qemu-e2k/target-ppc/op.c
bellard b88e4a9a3b small test optimisations
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@636 c046a42c-6fe2-441c-8c8c-71466251a162
2004-02-22 13:41:47 +00:00

1514 lines
21 KiB
C

/*
* PPC emulation micro-operations for qemu.
*
* Copyright (c) 2003 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#include "exec.h"
//#define DEBUG_OP
#define regs (env)
#define Ts0 (int32_t)T0
#define Ts1 (int32_t)T1
#define Ts2 (int32_t)T2
#define FT0 (env->ft0)
#define FT1 (env->ft1)
#define FT2 (env->ft2)
#define FTS0 ((float)env->ft0)
#define FTS1 ((float)env->ft1)
#define FTS2 ((float)env->ft2)
#define PPC_OP(name) void glue(op_, name)(void)
#define REG 0
#include "op_template.h"
#define REG 1
#include "op_template.h"
#define REG 2
#include "op_template.h"
#define REG 3
#include "op_template.h"
#define REG 4
#include "op_template.h"
#define REG 5
#include "op_template.h"
#define REG 6
#include "op_template.h"
#define REG 7
#include "op_template.h"
#define REG 8
#include "op_template.h"
#define REG 9
#include "op_template.h"
#define REG 10
#include "op_template.h"
#define REG 11
#include "op_template.h"
#define REG 12
#include "op_template.h"
#define REG 13
#include "op_template.h"
#define REG 14
#include "op_template.h"
#define REG 15
#include "op_template.h"
#define REG 16
#include "op_template.h"
#define REG 17
#include "op_template.h"
#define REG 18
#include "op_template.h"
#define REG 19
#include "op_template.h"
#define REG 20
#include "op_template.h"
#define REG 21
#include "op_template.h"
#define REG 22
#include "op_template.h"
#define REG 23
#include "op_template.h"
#define REG 24
#include "op_template.h"
#define REG 25
#include "op_template.h"
#define REG 26
#include "op_template.h"
#define REG 27
#include "op_template.h"
#define REG 28
#include "op_template.h"
#define REG 29
#include "op_template.h"
#define REG 30
#include "op_template.h"
#define REG 31
#include "op_template.h"
/* PPC state maintenance operations */
/* set_Rc0 */
PPC_OP(set_Rc0)
{
uint32_t tmp;
if (Ts0 < 0) {
tmp = 0x08;
} else if (Ts0 > 0) {
tmp = 0x04;
} else {
tmp = 0x02;
}
env->crf[0] = tmp;
RETURN();
}
PPC_OP(set_Rc0_ov)
{
uint32_t tmp;
if (Ts0 < 0) {
tmp = 0x08;
} else if (Ts0 > 0) {
tmp = 0x04;
} else {
tmp = 0x02;
}
tmp |= xer_ov;
env->crf[0] = tmp;
RETURN();
}
/* reset_Rc0 */
PPC_OP(reset_Rc0)
{
env->crf[0] = 0x02 | xer_ov;
RETURN();
}
/* set_Rc0_1 */
PPC_OP(set_Rc0_1)
{
env->crf[0] = 0x04 | xer_ov;
