMOVE_RESPONSE;
|
|
|
|
if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
|
|
*tsh |= H_BULK_REMOVE_PARM;
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
|
|
(*tsh & H_BULK_REMOVE_FLAGS) >> 26,
|
|
&v, &r);
|
|
|
|
*tsh |= ret << 60;
|
|
|
|
switch (ret) {
|
|
case REMOVE_SUCCESS:
|
|
*tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
|
|
break;
|
|
|
|
case REMOVE_PARM:
|
|
rc = H_PARAMETER;
|
|
goto exit;
|
|
|
|
case REMOVE_HW:
|
|
rc = H_HARDWARE;
|
|
goto exit;
|
|
}
|
|
}
|
|
exit:
|
|
check_tlb_flush(env, true);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static target_ulong h_protect(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
target_ulong flags = args[0];
|
|
target_ulong ptex = args[1];
|
|
target_ulong avpn = args[2];
|
|
const ppc_hash_pte64_t *hptes;
|
|
target_ulong v, r;
|
|
|
|
if (!valid_ptex(cpu, ptex)) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
|
|
v = ppc_hash64_hpte0(cpu, hptes, 0);
|
|
r = ppc_hash64_hpte1(cpu, hptes, 0);
|
|
ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
|
|
|
|
if ((v & HPTE64_V_VALID) == 0 ||
|
|
((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
|
|
return H_NOT_FOUND;
|
|
}
|
|
|
|
r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
|
|
HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
|
|
r |= (flags << 55) & HPTE64_R_PP0;
|
|
r |= (flags << 48) & HPTE64_R_KEY_HI;
|
|
r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
|
|
spapr_store_hpte(cpu, ptex,
|
|
(v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
|
|
ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
|
|
/* Flush the tlb */
|
|
check_tlb_flush(env, true);
|
|
/* Don't need a memory barrier, due to qemu's global lock */
|
|
spapr_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_read(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_ulong flags = args[0];
|
|
target_ulong ptex = args[1];
|
|
int i, ridx, n_entries = 1;
|
|
const ppc_hash_pte64_t *hptes;
|
|
|
|
if (!valid_ptex(cpu, ptex)) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (flags & H_READ_4) {
|
|
/* Clear the two low order bits */
|
|
ptex &= ~(3ULL);
|
|
n_entries = 4;
|
|
}
|
|
|
|
hptes = ppc_hash64_map_hptes(cpu, ptex, n_entries);
|
|
for (i = 0, ridx = 0; i < n_entries; i++) {
|
|
args[ridx++] = ppc_hash64_hpte0(cpu, hptes, i);
|
|
args[ridx++] = ppc_hash64_hpte1(cpu, hptes, i);
|
|
}
|
|
ppc_hash64_unmap_hptes(cpu, hptes, ptex, n_entries);
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
struct SpaprPendingHpt {
|
|
/* These fields are read-only after initialization */
|
|
int shift;
|
|
QemuThread thread;
|
|
|
|
/* These fields are protected by the BQL */
|
|
bool complete;
|
|
|
|
/* These fields are private to the preparation thread if
|
|
* !complete, otherwise protected by the BQL */
|
|
int ret;
|
|
void *hpt;
|
|
};
|
|
|
|
static void free_pending_hpt(SpaprPendingHpt *pending)
|
|
{
|
|
if (pending->hpt) {
|
|
qemu_vfree(pending->hpt);
|
|
}
|
|
|
|
g_free(pending);
|
|
}
|
|
|
|
static void *hpt_prepare_thread(void *opaque)
|
|
{
|
|
SpaprPendingHpt *pending = opaque;
|
|
size_t size = 1ULL << pending->shift;
|
|
|
|
pending->hpt = qemu_try_memalign(size, size);
|
|
if (pending->hpt) {
|
|
memset(pending->hpt, 0, size);
|
|
pending->ret = H_SUCCESS;
|
|
} else {
|
|
pending->ret = H_NO_MEM;
|
|
}
|
|
|
|
qemu_mutex_lock_iothread();
|
|
|
|
if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) {
|
|
/* Ready to go */
|
|
pending->complete = true;
|
|
} else {
|
|
/* We've been cancelled, clean ourselves up */
|
|
free_pending_hpt(pending);
|
|
}
|
|
|
|
qemu_mutex_unlock_iothread();
|
|
return NULL;
|
|
}
|
|
|
|
/* Must be called with BQL held */
|
|
static void cancel_hpt_prepare(SpaprMachineState *spapr)
|
|
{
|
|
SpaprPendingHpt *pending = spapr->pending_hpt;
|
|
|
|
/* Let the thread know it's cancelled */
|
|
spapr->pending_hpt = NULL;
|
|
|
|
if (!pending) {
|
|
/* Nothing to do */
|
|
return;
|
|
}
|
|
|
|
if (!pending->complete) {
|
|
/* thread will clean itself up */
|
|
return;
|
|
}
|
|
|
|
free_pending_hpt(pending);
|
|
}
|
|
|
|
/* Convert a return code from the KVM ioctl()s implementing resize HPT
|
|
* into a PAPR hypercall return code */
|
|
static target_ulong resize_hpt_convert_rc(int ret)
|
|
{
|
|
if (ret >= 100000) {
|
|
return H_LONG_BUSY_ORDER_100_SEC;
|
|
} else if (ret >= 10000) {
|
|
return H_LONG_BUSY_ORDER_10_SEC;
|
|
} else if (ret >= 1000) {
|
|
return H_LONG_BUSY_ORDER_1_SEC;
|
|
} else if (ret >= 100) {
|
|
return H_LONG_BUSY_ORDER_100_MSEC;
|
|
} else if (ret >= 10) {
|
|
return H_LONG_BUSY_ORDER_10_MSEC;
|
|
} else if (ret > 0) {
|
|
return H_LONG_BUSY_ORDER_1_MSEC;
|
|
}
|
|
|
|
switch (ret) {
|
|
case 0:
|
|
return H_SUCCESS;
|
|
case -EPERM:
|
|
return H_AUTHORITY;
|
|
case -EINVAL:
|
|
return H_PARAMETER;
|
|
case -ENXIO:
|
|
return H_CLOSED;
|
|
case -ENOSPC:
|
|
return H_PTEG_FULL;
|
|
case -EBUSY:
|
|
return H_BUSY;
