qemu-e2k/target-ppc/op_helper.c

590 lines
13 KiB
C

/*
* PowerPC emulation helpers for qemu.
*
* Copyright (c) 2003-2005 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "exec.h"
#define MEMSUFFIX _raw
#include "op_helper_mem.h"
#if !defined(CONFIG_USER_ONLY)
#define MEMSUFFIX _user
#include "op_helper_mem.h"
#define MEMSUFFIX _kernel
#include "op_helper_mem.h"
#endif
//#define DEBUG_OP
//#define DEBUG_EXCEPTIONS
//#define FLUSH_ALL_TLBS
#define Ts0 (long)((target_long)T0)
#define Ts1 (long)((target_long)T1)
#define Ts2 (long)((target_long)T2)
/*****************************************************************************/
/* Exceptions processing helpers */
void cpu_loop_exit(void)
{
longjmp(env->jmp_env, 1);
}
void do_raise_exception_err (uint32_t exception, int error_code)
{
#if 0
printf("Raise exception %3x code : %d\n", exception, error_code);
#endif
switch (exception) {
case EXCP_PROGRAM:
if (error_code == EXCP_FP && msr_fe0 == 0 && msr_fe1 == 0)
return;
break;
default:
break;
}
env->exception_index = exception;
env->error_code = error_code;
cpu_loop_exit();
}
void do_raise_exception (uint32_t exception)
{
do_raise_exception_err(exception, 0);
}
/*****************************************************************************/
/* Fixed point operations helpers */
void do_addo (void)
{
T2 = T0;
T0 += T1;
if (likely(!((T2 ^ T1 ^ (-1)) & (T2 ^ T0) & (1 << 31)))) {
xer_ov = 0;
} else {
xer_so = 1;
xer_ov = 1;
}
}
void do_addco (void)
{
T2 = T0;
T0 += T1;
if (likely(T0 >= T2)) {
xer_ca = 0;
} else {
xer_ca = 1;
}
if (likely(!((T2 ^ T1 ^ (-1)) & (T2 ^ T0) & (1 << 31)))) {
xer_ov = 0;
} else {
xer_so = 1;
xer_ov = 1;
}
}
void do_adde (void)
{
T2 = T0;
T0 += T1 + xer_ca;
if (likely(!(T0 < T2 || (xer_ca == 1 && T0 == T2)))) {
xer_ca = 0;
} else {
xer_ca = 1;
}
}
void do_addeo (void)
{
T2 = T0;
T0 += T1 + xer_ca;
if (likely(!(T0 < T2 || (xer_ca == 1 && T0 == T2)))) {
xer_ca = 0;
} else {
xer_ca = 1;
}
if (likely(!((T2 ^ T1 ^ (-1)) & (T2 ^ T0) & (1 << 31)))) {
xer_ov = 0;
} else {
xer_so = 1;
xer_ov = 1;
}
}
void do_addmeo (void)
{
T1 = T0;
T0 += xer_ca + (-1);
if (likely(!(T1 & (T1 ^ T0) & (1 << 31)))) {
xer_ov = 0;
} else {
xer_so = 1;
xer_ov = 1;
}
if (likely(T1 != 0))
xer_ca = 1;
}
void do_addzeo (void)
{
T1 = T0;
T0 += xer_ca;
if (likely(!((T1 ^ (-1)) & (T1 ^ T0) & (1 << 31)))) {
xer_ov = 0;
} else {
xer_so = 1;
xer_ov = 1;
}
if (likely(T0 >= T1)) {
xer_ca = 0;
} else {
xer_ca = 1;
}
}
void do_divwo (void)
{
if (likely(!((Ts0 == INT32_MIN && Ts1 == -1) || Ts1 == 0))) {
xer_ov = 0;
T0 = (Ts0 / Ts1);
} else {
xer_so = 1;
xer_ov = 1;
T0 = (-1) * ((uint32_t)T0 >> 31);
}
}
void do_divwuo (void)
{
if (likely((uint32_t)T1 != 0)) {
xer_ov = 0;
T0 = (uint32_t)T0 / (uint32_t)T1;
} else {
xer_so = 1;
xer_ov = 1;
T0 = 0;
}
}
void do_mullwo (void)
{
int64_t res = (int64_t)Ts0 * (int64_t)Ts1;
if (likely((int32_t)res == res)) {
xer_ov = 0;
} else {
xer_ov = 1;
xer_so = 1;
}
T0 = (int32_t)res;
}
void do_nego (void)
{
if (likely(T0 != INT32_MIN)) {
xer_ov = 0;
T0 = -Ts0;
} else {
xer_ov = 1;
xer_so = 1;
}
}
void do_subfo (void)
{
T2 = T0;
T0 = T1 - T0;
if (likely(!(((~T2) ^ T1 ^ (-1)) & ((~T2) ^ T0) & (1 << 31)))) {
xer_ov = 0;
} else {
xer_so = 1;
xer_ov = 1;
}
RETURN();
}
void do_subfco (void)
{
T2 = T0;
T0 = T1 - T0;
if (likely(T0 > T1)) {
xer_ca = 0;
} else {
xer_ca = 1;
}
if (likely(!(((~T2) ^ T1 ^ (-1)) & ((~T2) ^ T0) & (1 << 31)))) {