RETURN();
}
/* Set Rc1 (for floating point arithmetic) */
PPC_OP(set_Rc1)
{
env->crf[1] = regs->fpscr[7];
RETURN();
}
/* Constants load */
PPC_OP(set_T0)
{
T0 = PARAM(1);
RETURN();
}
PPC_OP(set_T1)
{
T1 = PARAM(1);
RETURN();
}
PPC_OP(set_T2)
{
T2 = PARAM(1);
RETURN();
}
/* Generate exceptions */
PPC_OP(queue_exception_err)
{
do_queue_exception_err(PARAM(1), PARAM(2));
}
PPC_OP(queue_exception)
{
do_queue_exception(PARAM(1));
}
PPC_OP(process_exceptions)
{
env->nip = PARAM(1);
if (env->exceptions != 0) {
do_check_exception_state();
}
}
/* Segment registers load and store with immediate index */
PPC_OP(load_srin)
{
T0 = regs->sr[T1 >> 28];
RETURN();
}
PPC_OP(store_srin)
{
#if defined (DEBUG_OP)
dump_store_sr(T1 >> 28);
#endif
regs->sr[T1 >> 28] = T0;
RETURN();
}
PPC_OP(load_sdr1)
{
T0 = regs->sdr1;
RETURN();
}
PPC_OP(store_sdr1)
{
regs->sdr1 = T0;
RETURN();
}
PPC_OP(exit_tb)
{
EXIT_TB();
}
/* Load/store special registers */
PPC_OP(load_cr)
{
do_load_cr();
RETURN();
}
PPC_OP(store_cr)
{
do_store_cr(PARAM(1));
RETURN();
}
PPC_OP(load_xer_cr)
{
T0 = (xer_so << 3) | (xer_ov << 2) | (xer_ca << 1);
RETURN();
}
PPC_OP(clear_xer_cr)
{
xer_so = 0;
xer_ov = 0;
xer_ca = 0;
RETURN();
}
PPC_OP(load_xer_bc)
{
T1 = xer_bc;
RETURN();
}
PPC_OP(load_xer)
{
do_load_xer();
RETURN();
}
PPC_OP(store_xer)
{
do_store_xer();
RETURN();
}
PPC_OP(load_msr)
{
do_load_msr();
RETURN();
}
PPC_OP(store_msr)
{
do_store_msr();
RETURN();
}
/* SPR */
PPC_OP(load_spr)
{
T0 = regs->spr[PARAM(1)];
RETURN();
}
PPC_OP(store_spr)
{
regs->spr[PARAM(1)] = T0;
RETURN();
}
PPC_OP(load_lr)
{
T0 = regs->lr;
RETURN();
}
PPC_OP(store_lr)
{
regs->lr = T0;
RETURN();
}
PPC_OP(load_ctr)
{
T0 = regs->ctr;
RETURN();
}
PPC_OP(store_ctr)
{
regs->ctr = T0;
RETURN();
}
/* Update time base */
PPC_OP(update_tb)
{
T0 = regs->tb[0];
T1 = T0;
T0 += PARAM(1);
#if defined (DEBUG_OP)
dump_update_tb(PARAM(1));
#endif
if (T0 < T1) {
T1 = regs->tb[1] + 1;
regs->tb[1] = T1;
}
regs->tb[0] = T0;
RETURN();
}
PPC_OP(load_tb)
{
T0 = regs->tb[PARAM(1)];
RETURN();
}
PPC_OP(store_tb)
{
regs->tb[PARAM(1)] = T0;
#if defined (DEBUG_OP)
dump_store_tb(PARAM(1));
#endif
RETURN();
}
/* Update decrementer */
PPC_OP(update_decr)
{
T0 = regs->decr;
T1 = T0;
T0 -= PARAM(1);
regs->decr = T0;
if (PARAM(1) > T1) {
do_queue_exception(EXCP_DECR);
}
RETURN();
}
PPC_OP(store_decr)
{
T1 = regs->decr;
regs->decr = T0;
if (Ts0 < 0 && Ts1 > 0) {
do_queue_exception(EXCP_DECR);
}
RETURN();
}
PPC_OP(load_ibat)
{