|
|
case -ENOMEM:
|
|
return H_NO_MEM;
|
|
default:
|
|
return H_HARDWARE;
|
|
}
|
|
}
|
|
|
|
static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
target_ulong flags = args[0];
|
|
int shift = args[1];
|
|
SpaprPendingHpt *pending = spapr->pending_hpt;
|
|
uint64_t current_ram_size;
|
|
int rc;
|
|
|
|
if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
|
|
return H_AUTHORITY;
|
|
}
|
|
|
|
if (!spapr->htab_shift) {
|
|
/* Radix guest, no HPT */
|
|
return H_NOT_AVAILABLE;
|
|
}
|
|
|
|
trace_spapr_h_resize_hpt_prepare(flags, shift);
|
|
|
|
if (flags != 0) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (shift && ((shift < 18) || (shift > 46))) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
|
|
|
|
/* We only allow the guest to allocate an HPT one order above what
|
|
* we'd normally give them (to stop a small guest claiming a huge
|
|
* chunk of resources in the HPT */
|
|
if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
|
|
return H_RESOURCE;
|
|
}
|
|
|
|
rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
|
|
if (rc != -ENOSYS) {
|
|
return resize_hpt_convert_rc(rc);
|
|
}
|
|
|
|
if (pending) {
|
|
/* something already in progress */
|
|
if (pending->shift == shift) {
|
|
/* and it's suitable */
|
|
if (pending->complete) {
|
|
return pending->ret;
|
|
} else {
|
|
return H_LONG_BUSY_ORDER_100_MSEC;
|
|
}
|
|
}
|
|
|
|
/* not suitable, cancel and replace */
|
|
cancel_hpt_prepare(spapr);
|
|
}
|
|
|
|
if (!shift) {
|
|
/* nothing to do */
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
/* start new prepare */
|
|
|
|
pending = g_new0(SpaprPendingHpt, 1);
|
|
pending->shift = shift;
|
|
pending->ret = H_HARDWARE;
|
|
|
|
qemu_thread_create(&pending->thread, "sPAPR HPT prepare",
|
|
hpt_prepare_thread, pending, QEMU_THREAD_DETACHED);
|
|
|
|
spapr->pending_hpt = pending;
|
|
|
|
/* In theory we could estimate the time more accurately based on
|
|
* the new size, but there's not much point */
|
|
return H_LONG_BUSY_ORDER_100_MSEC;
|
|
}
|
|
|
|
static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot)
|
|
{
|
|
uint8_t *addr = htab;
|
|
|
|
addr += pteg * HASH_PTEG_SIZE_64;
|
|
addr += slot * HASH_PTE_SIZE_64;
|
|
return ldq_p(addr);
|
|
}
|
|
|
|
static void new_hpte_store(void *htab, uint64_t pteg, int slot,
|
|
uint64_t pte0, uint64_t pte1)
|
|
{
|
|
uint8_t *addr = htab;
|
|
|
|
addr += pteg * HASH_PTEG_SIZE_64;
|
|
addr += slot * HASH_PTE_SIZE_64;
|
|
|
|
stq_p(addr, pte0);
|
|
stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1);
|
|
}
|
|
|
|
static int rehash_hpte(PowerPCCPU *cpu,
|
|
const ppc_hash_pte64_t *hptes,
|
|
void *old_hpt, uint64_t oldsize,
|
|
void *new_hpt, uint64_t newsize,
|
|
uint64_t pteg, int slot)
|
|
{
|
|
uint64_t old_hash_mask = (oldsize >> 7) - 1;
|
|
uint64_t new_hash_mask = (newsize >> 7) - 1;
|
|
target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot);
|
|
target_ulong pte1;
|
|
uint64_t avpn;
|
|
unsigned base_pg_shift;
|
|
uint64_t hash, new_pteg, replace_pte0;
|
|
|
|
if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) {
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
pte1 = ppc_hash64_hpte1(cpu, hptes, slot);
|
|
|
|
base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1);
|
|
assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */
|
|
avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23);
|
|
|
|
if (pte0 & HPTE64_V_SECONDARY) {
|
|
pteg = ~pteg;
|
|
}
|
|
|
|
if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) {
|
|
uint64_t offset, vsid;
|
|
|
|
/* We only have 28 - 23 bits of offset in avpn */
|
|
offset = (avpn & 0x1f) << 23;
|
|
vsid = avpn >> 5;
|
|
/* We can find more bits from the pteg value */
|
|
if (base_pg_shift < 23) {
|
|
offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift;
|
|
}
|
|
|
|
hash = vsid ^ (offset >> base_pg_shift);
|
|
} else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) {
|
|
uint64_t offset, vsid;
|
|
|
|
/* We only have 40 - 23 bits of seg_off in avpn */
|
|
offset = (avpn & 0x1ffff) << 23;
|
|
vsid = avpn >> 17;
|
|
if (base_pg_shift < 23) {
|
|
offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask)
|
|
<< base_pg_shift;
|
|
}
|
|
|
|
hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift);
|
|
} else {
|
|
error_report("rehash_pte: Bad segment size in HPTE");
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
new_pteg = hash & new_hash_mask;
|
|
if (pte0 & HPTE64_V_SECONDARY) {
|
|
assert(~pteg == (hash & old_hash_mask));
|
|
new_pteg = ~new_pteg;
|
|
} else {
|
|
assert(pteg == (hash & old_hash_mask));
|
|
}
|
|
assert((oldsize != newsize) || (pteg == new_pteg));
|
|
replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot);
|
|
/*
|
|
* Strictly speaking, we don't need all these tests, since we only
|
|
* ever rehash bolted HPTEs. We might in future handle non-bolted
|
|
* HPTEs, though so make the logic correct for those cases as
|
|
* well.