xer_ov = 0;
} else {
xer_so = 1;
xer_ov = 1;
}
}
void do_subfe (void)
{
T0 = T1 + ~T0 + xer_ca;
if (likely(T0 >= T1 && (xer_ca == 0 || T0 != T1))) {
xer_ca = 0;
} else {
xer_ca = 1;
}
}
void do_subfeo (void)
{
T2 = T0;
T0 = T1 + ~T0 + xer_ca;
if (likely(!((~T2 ^ T1 ^ (-1)) & (~T2 ^ T0) & (1 << 31)))) {
xer_ov = 0;
} else {
xer_so = 1;
xer_ov = 1;
}
if (likely(T0 >= T1 && (xer_ca == 0 || T0 != T1))) {
xer_ca = 0;
} else {
xer_ca = 1;
}
}
void do_subfmeo (void)
{
T1 = T0;
T0 = ~T0 + xer_ca - 1;
if (likely(!(~T1 & (~T1 ^ T0) & (1 << 31)))) {
xer_ov = 0;
} else {
xer_so = 1;
xer_ov = 1;
}
if (likely(T1 != -1))
xer_ca = 1;
}
void do_subfzeo (void)
{
T1 = T0;
T0 = ~T0 + xer_ca;
if (likely(!((~T1 ^ (-1)) & ((~T1) ^ T0) & (1 << 31)))) {
xer_ov = 0;
} else {
xer_ov = 1;
xer_so = 1;
}
if (likely(T0 >= ~T1)) {
xer_ca = 0;
} else {
xer_ca = 1;
}
}
/* shift right arithmetic helper */
void do_sraw (void)
{
int32_t ret;
if (likely(!(T1 & 0x20UL))) {
if (likely(T1 != 0)) {
ret = (int32_t)T0 >> (T1 & 0x1fUL);
if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) {
xer_ca = 0;
} else {
xer_ca = 1;
}
} else {
ret = T0;
xer_ca = 0;
}
} else {
ret = (-1) * ((uint32_t)T0 >> 31);
if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) {
xer_ca = 0;
} else {
xer_ca = 1;
}
}
T0 = ret;
}
/*****************************************************************************/
/* Floating point operations helpers */
void do_fctiw (void)
{
union {
double d;
uint64_t i;
} p;
/* XXX: higher bits are not supposed to be significant.
* to make tests easier, return the same as a real PowerPC 750 (aka G3)
*/
p.i = float64_to_int32(FT0, &env->fp_status);
p.i |= 0xFFF80000ULL << 32;
FT0 = p.d;
}
void do_fctiwz (void)
{
union {
double d;
uint64_t i;
} p;
/* XXX: higher bits are not supposed to be significant.
* to make tests easier, return the same as a real PowerPC 750 (aka G3)
*/
p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status);
p.i |= 0xFFF80000ULL << 32;
FT0 = p.d;
}
void do_fnmadd (void)
{
FT0 = float64_mul(FT0, FT1, &env->fp_status);
FT0 = float64_add(FT0, FT2, &env->fp_status);
if (likely(!isnan(FT0)))
FT0 = float64_chs(FT0);
}
void do_fnmsub (void)
{
FT0 = float64_mul(FT0, FT1, &env->fp_status);
FT0 = float64_sub(FT0, FT2, &env->fp_status);
if (likely(!isnan(FT0)))
FT0 = float64_chs(FT0);
}
void do_fsqrt (void)
{
FT0 = float64_sqrt(FT0, &env->fp_status);
}
void do_fres (void)
{
union {
double d;
uint64_t i;
} p;
if (likely(isnormal(FT0))) {
FT0 = (float)(1.0 / FT0);
} else {
p.d = FT0;
if (p.i == 0x8000000000000000ULL) {
p.i = 0xFFF0000000000000ULL;
} else if (p.i == 0x0000000000000000ULL) {
p.i = 0x7FF0000000000000ULL;
} else if (isnan(FT0)) {
p.i = 0x7FF8000000000000ULL;
} else if (FT0 < 0.0) {
p.i = 0x8000000000000000ULL;
} else {
p.i = 0x0000000000000000ULL;
}
FT0 = p.d;
}
}
void do_frsqrte (void)
{
union {
double d;
uint64_t i;
} p;
if (likely(isnormal(FT0) && FT0 > 0.0)) {
FT0 = float64_sqrt(FT0, &env->fp_status);
FT0 = float32_div(1.0, FT0, &env->fp_status);
} else {
p.d = FT0;
if (p.i == 0x8000000000000000ULL) {
p.i = 0xFFF0000000000000ULL;
} else if (p.i == 0x0000000000000000ULL) {
p.i = 0x7FF0000000000000ULL;
} else if (isnan(FT0)) {
if (!(p.i & 0x0008000000000000ULL))
p.i |= 0x000FFFFFFFFFFFFFULL;
} else if (FT0 < 0) {
p.i = 0x7FF8000000000000ULL;
} else {
p.i = 0x0000000000000000ULL;
}
FT0 = p.d;
}
}