T0 = regs->IBAT[PARAM(1)][PARAM(2)];
}
PPC_OP(store_ibat)
{
#if defined (DEBUG_OP)
dump_store_ibat(PARAM(1), PARAM(2));
#endif
regs->IBAT[PARAM(1)][PARAM(2)] = T0;
}
PPC_OP(load_dbat)
{
T0 = regs->DBAT[PARAM(1)][PARAM(2)];
}
PPC_OP(store_dbat)
{
#if defined (DEBUG_OP)
dump_store_dbat(PARAM(1), PARAM(2));
#endif
regs->DBAT[PARAM(1)][PARAM(2)] = T0;
}
/* FPSCR */
PPC_OP(load_fpscr)
{
do_load_fpscr();
RETURN();
}
PPC_OP(store_fpscr)
{
do_store_fpscr(PARAM(1));
RETURN();
}
PPC_OP(reset_scrfx)
{
regs->fpscr[7] &= ~0x8;
RETURN();
}
/* crf operations */
PPC_OP(getbit_T0)
{
T0 = (T0 >> PARAM(1)) & 1;
RETURN();
}
PPC_OP(getbit_T1)
{
T1 = (T1 >> PARAM(1)) & 1;
RETURN();
}
PPC_OP(setcrfbit)
{
T1 = (T1 & PARAM(1)) | (T0 << PARAM(2));
RETURN();
}
/* Branch */
#define EIP regs->nip
PPC_OP(setlr)
{
regs->lr = PARAM1;
}
PPC_OP(b)
{
JUMP_TB(b1, PARAM1, 0, PARAM2);
}
PPC_OP(b_T1)
{
regs->nip = T1;
}
PPC_OP(btest)
{
if (T0) {
JUMP_TB(btest, PARAM1, 0, PARAM2);
} else {
JUMP_TB(btest, PARAM1, 1, PARAM3);
}
RETURN();
}
PPC_OP(btest_T1)
{
if (T0) {
regs->nip = T1 & ~3;
} else {
regs->nip = PARAM1;
}
RETURN();
}
PPC_OP(movl_T1_ctr)
{
T1 = regs->ctr;
}
PPC_OP(movl_T1_lr)
{
T1 = regs->lr;
}
/* tests with result in T0 */
PPC_OP(test_ctr)
{
T0 = regs->ctr;
}
PPC_OP(test_ctr_true)
{
T0 = (regs->ctr != 0 && (T0 & PARAM(1)) != 0);
}
PPC_OP(test_ctr_false)
{
T0 = (regs->ctr != 0 && (T0 & PARAM(1)) == 0);
}
PPC_OP(test_ctrz)
{
T0 = (regs->ctr == 0);
}
PPC_OP(test_ctrz_true)
{
T0 = (regs->ctr == 0 && (T0 & PARAM(1)) != 0);
}
PPC_OP(test_ctrz_false)
{
T0 = (regs->ctr == 0 && (T0 & PARAM(1)) == 0);
}
PPC_OP(test_true)
{
T0 = (T0 & PARAM(1));
}
PPC_OP(test_false)
{
T0 = ((T0 & PARAM(1)) == 0);
}
/* CTR maintenance */
PPC_OP(dec_ctr)
{
regs->ctr--;
RETURN();
}
/*** Integer arithmetic ***/
/* add */
PPC_OP(add)
{
T0 += T1;
RETURN();
}
PPC_OP(addo)
{
T2 = T0;
T0 += T1;
if ((T2 ^ T1 ^ (-1)) & (T2 ^ T0) & (1 << 31)) {
xer_so = 1;
xer_ov = 1;
} else {
xer_ov = 0;
}
RETURN();
}
/* add carrying */
PPC_OP(addc)
{
T2 = T0;
T0 += T1;
if (T0 < T2) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
PPC_OP(addco)
{
T2 = T0;
T0 += T1;
if (T0 < T2) {
xer_ca = 1;
} else {
xer_ca = 0;
}
if ((T2 ^ T1 ^ (-1)) & (T2 ^ T0) & (1 << 31)) {
xer_so = 1;
xer_ov = 1;
} else {
xer_ov = 0;
}
RETURN();
}
/* add extended */
/* candidate for helper (too long) */
PPC_OP(adde)
{
T2 = T0;
T0 += T1 + xer_ca;
if (T0 < T2 || (xer_ca == 1 && T0 == T2)) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