|
|
*/
|
|
if (replace_pte0 & HPTE64_V_VALID) {
|
|
assert(newsize < oldsize);
|
|
if (replace_pte0 & HPTE64_V_BOLTED) {
|
|
if (pte0 & HPTE64_V_BOLTED) {
|
|
/* Bolted collision, nothing we can do */
|
|
return H_PTEG_FULL;
|
|
} else {
|
|
/* Discard this hpte */
|
|
return H_SUCCESS;
|
|
}
|
|
}
|
|
}
|
|
|
|
new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1);
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static int rehash_hpt(PowerPCCPU *cpu,
|
|
void *old_hpt, uint64_t oldsize,
|
|
void *new_hpt, uint64_t newsize)
|
|
{
|
|
uint64_t n_ptegs = oldsize >> 7;
|
|
uint64_t pteg;
|
|
int slot;
|
|
int rc;
|
|
|
|
for (pteg = 0; pteg < n_ptegs; pteg++) {
|
|
hwaddr ptex = pteg * HPTES_PER_GROUP;
|
|
const ppc_hash_pte64_t *hptes
|
|
= ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
|
|
|
|
if (!hptes) {
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
for (slot = 0; slot < HPTES_PER_GROUP; slot++) {
|
|
rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize,
|
|
pteg, slot);
|
|
if (rc != H_SUCCESS) {
|
|
ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
|
|
return rc;
|
|
}
|
|
}
|
|
ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
|
|
}
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
|
|
{
|
|
int ret;
|
|
|
|
cpu_synchronize_state(cs);
|
|
|
|
ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
|
|
if (ret < 0) {
|
|
error_report("failed to push sregs to KVM: %s", strerror(-ret));
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
static void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
|
|
{
|
|
CPUState *cs;
|
|
|
|
/*
|
|
* This is a hack for the benefit of KVM PR - it abuses the SDR1
|
|
* slot in kvm_sregs to communicate the userspace address of the
|
|
* HPT
|
|
*/
|
|
if (!kvm_enabled() || !spapr->htab) {
|
|
return;
|
|
}
|
|
|
|
CPU_FOREACH(cs) {
|
|
run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
|
|
}
|
|
}
|
|
|
|
static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
target_ulong flags = args[0];
|
|
target_ulong shift = args[1];
|
|
SpaprPendingHpt *pending = spapr->pending_hpt;
|
|
int rc;
|
|
size_t newsize;
|
|
|
|
if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
|
|
return H_AUTHORITY;
|
|
}
|
|
|
|
if (!spapr->htab_shift) {
|
|
/* Radix guest, no HPT */
|
|
return H_NOT_AVAILABLE;
|
|
}
|
|
|
|
trace_spapr_h_resize_hpt_commit(flags, shift);
|
|
|
|
rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
|
|
if (rc != -ENOSYS) {
|
|
rc = resize_hpt_convert_rc(rc);
|
|
if (rc == H_SUCCESS) {
|
|
/* Need to set the new htab_shift in the machine state */
|
|
spapr->htab_shift = shift;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
if (flags != 0) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (!pending || (pending->shift != shift)) {
|
|
/* no matching prepare */
|
|
return H_CLOSED;
|
|
}
|
|
|
|
if (!pending->complete) {
|
|
/* prepare has not completed */
|
|
return H_BUSY;
|
|
}
|
|
|
|
/* Shouldn't have got past PREPARE without an HPT */
|
|
g_assert(spapr->htab_shift);
|
|
|
|
newsize = 1ULL << pending->shift;
|
|
rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr),
|
|
pending->hpt, newsize);
|
|
if (rc == H_SUCCESS) {
|
|
qemu_vfree(spapr->htab);
|
|
spapr->htab = pending->hpt;
|
|
spapr->htab_shift = pending->shift;
|
|
|
|
push_sregs_to_kvm_pr(spapr);
|
|
|
|
pending->hpt = NULL; /* so it's not free()d */
|
|
}
|
|
|
|
/* Clean up */
|
|
spapr->pending_hpt = NULL;
|
|
free_pending_hpt(pending);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
cpu_synchronize_state(CPU(cpu));
|
|
cpu->env.spr[SPR_SPRG0] = args[0];
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
if (!has_spr(cpu, SPR_DABR)) {
|
|
return H_HARDWARE; /* DABR register not available */
|
|
}
|
|
cpu_synchronize_state(CPU(cpu));
|
|
|
|
if (has_spr(cpu, SPR_DABRX)) {
|
|
cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */
|
|
} else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */
|
|
return H_RESERVED_DABR;
|
|
}
|
|
|
|
cpu->env.spr[SPR_DABR] = args[0];
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_ulong dabrx = args[1];
|
|
|
|
if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
|
|
|| (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
cpu_synchronize_state(CPU(cpu));
|
|
cpu->env.spr[SPR_DABRX] = dabrx;
|
|
cpu->env.spr[SPR_DABR] = args[0];
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_ulong flags = args[0];
|
|
hwaddr dst = args[1];
|
|
hwaddr src = args[2];
|
|
hwaddr len = TARGET_PAGE_SIZE;
|
|
uint8_t *pdst, *psrc;
|
|
target_long ret = H_SUCCESS;
|
|
|
|
if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
|
|
| H_COPY_PAGE | H_ZERO_PAGE)) {
|
|
qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
|
|
flags);
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
/* Map-in destination */
|
|
if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
|
|
return H_PARAMETER;
|
|
}
|
|
pdst = cpu_physical_memory_map(dst, &len, true);
|
|
if (!pdst || len != TARGET_PAGE_SIZE) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (flags & H_COPY_PAGE) {
|
|
/* Map-in source, copy to destination, and unmap source again */
|
|
if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
|
|
ret = H_PARAMETER;
|
|
goto unmap_out;
|
|
}
|
|
psrc = cpu_physical_memory_map(src, &len, false);
|
|
if (!psrc || len != TARGET_PAGE_SIZE) {
|
|
ret = H_PARAMETER;
|
|
goto unmap_out;
|
|
}
|
|
memcpy(pdst, psrc, len);
|
|
cpu_physical_memory_unmap(psrc, len, 0, len);
|
|
} else if (flags & H_ZERO_PAGE) {
|
|
memset(pdst, 0, len); /* Just clear the destination page */
|
|
}
|
|
|
|
if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
|
|
kvmppc_dcbst_range(cpu, pdst, len);
|
|
}
|
|
if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
|
|
if (kvm_enabled()) {
|
|
kvmppc_icbi_range(cpu, pdst, len);
|
|
} else {
|
|
tb_flush(CPU(cpu));
|
|
}
|
|
}
|
|
|
|
unmap_out:
|
|
cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
|
|
return ret;
|
|
}
|
|
|
|
#define FLAGS_REGISTER_VPA 0x0000200000000000ULL
|
|
#define FLAGS_REGISTER_DTL 0x0000400000000000ULL
|
|
#define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
|
|
#define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
|
|
#define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
