qemu-e2k/exec.c
bellard 83fb7adf6c Darwin patch (initial patch by Pierre d'Herbemont)
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@980 c046a42c-6fe2-441c-8c8c-71466251a162
2004-07-05 21:25:26 +00:00

2113 lines
62 KiB
C

/*
* virtual page mapping and translated block handling
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <inttypes.h>
#if !defined(CONFIG_SOFTMMU)
#include <sys/mman.h>
#endif
#include "cpu.h"
#include "exec-all.h"
//#define DEBUG_TB_INVALIDATE
//#define DEBUG_FLUSH
//#define DEBUG_TLB
/* make various TB consistency checks */
//#define DEBUG_TB_CHECK
//#define DEBUG_TLB_CHECK
/* threshold to flush the translated code buffer */
#define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - CODE_GEN_MAX_SIZE)
#define SMC_BITMAP_USE_THRESHOLD 10
#define MMAP_AREA_START 0x00000000
#define MMAP_AREA_END 0xa8000000
TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
TranslationBlock *tb_hash[CODE_GEN_HASH_SIZE];
TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
int nb_tbs;
/* any access to the tbs or the page table must use this lock */
spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
uint8_t *code_gen_ptr;
int phys_ram_size;
int phys_ram_fd;
uint8_t *phys_ram_base;
uint8_t *phys_ram_dirty;
typedef struct PageDesc {
/* list of TBs intersecting this ram page */
TranslationBlock *first_tb;
/* in order to optimize self modifying code, we count the number
of lookups we do to a given page to use a bitmap */
unsigned int code_write_count;
uint8_t *code_bitmap;
#if defined(CONFIG_USER_ONLY)
unsigned long flags;
#endif
} PageDesc;
typedef struct PhysPageDesc {
/* offset in host memory of the page + io_index in the low 12 bits */
unsigned long phys_offset;
} PhysPageDesc;
typedef struct VirtPageDesc {
/* physical address of code page. It is valid only if 'valid_tag'
matches 'virt_valid_tag' */
target_ulong phys_addr;
unsigned int valid_tag;
#if !defined(CONFIG_SOFTMMU)
/* original page access rights. It is valid only if 'valid_tag'
matches 'virt_valid_tag' */
unsigned int prot;
#endif
} VirtPageDesc;
#define L2_BITS 10
#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
#define L1_SIZE (1 << L1_BITS)
#define L2_SIZE (1 << L2_BITS)
static void io_mem_init(void);
unsigned long qemu_real_host_page_size;
unsigned long qemu_host_page_bits;
unsigned long qemu_host_page_size;
unsigned long qemu_host_page_mask;
/* XXX: for system emulation, it could just be an array */
static PageDesc *l1_map[L1_SIZE];
static PhysPageDesc *l1_phys_map[L1_SIZE];
#if !defined(CONFIG_USER_ONLY)
static VirtPageDesc *l1_virt_map[L1_SIZE];
static unsigned int virt_valid_tag;
#endif
/* io memory support */
CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
void *io_mem_opaque[IO_MEM_NB_ENTRIES];
static int io_mem_nb;
/* log support */
char *logfilename = "/tmp/qemu.log";
FILE *logfile;
int loglevel;
static void page_init(void)
{
/* NOTE: we can always suppose that qemu_host_page_size >=
TARGET_PAGE_SIZE */
#ifdef _WIN32
qemu_real_host_page_size = 4096;
#else
qemu_real_host_page_size = getpagesize();
#endif
if (qemu_host_page_size == 0)
qemu_host_page_size = qemu_real_host_page_size;
if (qemu_host_page_size < TARGET_PAGE_SIZE)
qemu_host_page_size = TARGET_PAGE_SIZE;
qemu_host_page_bits = 0;
while ((1 << qemu_host_page_bits) < qemu_host_page_size)
qemu_host_page_bits++;
qemu_host_page_mask = ~(qemu_host_page_size - 1);
#if !defined(CONFIG_USER_ONLY)
virt_valid_tag = 1;
#endif
}
static inline PageDesc *page_find_alloc(unsigned int index)
{
PageDesc **lp, *p;
lp = &l1_map[index >> L2_BITS];
p = *lp;
if (!p) {
/* allocate if not found */
p = qemu_malloc(sizeof(PageDesc) * L2_SIZE);
memset(p, 0, sizeof(PageDesc) * L2_SIZE);