PPC_OP(addeo)
{
T2 = T0;
T0 += T1 + xer_ca;
if (T0 < T2 || (xer_ca == 1 && T0 == T2)) {
xer_ca = 1;
} else {
xer_ca = 0;
}
if ((T2 ^ T1 ^ (-1)) & (T2 ^ T0) & (1 << 31)) {
xer_so = 1;
xer_ov = 1;
} else {
xer_ov = 0;
}
RETURN();
}
/* add immediate */
PPC_OP(addi)
{
T0 += PARAM(1);
RETURN();
}
/* add immediate carrying */
PPC_OP(addic)
{
T1 = T0;
T0 += PARAM(1);
if (T0 < T1) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
/* add to minus one extended */
PPC_OP(addme)
{
T1 = T0;
T0 += xer_ca + (-1);
if (T1 != 0)
xer_ca = 1;
RETURN();
}
PPC_OP(addmeo)
{
T1 = T0;
T0 += xer_ca + (-1);
if (T1 & (T1 ^ T0) & (1 << 31)) {
xer_so = 1;
xer_ov = 1;
} else {
xer_ov = 0;
}
if (T1 != 0)
xer_ca = 1;
RETURN();
}
/* add to zero extended */
PPC_OP(addze)
{
T1 = T0;
T0 += xer_ca;
if (T0 < T1) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
PPC_OP(addzeo)
{
T1 = T0;
T0 += xer_ca;
if ((T1 ^ (-1)) & (T1 ^ T0) & (1 << 31)) {
xer_so = 1;
xer_ov = 1;
} else {
xer_ov = 0;
}
if (T0 < T1) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
/* divide word */
/* candidate for helper (too long) */
PPC_OP(divw)
{
if ((Ts0 == INT32_MIN && Ts1 == -1) || Ts1 == 0) {
Ts0 = (-1) * (T0 >> 31);
} else {
Ts0 /= Ts1;
}
RETURN();
}
PPC_OP(divwo)
{
if ((Ts0 == INT32_MIN && Ts1 == -1) || Ts1 == 0) {
xer_so = 1;
xer_ov = 1;
T0 = (-1) * (T0 >> 31);
} else {
xer_ov = 0;
Ts0 /= Ts1;
}
RETURN();
}
/* divide word unsigned */
PPC_OP(divwu)
{
if (T1 == 0) {
T0 = 0;
} else {
T0 /= T1;
}
RETURN();
}
PPC_OP(divwuo)
{
if (T1 == 0) {
xer_so = 1;
xer_ov = 1;
T0 = 0;
} else {
xer_ov = 0;
T0 /= T1;
}
RETURN();
}
/* multiply high word */
PPC_OP(mulhw)
{
Ts0 = ((int64_t)Ts0 * (int64_t)Ts1) >> 32;
RETURN();
}
/* multiply high word unsigned */
PPC_OP(mulhwu)
{
T0 = ((uint64_t)T0 * (uint64_t)T1) >> 32;
RETURN();
}
/* multiply low immediate */
PPC_OP(mulli)
{
Ts0 *= SPARAM(1);
RETURN();
}
/* multiply low word */
PPC_OP(mullw)
{
T0 *= T1;
RETURN();
}
PPC_OP(mullwo)
{
int64_t res = (int64_t)Ts0 * (int64_t)Ts1;
if ((int32_t)res != res) {
xer_ov = 1;
xer_so = 1;
} else {
xer_ov = 0;
}
Ts0 = res;
RETURN();
}
/* negate */
PPC_OP(neg)
{
if (T0 != 0x80000000) {
Ts0 = -Ts0;
}
RETURN();
}
PPC_OP(nego)
{
if (T0 == 0x80000000) {
xer_ov = 1;
xer_so = 1;
} else {
xer_ov = 0;
Ts0 = -Ts0;
}
RETURN();
}
/* substract from */
PPC_OP(subf)
{
T0 = T1 - T0;
RETURN();
}
PPC_OP(subfo)
{
T2 = T0;
T0 = T1 - T0;
if (((~T2) ^ T1 ^ (-1)) & ((~T2) ^ T0) & (1 << 31)) {
xer_so = 1;