|
|
#define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
|
|
|
|
static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
CPUPPCState *env = &cpu->env;
|
|
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
|
|
uint16_t size;
|
|
uint8_t tmp;
|
|
|
|
if (vpa == 0) {
|
|
hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
if (vpa % env->dcache_line_size) {
|
|
return H_PARAMETER;
|
|
}
|
|
/* FIXME: bounds check the address */
|
|
|
|
size = lduw_be_phys(cs->as, vpa + 0x4);
|
|
|
|
if (size < VPA_MIN_SIZE) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
/* VPA is not allowed to cross a page boundary */
|
|
if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
spapr_cpu->vpa_addr = vpa;
|
|
|
|
tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
|
|
tmp |= VPA_SHARED_PROC_VAL;
|
|
stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
|
|
{
|
|
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
|
|
|
|
if (spapr_cpu->slb_shadow_addr) {
|
|
return H_RESOURCE;
|
|
}
|
|
|
|
if (spapr_cpu->dtl_addr) {
|
|
return H_RESOURCE;
|
|
}
|
|
|
|
spapr_cpu->vpa_addr = 0;
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
|
|
{
|
|
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
|
|
uint32_t size;
|
|
|
|
if (addr == 0) {
|
|
hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
|
|
if (size < 0x8) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if ((addr / 4096) != ((addr + size - 1) / 4096)) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (!spapr_cpu->vpa_addr) {
|
|
return H_RESOURCE;
|
|
}
|
|
|
|
spapr_cpu->slb_shadow_addr = addr;
|
|
spapr_cpu->slb_shadow_size = size;
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
|
|
{
|
|
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
|
|
|
|
spapr_cpu->slb_shadow_addr = 0;
|
|
spapr_cpu->slb_shadow_size = 0;
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
|
|
{
|
|
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
|
|
uint32_t size;
|
|
|
|
if (addr == 0) {
|
|
hcall_dprintf("Can't cope with DTL at logical 0\n");
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
|
|
|
|
if (size < 48) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (!spapr_cpu->vpa_addr) {
|
|
return H_RESOURCE;
|
|
}
|
|
|
|
spapr_cpu->dtl_addr = addr;
|
|
spapr_cpu->dtl_size = size;
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
|
|
{
|
|
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
|
|
|
|
spapr_cpu->dtl_addr = 0;
|
|
spapr_cpu->dtl_size = 0;
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_ulong flags = args[0];
|
|
target_ulong procno = args[1];
|
|
target_ulong vpa = args[2];
|
|
target_ulong ret = H_PARAMETER;
|
|
PowerPCCPU *tcpu;
|
|
|
|
tcpu = spapr_find_cpu(procno);
|
|
if (!tcpu) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
switch (flags) {
|
|
case FLAGS_REGISTER_VPA:
|
|
ret = register_vpa(tcpu, vpa);
|
|
break;
|
|
|
|
case FLAGS_DEREGISTER_VPA:
|
|
ret = deregister_vpa(tcpu, vpa);
|
|
break;
|
|
|
|
case FLAGS_REGISTER_SLBSHADOW:
|
|
ret = register_slb_shadow(tcpu, vpa);
|
|
break;
|
|
|
|
case FLAGS_DEREGISTER_SLBSHADOW:
|
|
ret = deregister_slb_shadow(tcpu, vpa);
|
|
break;
|
|
|
|
case FLAGS_REGISTER_DTL:
|
|
ret = register_dtl(tcpu, vpa);
|
|
break;
|
|
|
|
case FLAGS_DEREGISTER_DTL:
|
|
ret = deregister_dtl(tcpu, vpa);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
CPUState *cs = CPU(cpu);
|
|
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
|
|
|
|
env->msr |= (1ULL << MSR_EE);
|
|
hreg_compute_hflags(env);
|
|
|
|
if (spapr_cpu->prod) {
|
|
spapr_cpu->prod = false;
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
if (!cpu_has_work(cs)) {
|
|
cs->halted = 1;
|
|
cs->exception_index = EXCP_HLT;
|
|
cs->exit_request = 1;
|
|
}
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Confer to self, aka join. Cede could use the same pattern as well, if
|
|
* EXCP_HLT can be changed to ECXP_HALTED.
|
|
*/
|
|
static target_ulong h_confer_self(PowerPCCPU *cpu)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
|
|
|
|
if (spapr_cpu->prod) {
|
|
spapr_cpu->prod = false;
|
|
return H_SUCCESS;
|
|
}
|
|
cs->halted = 1;
|
|
cs->exception_index = EXCP_HALTED;
|
|
cs->exit_request = 1;
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
CPUState *cs;
|
|
bool last_unjoined = true;
|
|
|
|
if (env->msr & (1ULL << MSR_EE)) {
|
|
return H_BAD_MODE;
|
|
}
|
|
|
|
/*
|
|
* Must not join the last CPU running. Interestingly, no such restriction
|
|
* for H_CONFER-to-self, but that is probably not intended to be used
|
|
* when H_JOIN is available.
|
|
*/
|
|
CPU_FOREACH(cs) {
|
|
PowerPCCPU *c = POWERPC_CPU(cs);
|
|
CPUPPCState *e = &c->env;
|
|
if (c == cpu) {
|
|
continue;
|
|
}
|
|
|
|
/* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
|
|
if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
|
|
last_unjoined = false;
|
|
break;
|
|
}
|
|
}
|
|
if (last_unjoined) {
|
|
return H_CONTINUE;
|
|
}
|
|
|
|
return h_confer_self(cpu);
|
|
}
|
|
|
|
static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_long target = args[0];
|
|
uint32_t dispatch = args[1];
|
|
CPUState *cs = CPU(cpu);
|
|
SpaprCpuState *spapr_cpu;
|
|
|
|
/*
|
|
* -1 means confer to all other CPUs without dispatch counter check,
|
|
* otherwise it's a targeted confer.
|
|
*/
|
|
if (target != -1) {
|
|
PowerPCCPU *target_cpu = spapr_find_cpu(target);
|
|
uint32_t target_dispatch;
|
|
|
|
if (!target_cpu) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
/*
|
|
* target == self is a special case, we wait until prodded, without
|
|
* dispatch counter check.
|
|
*/
|
|
if (cpu == target_cpu) {
|
|
return h_confer_self(cpu);
|
|
}
|
|
|
|
spapr_cpu = spapr_cpu_state(target_cpu);
|
|
if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
target_dispatch = ldl_be_phys(cs->as,
|
|
spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
|
|
if (target_dispatch != dispatch) {
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* The targeted confer does not do anything special beyond yielding
|
|
* the current vCPU, but even this should be better than nothing.
|
|
* At least for single-threaded tcg, it gives the target a chance to
|
|
* run before we run again. Multi-threaded tcg does not really do
|
|
* anything with EXCP_YIELD yet.