void do_fsel (void)
{
if (FT0 >= 0)
FT0 = FT1;
else
FT0 = FT2;
}
void do_fcmpu (void)
{
if (likely(!isnan(FT0) && !isnan(FT1))) {
if (float64_lt(FT0, FT1, &env->fp_status)) {
T0 = 0x08UL;
} else if (!float64_le(FT0, FT1, &env->fp_status)) {
T0 = 0x04UL;
} else {
T0 = 0x02UL;
}
} else {
T0 = 0x01UL;
env->fpscr[4] |= 0x1;
env->fpscr[6] |= 0x1;
}
env->fpscr[3] = T0;
}
void do_fcmpo (void)
{
env->fpscr[4] &= ~0x1;
if (likely(!isnan(FT0) && !isnan(FT1))) {
if (float64_lt(FT0, FT1, &env->fp_status)) {
T0 = 0x08UL;
} else if (!float64_le(FT0, FT1, &env->fp_status)) {
T0 = 0x04UL;
} else {
T0 = 0x02UL;
}
} else {
T0 = 0x01UL;
env->fpscr[4] |= 0x1;
/* I don't know how to test "quiet" nan... */
if (0 /* || ! quiet_nan(...) */) {
env->fpscr[6] |= 0x1;
if (!(env->fpscr[1] & 0x8))
env->fpscr[4] |= 0x8;
} else {
env->fpscr[4] |= 0x8;
}
}
env->fpscr[3] = T0;
}
void do_rfi (void)
{
env->nip = env->spr[SPR_SRR0] & ~0x00000003;
T0 = env->spr[SPR_SRR1] & ~0xFFFF0000UL;
do_store_msr(env, T0);
#if defined (DEBUG_OP)
dump_rfi();
#endif
env->interrupt_request |= CPU_INTERRUPT_EXITTB;
}
void do_tw (uint32_t cmp, int flags)
{
if (!likely(!((Ts0 < (int32_t)cmp && (flags & 0x10)) ||
(Ts0 > (int32_t)cmp && (flags & 0x08)) ||
(Ts0 == (int32_t)cmp && (flags & 0x04)) ||
(T0 < cmp && (flags & 0x02)) ||
(T0 > cmp && (flags & 0x01)))))
do_raise_exception_err(EXCP_PROGRAM, EXCP_TRAP);
}
/* Instruction cache invalidation helper */
void do_icbi (void)
{
uint32_t tmp;
/* Invalidate one cache line :
* PowerPC specification says this is to be treated like a load
* (not a fetch) by the MMU. To be sure it will be so,
* do the load "by hand".
*/
#if defined(TARGET_PPC64)
if (!msr_sf)
T0 &= 0xFFFFFFFFULL;
#endif
tmp = ldl_kernel(T0);
T0 &= ~(ICACHE_LINE_SIZE - 1);
tb_invalidate_page_range(T0, T0 + ICACHE_LINE_SIZE);
}
/*****************************************************************************/
/* MMU related helpers */
/* TLB invalidation helpers */
void do_tlbia (void)
{
tlb_flush(env, 1);
}
void do_tlbie (void)
{
#if !defined(FLUSH_ALL_TLBS)
tlb_flush_page(env, T0);
#else
do_tlbia();
#endif
}
/*****************************************************************************/
/* Softmmu support */
#if !defined (CONFIG_USER_ONLY)
#define MMUSUFFIX _mmu
#define GETPC() (__builtin_return_address(0))
#define SHIFT 0
#include "softmmu_template.h"
#define SHIFT 1
#include "softmmu_template.h"
#define SHIFT 2
#include "softmmu_template.h"
#define SHIFT 3
#include "softmmu_template.h"
/* try to fill the TLB and return an exception if error. If retaddr is
NULL, it means that the function was called in C code (i.e. not
from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
void tlb_fill (target_ulong addr, int is_write, int is_user, void *retaddr)
{
TranslationBlock *tb;
CPUState *saved_env;
target_phys_addr_t pc;
int ret;
/* XXX: hack to restore env in all cases, even if not called from
generated code */
saved_env = env;
env = cpu_single_env;
ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, is_user, 1);
if (!likely(ret == 0)) {
if (likely(retaddr)) {
/* now we have a real cpu fault */
pc = (target_phys_addr_t)retaddr;
tb = tb_find_pc(pc);
if (likely(tb)) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
cpu_restore_state(tb, env, pc, NULL);
}
}
do_raise_exception_err(env->exception_index, env->error_code);
}
env = saved_env;
}
#endif /* !CONFIG_USER_ONLY */