xer_ov = 1;
} else {
xer_ov = 0;
}
RETURN();
}
/* substract from carrying */
PPC_OP(subfc)
{
T0 = T1 - T0;
if (T0 <= T1) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
PPC_OP(subfco)
{
T2 = T0;
T0 = T1 - T0;
if (T0 <= T1) {
xer_ca = 1;
} else {
xer_ca = 0;
}
if (((~T2) ^ T1 ^ (-1)) & ((~T2) ^ T0) & (1 << 31)) {
xer_so = 1;
xer_ov = 1;
} else {
xer_ov = 0;
}
RETURN();
}
/* substract from extended */
/* candidate for helper (too long) */
PPC_OP(subfe)
{
T0 = T1 + ~T0 + xer_ca;
if (T0 < T1 || (xer_ca == 1 && T0 == T1)) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
PPC_OP(subfeo)
{
T2 = T0;
T0 = T1 + ~T0 + xer_ca;
if ((~T2 ^ T1 ^ (-1)) & (~T2 ^ T0) & (1 << 31)) {
xer_so = 1;
xer_ov = 1;
} else {
xer_ov = 0;
}
if (T0 < T1 || (xer_ca == 1 && T0 == T1)) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
/* substract from immediate carrying */
PPC_OP(subfic)
{
T0 = PARAM(1) + ~T0 + 1;
if (T0 <= PARAM(1)) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
/* substract from minus one extended */
PPC_OP(subfme)
{
T0 = ~T0 + xer_ca - 1;
if (T0 != -1)
xer_ca = 1;
RETURN();
}
PPC_OP(subfmeo)
{
T1 = T0;
T0 = ~T0 + xer_ca - 1;
if (~T1 & (~T1 ^ T0) & (1 << 31)) {
xer_so = 1;
xer_ov = 1;
} else {
xer_ov = 0;
}
if (T1 != -1)
xer_ca = 1;
RETURN();
}
/* substract from zero extended */
PPC_OP(subfze)
{
T1 = ~T0;
T0 = T1 + xer_ca;
if (T0 < T1) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
PPC_OP(subfzeo)
{
T1 = T0;
T0 = ~T0 + xer_ca;
if ((~T1 ^ (-1)) & ((~T1) ^ T0) & (1 << 31)) {
xer_ov = 1;
xer_so = 1;
} else {
xer_ov = 0;
}
if (T0 < ~T1) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
/*** Integer comparison ***/
/* compare */
PPC_OP(cmp)
{
if (Ts0 < Ts1) {
T0 = 0x08;
} else if (Ts0 > Ts1) {
T0 = 0x04;
} else {
T0 = 0x02;
}
RETURN();
}
/* compare immediate */
PPC_OP(cmpi)
{
if (Ts0 < SPARAM(1)) {
T0 = 0x08;
} else if (Ts0 > SPARAM(1)) {
T0 = 0x04;
} else {
T0 = 0x02;
}
RETURN();
}
/* compare logical */
PPC_OP(cmpl)
{
if (T0 < T1) {
T0 = 0x08;
} else if (T0 > T1) {
T0 = 0x04;
} else {
T0 = 0x02;
}
RETURN();
}
/* compare logical immediate */
PPC_OP(cmpli)
{
if (T0 < PARAM(1)) {
T0 = 0x08;
} else if (T0 > PARAM(1)) {
T0 = 0x04;
} else {
T0 = 0x02;
}
RETURN();
}
/*** Integer logical ***/
/* and */
PPC_OP(and)
{
T0 &= T1;
RETURN();
}
/* andc */
PPC_OP(andc)
{
T0 &= ~T1;
RETURN();
}
/* andi. */
PPC_OP(andi_)
{
T0 &= PARAM(1);
RETURN();
}
/* count leading zero */
PPC_OP(cntlzw)
{
T1 = T0;
for (T0 = 32; T1 > 0; T0--)