|
|
*/
|
|
}
|
|
|
|
cs->exception_index = EXCP_YIELD;
|
|
cs->exit_request = 1;
|
|
cpu_loop_exit(cs);
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_long target = args[0];
|
|
PowerPCCPU *tcpu;
|
|
CPUState *cs;
|
|
SpaprCpuState *spapr_cpu;
|
|
|
|
tcpu = spapr_find_cpu(target);
|
|
cs = CPU(tcpu);
|
|
if (!cs) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
spapr_cpu = spapr_cpu_state(tcpu);
|
|
spapr_cpu->prod = true;
|
|
cs->halted = 0;
|
|
qemu_cpu_kick(cs);
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_ulong rtas_r3 = args[0];
|
|
uint32_t token = rtas_ld(rtas_r3, 0);
|
|
uint32_t nargs = rtas_ld(rtas_r3, 1);
|
|
uint32_t nret = rtas_ld(rtas_r3, 2);
|
|
|
|
return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
|
|
nret, rtas_r3 + 12 + 4*nargs);
|
|
}
|
|
|
|
static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
target_ulong size = args[0];
|
|
target_ulong addr = args[1];
|
|
|
|
switch (size) {
|
|
case 1:
|
|
args[0] = ldub_phys(cs->as, addr);
|
|
return H_SUCCESS;
|
|
case 2:
|
|
args[0] = lduw_phys(cs->as, addr);
|
|
return H_SUCCESS;
|
|
case 4:
|
|
args[0] = ldl_phys(cs->as, addr);
|
|
return H_SUCCESS;
|
|
case 8:
|
|
args[0] = ldq_phys(cs->as, addr);
|
|
return H_SUCCESS;
|
|
}
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
target_ulong size = args[0];
|
|
target_ulong addr = args[1];
|
|
target_ulong val = args[2];
|
|
|
|
switch (size) {
|
|
case 1:
|
|
stb_phys(cs->as, addr, val);
|
|
return H_SUCCESS;
|
|
case 2:
|
|
stw_phys(cs->as, addr, val);
|
|
return H_SUCCESS;
|
|
case 4:
|
|
stl_phys(cs->as, addr, val);
|
|
return H_SUCCESS;
|
|
case 8:
|
|
stq_phys(cs->as, addr, val);
|
|
return H_SUCCESS;
|
|
}
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
target_ulong dst = args[0]; /* Destination address */
|
|
target_ulong src = args[1]; /* Source address */
|
|
target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
|
|
target_ulong count = args[3]; /* Element count */
|
|
target_ulong op = args[4]; /* 0 = copy, 1 = invert */
|
|
uint64_t tmp;
|
|
unsigned int mask = (1 << esize) - 1;
|
|
int step = 1 << esize;
|
|
|
|
if (count > 0x80000000) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if ((dst & mask) || (src & mask) || (op > 1)) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (dst >= src && dst < (src + (count << esize))) {
|
|
dst = dst + ((count - 1) << esize);
|
|
src = src + ((count - 1) << esize);
|
|
step = -step;
|
|
}
|
|
|
|
while (count--) {
|
|
switch (esize) {
|
|
case 0:
|
|
tmp = ldub_phys(cs->as, src);
|
|
break;
|
|
case 1:
|
|
tmp = lduw_phys(cs->as, src);
|
|
break;
|
|
case 2:
|
|
tmp = ldl_phys(cs->as, src);
|
|
break;
|
|
case 3:
|
|
tmp = ldq_phys(cs->as, src);
|
|
break;
|
|
default:
|
|
return H_PARAMETER;
|
|
}
|
|
if (op == 1) {
|
|
tmp = ~tmp;
|
|
}
|
|
switch (esize) {
|
|
case 0:
|
|
stb_phys(cs->as, dst, tmp);
|
|
break;
|
|
case 1:
|
|
stw_phys(cs->as, dst, tmp);
|
|
break;
|
|
case 2:
|
|
stl_phys(cs->as, dst, tmp);
|
|
break;
|
|
case 3:
|
|
stq_phys(cs->as, dst, tmp);
|
|
break;
|
|
}
|
|
dst = dst + step;
|
|
src = src + step;
|
|
}
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
/* Nothing to do on emulation, KVM will trap this in the kernel */
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
/* Nothing to do on emulation, KVM will trap this in the kernel */
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong mflags,
|
|
target_ulong value1,
|
|
target_ulong value2)
|
|
{
|
|
if (value1) {
|
|
return H_P3;
|
|
}
|
|
if (value2) {
|
|
return H_P4;
|
|
}
|
|
|
|
switch (mflags) {
|
|
case H_SET_MODE_ENDIAN_BIG:
|
|
spapr_set_all_lpcrs(0, LPCR_ILE);
|
|
spapr_pci_switch_vga(spapr, true);
|
|
return H_SUCCESS;
|
|
|
|
case H_SET_MODE_ENDIAN_LITTLE:
|
|
spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
|
|
spapr_pci_switch_vga(spapr, false);
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
return H_UNSUPPORTED_FLAG;
|
|
}
|
|
|
|
static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
|
|
target_ulong mflags,
|
|
target_ulong value1,
|
|
target_ulong value2)
|
|
{
|
|
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
|
|
|
|
if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
|
|
return H_P2;
|
|
}
|
|
if (value1) {
|
|
return H_P3;
|
|
}
|
|
if (value2) {
|
|
return H_P4;
|
|
}
|
|
|
|
if (mflags == 1) {
|
|
/* AIL=1 is reserved in POWER8/POWER9/POWER10 */
|
|
return H_UNSUPPORTED_FLAG;
|
|
}
|
|
|
|
if (mflags == 2 && (pcc->insns_flags2 & PPC2_ISA310)) {
|
|
/* AIL=2 is reserved in POWER10 (ISA v3.1) */
|
|
return H_UNSUPPORTED_FLAG;
|
|
}
|
|
|
|
spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_ulong resource = args[1];
|
|
target_ulong ret = H_P2;
|
|
|
|
switch (resource) {
|
|
case H_SET_MODE_RESOURCE_LE:
|
|
ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]);
|
|
break;
|
|
case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
|
|
ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
|
|
args[2], args[3]);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
|
|
opcode, " (H_CLEAN_SLB)");
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
|
|
opcode, " (H_INVALIDATE_PID)");
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
|
|
uint64_t patbe_old, uint64_t patbe_new)
|
|
{
|
|
/*
|
|
* We have 4 Options:
|
|
* HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
|
|
* HASH->RADIX : Free HPT
|
|
* RADIX->HASH : Allocate HPT
|
|
* NOTHING->HASH : Allocate HPT
|
|
* Note: NOTHING implies the case where we said the guest could choose
|
|
* later and so assumed radix and now it's called H_REG_PROC_TBL
|
|
*/
|
|
|
|
if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
|
|
/* We assume RADIX, so this catches all the "Do Nothing" cases */
|
|
} else if (!(patbe_old & PATE1_GR)) {
|
|
/* HASH->RADIX : Free HPT */
|
|
spapr_free_hpt(spapr);
|
|