*lp = p;
}
return p + (index & (L2_SIZE - 1));
}
static inline PageDesc *page_find(unsigned int index)
{
PageDesc *p;
p = l1_map[index >> L2_BITS];
if (!p)
return 0;
return p + (index & (L2_SIZE - 1));
}
static inline PhysPageDesc *phys_page_find_alloc(unsigned int index)
{
PhysPageDesc **lp, *p;
lp = &l1_phys_map[index >> L2_BITS];
p = *lp;
if (!p) {
/* allocate if not found */
p = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
memset(p, 0, sizeof(PhysPageDesc) * L2_SIZE);
*lp = p;
}
return p + (index & (L2_SIZE - 1));
}
static inline PhysPageDesc *phys_page_find(unsigned int index)
{
PhysPageDesc *p;
p = l1_phys_map[index >> L2_BITS];
if (!p)
return 0;
return p + (index & (L2_SIZE - 1));
}
#if !defined(CONFIG_USER_ONLY)
static void tlb_protect_code(CPUState *env, target_ulong addr);
static void tlb_unprotect_code_phys(CPUState *env, unsigned long phys_addr, target_ulong vaddr);
static inline VirtPageDesc *virt_page_find_alloc(unsigned int index)
{
VirtPageDesc **lp, *p;
lp = &l1_virt_map[index >> L2_BITS];
p = *lp;
if (!p) {
/* allocate if not found */
p = qemu_malloc(sizeof(VirtPageDesc) * L2_SIZE);
memset(p, 0, sizeof(VirtPageDesc) * L2_SIZE);
*lp = p;
}
return p + (index & (L2_SIZE - 1));
}
static inline VirtPageDesc *virt_page_find(unsigned int index)
{
VirtPageDesc *p;
p = l1_virt_map[index >> L2_BITS];
if (!p)
return 0;
return p + (index & (L2_SIZE - 1));
}
static void virt_page_flush(void)
{
int i, j;
VirtPageDesc *p;
virt_valid_tag++;
if (virt_valid_tag == 0) {
virt_valid_tag = 1;
for(i = 0; i < L1_SIZE; i++) {
p = l1_virt_map[i];
if (p) {
for(j = 0; j < L2_SIZE; j++)
p[j].valid_tag = 0;
}
}
}
}
#else
static void virt_page_flush(void)
{
}
#endif
void cpu_exec_init(void)
{
if (!code_gen_ptr) {
code_gen_ptr = code_gen_buffer;
page_init();
io_mem_init();
}
}
static inline void invalidate_page_bitmap(PageDesc *p)
{
if (p->code_bitmap) {
qemu_free(p->code_bitmap);
p->code_bitmap = NULL;
}
p->code_write_count = 0;
}
/* set to NULL all the 'first_tb' fields in all PageDescs */
static void page_flush_tb(void)
{
int i, j;
PageDesc *p;
for(i = 0; i < L1_SIZE; i++) {
p = l1_map[i];
if (p) {
for(j = 0; j < L2_SIZE; j++) {
p->first_tb = NULL;
invalidate_page_bitmap(p);
p++;
}
}
}
}
/* flush all the translation blocks */
/* XXX: tb_flush is currently not thread safe */
void tb_flush(CPUState *env)
{
int i;
#if defined(DEBUG_FLUSH)
printf("qemu: flush code_size=%d nb_tbs=%d avg_tb_size=%d\n",
code_gen_ptr - code_gen_buffer,
nb_tbs,
nb_tbs > 0 ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0);
#endif
nb_tbs = 0;
for(i = 0;i < CODE_GEN_HASH_SIZE; i++)
tb_hash[i] = NULL;
virt_page_flush();
for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++)
tb_phys_hash[i] = NULL;
page_flush_tb();
code_gen_ptr = code_gen_buffer;
/* XXX: flush processor icache at this point if cache flush is
expensive */
}
#ifdef DEBUG_TB_CHECK
static void tb_invalidate_check(unsigned long address)
{
TranslationBlock *tb;
int i;
address &= TARGET_PAGE_MASK;
for(i = 0;i < CODE_GEN_HASH_SIZE; i++) {
for(tb = tb_hash[i]; tb != NULL; tb = tb->hash_next) {
if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
address >= tb->pc + tb->size)) {
printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
address, tb->pc, tb->size);
}
}
}
}
/* verify that all the pages have correct rights for code */
static void tb_page_check(void)
{
TranslationBlock *tb;
int i, flags1, flags2;
for(i = 0;i < CODE_GEN_HASH_SIZE; i++) {
for(tb = tb_hash[i]; tb != NULL; tb = tb->hash_next) {
flags1 = page_get_flags(tb->pc);
flags2 = page_get_flags(tb->pc + tb->size - 1);
if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
tb->pc, tb->size, flags1, flags2);