T1 = T1 >> 1;
RETURN();
}
/* eqv */
PPC_OP(eqv)
{
T0 = ~(T0 ^ T1);
RETURN();
}
/* extend sign byte */
PPC_OP(extsb)
{
Ts0 = s_ext8(Ts0);
RETURN();
}
/* extend sign half word */
PPC_OP(extsh)
{
Ts0 = s_ext16(Ts0);
RETURN();
}
/* nand */
PPC_OP(nand)
{
T0 = ~(T0 & T1);
RETURN();
}
/* nor */
PPC_OP(nor)
{
T0 = ~(T0 | T1);
RETURN();
}
/* or */
PPC_OP(or)
{
T0 |= T1;
RETURN();
}
/* orc */
PPC_OP(orc)
{
T0 |= ~T1;
RETURN();
}
/* ori */
PPC_OP(ori)
{
T0 |= PARAM(1);
RETURN();
}
/* xor */
PPC_OP(xor)
{
T0 ^= T1;
RETURN();
}
/* xori */
PPC_OP(xori)
{
T0 ^= PARAM(1);
RETURN();
}
/*** Integer rotate ***/
/* rotate left word immediate then mask insert */
PPC_OP(rlwimi)
{
T0 = (rotl(T0, PARAM(1)) & PARAM(2)) | (T1 & PARAM(3));
RETURN();
}
/* rotate left immediate then and with mask insert */
PPC_OP(rotlwi)
{
T0 = rotl(T0, PARAM(1));
RETURN();
}
PPC_OP(slwi)
{
T0 = T0 << PARAM(1);
RETURN();
}
PPC_OP(srwi)
{
T0 = T0 >> PARAM(1);
RETURN();
}
/* rotate left word then and with mask insert */
PPC_OP(rlwinm)
{
T0 = rotl(T0, PARAM(1)) & PARAM(2);
RETURN();
}
PPC_OP(rotl)
{
T0 = rotl(T0, T1);
RETURN();
}
PPC_OP(rlwnm)
{
T0 = rotl(T0, T1) & PARAM(1);
RETURN();
}
/*** Integer shift ***/
/* shift left word */
PPC_OP(slw)
{
if (T1 & 0x20) {
T0 = 0;
} else {
T0 = T0 << T1;
}
RETURN();
}
/* shift right algebraic word */
PPC_OP(sraw)
{
do_sraw();
RETURN();
}
/* shift right algebraic word immediate */
PPC_OP(srawi)
{
Ts1 = Ts0;
Ts0 = Ts0 >> PARAM(1);
if (Ts1 < 0 && (Ts1 & PARAM(2)) != 0) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
/* shift right word */
PPC_OP(srw)
{
if (T1 & 0x20) {
T0 = 0;
} else {
T0 = T0 >> T1;
}
RETURN();
}
/*** Floating-Point arithmetic ***/
/* fadd - fadd. */
PPC_OP(fadd)
{
FT0 += FT1;
RETURN();
}
/* fadds - fadds. */
PPC_OP(fadds)
{
FTS0 += FTS1;
RETURN();
}
/* fsub - fsub. */
PPC_OP(fsub)
{
FT0 -= FT1;
RETURN();
}
/* fsubs - fsubs. */
PPC_OP(fsubs)
{
FTS0 -= FTS1;
RETURN();
}
/* fmul - fmul. */
PPC_OP(fmul)
{
FT0 *= FT1;
RETURN();
}
/* fmuls - fmuls. */
PPC_OP(fmuls)
{
FTS0 *= FTS1;
RETURN();
}
/* fdiv - fdiv. */
PPC_OP(fdiv)
{
FT0 /= FT1;
RETURN();
}
/* fdivs - fdivs. */
PPC_OP(fdivs)
{
FTS0 /= FTS1;
RETURN();
}
/* fsqrt - fsqrt. */
PPC_OP(fsqrt)
{
do_fsqrt();
RETURN();
}
/* fsqrts - fsqrts. */
PPC_OP(fsqrts)
{
do_fsqrts();
RETURN();
}
/* fres - fres. */
PPC_OP(fres)
{
do_fres();
RETURN();
}
/* frsqrte - frsqrte. */
PPC_OP(frsqrte)
{
do_fsqrte();
RETURN();
}
/* fsel - fsel. */
PPC_OP(fsel)
{