} else if (!(patbe_new & PATE1_GR)) {
|
|
/* RADIX->HASH || NOTHING->HASH : Allocate HPT */
|
|
spapr_setup_hpt(spapr);
|
|
}
|
|
return;
|
|
}
|
|
|
|
#define FLAGS_MASK 0x01FULL
|
|
#define FLAG_MODIFY 0x10
|
|
#define FLAG_REGISTER 0x08
|
|
#define FLAG_RADIX 0x04
|
|
#define FLAG_HASH_PROC_TBL 0x02
|
|
#define FLAG_GTSE 0x01
|
|
|
|
static target_ulong h_register_process_table(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
target_ulong flags = args[0];
|
|
target_ulong proc_tbl = args[1];
|
|
target_ulong page_size = args[2];
|
|
target_ulong table_size = args[3];
|
|
target_ulong update_lpcr = 0;
|
|
uint64_t cproc;
|
|
|
|
if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
|
|
return H_PARAMETER;
|
|
}
|
|
if (flags & FLAG_MODIFY) {
|
|
if (flags & FLAG_REGISTER) {
|
|
if (flags & FLAG_RADIX) { /* Register new RADIX process table */
|
|
if (proc_tbl & 0xfff || proc_tbl >> 60) {
|
|
return H_P2;
|
|
} else if (page_size) {
|
|
return H_P3;
|
|
} else if (table_size > 24) {
|
|
return H_P4;
|
|
}
|
|
cproc = PATE1_GR | proc_tbl | table_size;
|
|
} else { /* Register new HPT process table */
|
|
if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
|
|
/* TODO - Not Supported */
|
|
/* Technically caused by flag bits => H_PARAMETER */
|
|
return H_PARAMETER;
|
|
} else { /* Hash with SLB */
|
|
if (proc_tbl >> 38) {
|
|
return H_P2;
|
|
} else if (page_size & ~0x7) {
|
|
return H_P3;
|
|
} else if (table_size > 24) {
|
|
return H_P4;
|
|
}
|
|
}
|
|
cproc = (proc_tbl << 25) | page_size << 5 | table_size;
|
|
}
|
|
|
|
} else { /* Deregister current process table */
|
|
/*
|
|
* Set to benign value: (current GR) | 0. This allows
|
|
* deregistration in KVM to succeed even if the radix bit
|
|
* in flags doesn't match the radix bit in the old PATE.
|
|
*/
|
|
cproc = spapr->patb_entry & PATE1_GR;
|
|
}
|
|
} else { /* Maintain current registration */
|
|
if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
|
|
/* Technically caused by flag bits => H_PARAMETER */
|
|
return H_PARAMETER; /* Existing Process Table Mismatch */
|
|
}
|
|
cproc = spapr->patb_entry;
|
|
}
|
|
|
|
/* Check if we need to setup OR free the hpt */
|
|
spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
|
|
|
|
spapr->patb_entry = cproc; /* Save new process table */
|
|
|
|
/* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
|
|
if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */
|
|
update_lpcr |= (LPCR_UPRT | LPCR_HR);
|
|
else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
|
|
update_lpcr |= LPCR_UPRT;
|
|
if (flags & FLAG_GTSE) /* Guest translation shootdown enable */
|
|
update_lpcr |= LPCR_GTSE;
|
|
|
|
spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
|
|
|
|
if (kvm_enabled()) {
|
|
return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
|
|
flags & FLAG_GTSE, cproc);
|
|
}
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
#define H_SIGNAL_SYS_RESET_ALL -1
|
|
#define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
|
|
|
|
static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_long target = args[0];
|
|
CPUState *cs;
|
|
|
|
if (target < 0) {
|
|
/* Broadcast */
|
|
if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
CPU_FOREACH(cs) {
|
|
PowerPCCPU *c = POWERPC_CPU(cs);
|
|
|
|
if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
|
|
if (c == cpu) {
|
|
continue;
|
|
}
|
|
}
|
|
run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
|
|
}
|
|
return H_SUCCESS;
|
|
|
|
} else {
|
|
/* Unicast */
|
|
cs = CPU(spapr_find_cpu(target));
|
|
if (cs) {
|
|
run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
|
|
return H_SUCCESS;
|
|
}
|
|
return H_PARAMETER;
|
|
}
|
|
}
|
|
|
|
/* Returns either a logical PVR or zero if none was found */
|
|
static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
|
|
target_ulong *addr, bool *raw_mode_supported)
|
|
{
|
|
bool explicit_match = false; /* Matched the CPU's real PVR */
|
|
uint32_t best_compat = 0;
|
|
int i;
|
|
|
|
/*
|
|
* We scan the supplied table of PVRs looking for two things
|
|
* 1. Is our real CPU PVR in the list?
|
|
* 2. What's the "best" listed logical PVR
|
|
*/
|
|
for (i = 0; i < 512; ++i) {
|
|
uint32_t pvr, pvr_mask;
|
|
|
|
pvr_mask = ldl_be_phys(&address_space_memory, *addr);
|
|
pvr = ldl_be_phys(&address_space_memory, *addr + 4);
|
|
*addr += 8;
|
|
|
|
if (~pvr_mask & pvr) {
|
|
break; /* Terminator record */
|
|
}
|
|
|
|
if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
|
|
explicit_match = true;
|
|
} else {
|
|
if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
|
|
best_compat = pvr;
|
|
}
|
|
}
|
|
}
|
|
|
|
*raw_mode_supported = explicit_match;
|
|
|
|
/* Parsing finished */
|
|
trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
|
|
|
|
return best_compat;
|
|
}
|
|
|
|
static
|
|
target_ulong do_client_architecture_support(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong vec,
|
|
target_ulong fdt_bufsize)
|
|
{
|
|
target_ulong ov_table; /* Working address in data buffer */
|
|
uint32_t cas_pvr;
|
|
SpaprOptionVector *ov1_guest, *ov5_guest;
|
|
bool guest_radix;
|
|
bool raw_mode_supported = false;
|
|
bool guest_xive;
|
|
CPUState *cs;
|
|
void *fdt;
|
|
uint32_t max_compat = spapr->max_compat_pvr;
|
|
|
|
/* CAS is supposed to be called early when only the boot vCPU is active. */
|
|
CPU_FOREACH(cs) {
|
|
if (cs == CPU(cpu)) {
|
|
continue;
|
|
}
|
|
if (!cs->halted) {
|
|
warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
|
|
return H_MULTI_THREADS_ACTIVE;
|
|
}
|
|
}
|
|
|
|
cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
|
|
if (!cas_pvr && (!raw_mode_supported || max_compat)) {
|
|
/*
|
|
* We couldn't find a suitable compatibility mode, and either
|
|
* the guest doesn't support "raw" mode for this CPU, or "raw"
|
|
* mode is disabled because a maximum compat mode is set.
|
|
*/
|
|
error_report("Couldn't negotiate a suitable PVR during CAS");
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
/* Update CPUs */
|
|
if (cpu->compat_pvr != cas_pvr) {
|
|
Error *local_err = NULL;
|
|
|
|
if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
|
|
/* We fail to set compat mode (likely because running with KVM PR),
|
|
* but maybe we can fallback to raw mode if the guest supports it.
|
|
*/
|
|
if (!raw_mode_supported) {
|
|
error_report_err(local_err);
|
|
return H_HARDWARE;
|
|
}
|
|
error_free(local_err);
|
|
}
|
|
}
|
|
|
|
/* For the future use: here @ov_table points to the first option vector */
|
|
ov_table = vec;
|
|
|
|
ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
|
|
if (!ov1_guest) {
|
|
warn_report("guest didn't provide option vector 1");
|
|
return H_PARAMETER;
|
|
}
|
|
ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
|
|
if (!ov5_guest) {
|
|
spapr_ovec_cleanup(ov1_guest);
|
|
warn_report("guest didn't provide option vector 5");
|
|
return H_PARAMETER;
|
|
}
|
|
if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
|
|
error_report("guest requested hash and radix MMU, which is invalid.");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
|
|
error_report("guest requested an invalid interrupt mode");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
|
|
|
|
guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
|
|
|
|
/*
|
|
* HPT resizing is a bit of a special case, because when enabled
|
|
* we assume an HPT guest will support it until it says it
|
|
* doesn't, instead of assuming it won't support it until it says
|
|
* it does. Strictly speaking that approach could break for
|
|
* guests which don't make a CAS call, but those are so old we
|
|
* don't care about them. Without that assumption we'd have to
|
|
* make at least a temporary allocation of an HPT sized for max
|
|
* memory, which could be impossibly difficult under KVM HV if
|
|
* maxram is large.
|
|
*/
|
|
if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
|
|
int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
|
|
|
|
if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
|
|
error_report(
|
|
"h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
|
|
exit(1);
|
|
}
|
|
|
|
if (spapr->htab_shift < maxshift) {
|
|
/* Guest doesn't know about HPT resizing, so we
|
|
* pre-emptively resize for the maximum permitted RAM. At
|
|
* the point this is called, nothing should have been
|
|
* entered into the existing HPT */
|
|
spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
|
|
push_sregs_to_kvm_pr(spapr);
|
|
}
|
|
}
|
|
|
|
/* NOTE: there are actually a number of ov5 bits where input from the
|
|
* guest is always zero, and the platform/QEMU enables them independently
|
|
* of guest input. To model these properly we'd want some sort of mask,
|
|
* but since they only currently apply to memory migration as defined
|
|
* by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
|
|
* to worry about this for now.
|
|
*/
|
|
|
|
/* full range of negotiated ov5 capabilities */
|
|
spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
|
|
spapr_ovec_cleanup(ov5_guest);
|
|
|
|
if (guest_radix) {
|
|
if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
|
|
error_report("Guest requested unavailable MMU mode (radix).");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
} else {
|
|
if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
|
|
&& !kvmppc_has_cap_mmu_hash_v3()) {
|
|
error_report("Guest requested unavailable MMU mode (hash).");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
|
|
spapr_ovec_cleanup(ov1_guest);
|
|
|
|
/*
|
|
* Ensure the guest asks for an interrupt mode we support;
|
|
* otherwise terminate the boot.
|
|
*/
|
|
if (guest_xive) {
|
|
if (!spapr->irq->xive) {
|
|
error_report(
|
|
"Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
} else {
|
|
if (!spapr->irq->xics) {
|
|
error_report(
|
|
"Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
spapr_irq_update_active_intc(spapr);
|
|
|
|
/*
|
|
* Process all pending hot-plug/unplug requests now. An updated full
|
|
* rendered FDT will be returned to the guest.
|
|
*/
|
|
spapr_drc_reset_all(spapr);
|
|
spapr_clear_pending_hotplug_events(spapr);
|
|
|
|
/*
|
|
* If spapr_machine_reset() did not set up a HPT but one is necessary
|
|
* (because the guest isn't going to use radix) then set it up here.