do_fsel();
RETURN();
}
/*** Floating-Point multiply-and-add ***/
/* fmadd - fmadd. */
PPC_OP(fmadd)
{
FT0 = (FT0 * FT1) + FT2;
RETURN();
}
/* fmadds - fmadds. */
PPC_OP(fmadds)
{
FTS0 = (FTS0 * FTS1) + FTS2;
RETURN();
}
/* fmsub - fmsub. */
PPC_OP(fmsub)
{
FT0 = (FT0 * FT1) - FT2;
RETURN();
}
/* fmsubs - fmsubs. */
PPC_OP(fmsubs)
{
FTS0 = (FTS0 * FTS1) - FTS2;
RETURN();
}
/* fnmadd - fnmadd. - fnmadds - fnmadds. */
PPC_OP(fnmadd)
{
FT0 = -((FT0 * FT1) + FT2);
RETURN();
}
/* fnmadds - fnmadds. */
PPC_OP(fnmadds)
{
FTS0 = -((FTS0 * FTS1) + FTS2);
RETURN();
}
/* fnmsub - fnmsub. */
PPC_OP(fnmsub)
{
FT0 = -((FT0 * FT1) - FT2);
RETURN();
}
/* fnmsubs - fnmsubs. */
PPC_OP(fnmsubs)
{
FTS0 = -((FTS0 * FTS1) - FTS2);
RETURN();
}
/*** Floating-Point round & convert ***/
/* frsp - frsp. */
PPC_OP(frsp)
{
FT0 = FTS0;
RETURN();
}
/* fctiw - fctiw. */
PPC_OP(fctiw)
{
do_fctiw();
RETURN();
}
/* fctiwz - fctiwz. */
PPC_OP(fctiwz)
{
do_fctiwz();
RETURN();
}
/*** Floating-Point compare ***/
/* fcmpu */
PPC_OP(fcmpu)
{
do_fcmpu();
RETURN();
}
/* fcmpo */
PPC_OP(fcmpo)
{
do_fcmpo();
RETURN();
}
/*** Floating-point move ***/
/* fabs */
PPC_OP(fabs)
{
do_fabs();
RETURN();
}
/* fnabs */
PPC_OP(fnabs)
{
do_fnabs();
RETURN();
}
/* fneg */
PPC_OP(fneg)
{
FT0 = -FT0;
RETURN();
}
/* Load and store */
#if defined(CONFIG_USER_ONLY)
#define MEMSUFFIX _raw
#include "op_mem.h"
#else
#define MEMSUFFIX _user
#include "op_mem.h"
#define MEMSUFFIX _kernel
#include "op_mem.h"
#endif
/* Return from interrupt */
PPC_OP(rfi)
{
T0 = regs->spr[SRR1] & ~0xFFFF0000;
do_store_msr();
do_tlbia();
dump_rfi();
regs->nip = regs->spr[SRR0] & ~0x00000003;
if (env->exceptions != 0) {
do_check_exception_state();
}
RETURN();
}
/* Trap word */
PPC_OP(tw)
{
if ((Ts0 < Ts1 && (PARAM(1) & 0x10)) ||
(Ts0 > Ts1 && (PARAM(1) & 0x08)) ||
(Ts0 == Ts1 && (PARAM(1) & 0x04)) ||
(T0 < T1 && (PARAM(1) & 0x02)) ||
(T0 > T1 && (PARAM(1) & 0x01)))
do_queue_exception_err(EXCP_PROGRAM, EXCP_TRAP);
RETURN();
}
PPC_OP(twi)
{
if ((Ts0 < SPARAM(1) && (PARAM(2) & 0x10)) ||
(Ts0 > SPARAM(1) && (PARAM(2) & 0x08)) ||
(Ts0 == SPARAM(1) && (PARAM(2) & 0x04)) ||
(T0 < (uint32_t)SPARAM(1) && (PARAM(2) & 0x02)) ||
(T0 > (uint32_t)SPARAM(1) && (PARAM(2) & 0x01)))
do_queue_exception_err(EXCP_PROGRAM, EXCP_TRAP);
RETURN();
}
/* Instruction cache block invalidate */
PPC_OP(icbi)
{
do_icbi();
RETURN();
}
/* tlbia */
PPC_OP(tlbia)
{
do_tlbia();
RETURN();
}
/* tlbie */
PPC_OP(tlbie)
{
do_tlbie();
RETURN();
}