|
|
*/
|
|
if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
|
|
/* legacy hash or new hash: */
|
|
spapr_setup_hpt(spapr);
|
|
}
|
|
|
|
fdt = spapr_build_fdt(spapr, false, fdt_bufsize);
|
|
|
|
g_free(spapr->fdt_blob);
|
|
spapr->fdt_size = fdt_totalsize(fdt);
|
|
spapr->fdt_initial_size = spapr->fdt_size;
|
|
spapr->fdt_blob = fdt;
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
target_ulong vec = ppc64_phys_to_real(args[0]);
|
|
target_ulong fdt_buf = args[1];
|
|
target_ulong fdt_bufsize = args[2];
|
|
target_ulong ret;
|
|
SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
|
|
|
|
if (fdt_bufsize < sizeof(hdr)) {
|
|
error_report("SLOF provided insufficient CAS buffer "
|
|
TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr));
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
fdt_bufsize -= sizeof(hdr);
|
|
|
|
ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize);
|
|
if (ret == H_SUCCESS) {
|
|
_FDT((fdt_pack(spapr->fdt_blob)));
|
|
spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
|
|
spapr->fdt_initial_size = spapr->fdt_size;
|
|
|
|
cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr));
|
|
cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob,
|
|
spapr->fdt_size);
|
|
trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
|
|
~H_CPU_CHAR_THR_RECONF_TRIG;
|
|
uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
|
|
uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
|
|
uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
|
|
uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
|
|
uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
|
|
SPAPR_CAP_CCF_ASSIST);
|
|
|
|
switch (safe_cache) {
|
|
case SPAPR_CAP_WORKAROUND:
|
|
characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
|
|
characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
|
|
characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
|
|
behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
|
|
break;
|
|
case SPAPR_CAP_FIXED:
|
|
break;
|
|
default: /* broken */
|
|
assert(safe_cache == SPAPR_CAP_BROKEN);
|
|
behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
|
|
break;
|
|
}
|
|
|
|
switch (safe_bounds_check) {
|
|
case SPAPR_CAP_WORKAROUND:
|
|
characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
|
|
behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
|
|
break;
|
|
case SPAPR_CAP_FIXED:
|
|
break;
|
|
default: /* broken */
|
|
assert(safe_bounds_check == SPAPR_CAP_BROKEN);
|
|
behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
|
|
break;
|
|
}
|
|
|
|
switch (safe_indirect_branch) {
|
|
case SPAPR_CAP_FIXED_NA:
|
|
break;
|
|
case SPAPR_CAP_FIXED_CCD:
|
|
characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
|
|
break;
|
|
case SPAPR_CAP_FIXED_IBS:
|
|
characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
|
|
break;
|
|
case SPAPR_CAP_WORKAROUND:
|
|
behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
|
|
if (count_cache_flush_assist) {
|
|
characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
|
|
}
|
|
break;
|
|
default: /* broken */
|
|
assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
|
|
break;
|
|
}
|
|
|
|
args[0] = characteristics;
|
|
args[1] = behaviour;
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_ulong dt = ppc64_phys_to_real(args[0]);
|
|
struct fdt_header hdr = { 0 };
|
|
unsigned cb;
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
|
|
void *fdt;
|
|
|
|
cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
|
|
cb = fdt32_to_cpu(hdr.totalsize);
|
|
|
|
if (!smc->update_dt_enabled) {
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
/* Check that the fdt did not grow out of proportion */
|
|
if (cb > spapr->fdt_initial_size * 2) {
|
|
trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
|
|
fdt32_to_cpu(hdr.magic));
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
fdt = g_malloc0(cb);
|
|
cpu_physical_memory_read(dt, fdt, cb);
|
|
|
|
/* Check the fdt consistency */
|
|
if (fdt_check_full(fdt, cb)) {
|
|
trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
|
|
fdt32_to_cpu(hdr.magic));
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
g_free(spapr->fdt_blob);
|
|
spapr->fdt_size = cb;
|
|
spapr->fdt_blob = fdt;
|
|
trace_spapr_update_dt(cb);
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
|
|
static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
|
|
static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
|
|
|
|
void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
|
|
{
|
|
spapr_hcall_fn *slot;
|
|
|
|
if (opcode <= MAX_HCALL_OPCODE) {
|
|
assert((opcode & 0x3) == 0);
|
|
|
|
slot = &papr_hypercall_table[opcode / 4];
|
|
} else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
|
|
/* we only have SVM-related hcall numbers assigned in multiples of 4 */
|
|
assert((opcode & 0x3) == 0);
|
|
|
|
slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
|
|
} else {
|
|
assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
|
|
|
|
slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
|
|
}
|
|
|
|
assert(!(*slot));
|
|
*slot = fn;
|
|
}
|
|
|
|
target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
|
|
|
|
if ((opcode <= MAX_HCALL_OPCODE)
|
|
&& ((opcode & 0x3) == 0)) {
|
|
spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
|
|
|
|
if (fn) {
|
|
return fn(cpu, spapr, opcode, args);
|
|
}
|
|
} else if ((opcode >= SVM_HCALL_BASE) &&
|
|
(opcode <= SVM_HCALL_MAX)) {
|
|
spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
|
|
|
|
if (fn) {
|
|
return fn(cpu, spapr, opcode, args);
|
|
}
|
|
} else if ((opcode >= KVMPPC_HCALL_BASE) &&
|
|
(opcode <= KVMPPC_HCALL_MAX)) {
|
|
spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
|
|
|
|
if (fn) {
|
|
return fn(cpu, spapr, opcode, args);
|
|
}
|
|
}
|
|
|
|
qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
|
|
opcode);
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
static void hypercall_register_types(void)
|
|
{
|
|
/* hcall-pft */
|
|
spapr_register_hypercall(H_ENTER, h_enter);
|
|
spapr_register_hypercall(H_REMOVE, h_remove);
|
|
spapr_register_hypercall(H_PROTECT, h_protect);
|
|
spapr_register_hypercall(H_READ, h_read);
|
|
|
|
/* hcall-bulk */
|
|
spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
|
|
|
|
/* hcall-hpt-resize */
|
|
spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
|
|
spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
|
|
|
|
/* hcall-splpar */
|
|
spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
|
|
spapr_register_hypercall(H_CEDE, h_cede);
|
|
spapr_register_hypercall(H_CONFER, h_confer);
|
|
spapr_register_hypercall(H_PROD, h_prod);
|
|
|
|
/* hcall-join */
|
|
spapr_register_hypercall(H_JOIN, h_join);
|
|
|
|
spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
|
|
|
|
/* processor register resource access h-calls */
|
|
spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
|
|
spapr_register_hypercall(H_SET_DABR, h_set_dabr);
|
|
spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
|
|
spapr_register_hypercall(H_PAGE_INIT, h_page_init);
|
|
spapr_register_hypercall(H_SET_MODE, h_set_mode);
|
|
|
|
/* In Memory Table MMU h-calls */
|
|
spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
|
|
spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
|
|
spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
|
|
|
|
/* hcall-get-cpu-characteristics */
|
|
spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
|
|
h_get_cpu_characteristics);
|
|
|
|
/* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
|
|
* here between the "CI" and the "CACHE" variants, they will use whatever
|
|
* mapping attributes qemu is using. When using KVM, the kernel will
|
|
* enforce the attributes more strongly
|
|
*/
|
|
spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
|
|
spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
|
|
spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
|
|
spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
|
|
spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
|
|
spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
|
|
spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
|
|
|
|
/* qemu/KVM-PPC specific hcalls */
|
|
spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
|
|
|
|
/* ibm,client-architecture-support support */
|
|
spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
|
|
|
|
spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
|
|
}
|
|
|
|
type_init(hypercall_register_types)
|