}
}
}
}
void tb_jmp_check(TranslationBlock *tb)
{
TranslationBlock *tb1;
unsigned int n1;
/* suppress any remaining jumps to this TB */
tb1 = tb->jmp_first;
for(;;) {
n1 = (long)tb1 & 3;
tb1 = (TranslationBlock *)((long)tb1 & ~3);
if (n1 == 2)
break;
tb1 = tb1->jmp_next[n1];
}
/* check end of list */
if (tb1 != tb) {
printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
}
}
#endif
/* invalidate one TB */
static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
int next_offset)
{
TranslationBlock *tb1;
for(;;) {
tb1 = *ptb;
if (tb1 == tb) {
*ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
break;
}
ptb = (TranslationBlock **)((char *)tb1 + next_offset);
}
}
static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
{
TranslationBlock *tb1;
unsigned int n1;
for(;;) {
tb1 = *ptb;
n1 = (long)tb1 & 3;
tb1 = (TranslationBlock *)((long)tb1 & ~3);
if (tb1 == tb) {
*ptb = tb1->page_next[n1];
break;
}
ptb = &tb1->page_next[n1];
}
}
static inline void tb_jmp_remove(TranslationBlock *tb, int n)
{
TranslationBlock *tb1, **ptb;
unsigned int n1;
ptb = &tb->jmp_next[n];
tb1 = *ptb;
if (tb1) {
/* find tb(n) in circular list */
for(;;) {
tb1 = *ptb;
n1 = (long)tb1 & 3;
tb1 = (TranslationBlock *)((long)tb1 & ~3);
if (n1 == n && tb1 == tb)
break;
if (n1 == 2) {
ptb = &tb1->jmp_first;
} else {
ptb = &tb1->jmp_next[n1];
}
}
/* now we can suppress tb(n) from the list */
*ptb = tb->jmp_next[n];
tb->jmp_next[n] = NULL;
}
}
/* reset the jump entry 'n' of a TB so that it is not chained to
another TB */
static inline void tb_reset_jump(TranslationBlock *tb, int n)
{
tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
}
static inline void tb_invalidate(TranslationBlock *tb)
{
unsigned int h, n1;
TranslationBlock *tb1, *tb2, **ptb;
tb_invalidated_flag = 1;
/* remove the TB from the hash list */
h = tb_hash_func(tb->pc);
ptb = &tb_hash[h];
for(;;) {
tb1 = *ptb;
/* NOTE: the TB is not necessarily linked in the hash. It
indicates that it is not currently used */
if (tb1 == NULL)
return;
if (tb1 == tb) {
*ptb = tb1->hash_next;
break;
}
ptb = &tb1->hash_next;
}
/* suppress this TB from the two jump lists */
tb_jmp_remove(tb, 0);
tb_jmp_remove(tb, 1);
/* suppress any remaining jumps to this TB */
tb1 = tb->jmp_first;
for(;;) {
n1 = (long)tb1 & 3;
if (n1 == 2)
break;
tb1 = (TranslationBlock *)((long)tb1 & ~3);
tb2 = tb1->jmp_next[n1];
tb_reset_jump(tb1, n1);
tb1->jmp_next[n1] = NULL;
tb1 = tb2;
}
tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
}
static inline void tb_phys_invalidate(TranslationBlock *tb, unsigned int page_addr)
{
PageDesc *p;
unsigned int h;
target_ulong phys_pc;
/* remove the TB from the hash list */
phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
h = tb_phys_hash_func(phys_pc);
tb_remove(&tb_phys_hash[h], tb,
offsetof(TranslationBlock, phys_hash_next));
/* remove the TB from the page list */
if (tb->page_addr[0] != page_addr) {
p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
tb_page_remove(&p->first_tb, tb);
invalidate_page_bitmap(p);
}
if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
tb_page_remove(&p->first_tb, tb);
invalidate_page_bitmap(p);
}
tb_invalidate(tb);
}
static inline void set_bits(uint8_t *tab, int start, int len)
{
int end, mask, end1;
end = start + len;
tab += start >> 3;
mask = 0xff << (start & 7);
if ((start & ~7) == (end & ~7)) {
if (start < end) {
mask &= ~(0xff << (end & 7));
*tab |= mask;
}
} else {
*tab++ |= mask;
start = (start + 8) & ~7;
end1 = end & ~7;
while (start < end1) {
*tab++ = 0xff;
start += 8;
}
if (start < end) {
mask = ~(0xff << (end & 7));
*tab |= mask;
}
}
}
static void build_page_bitmap(PageDesc *p)
{
int n, tb_start, tb_end;
TranslationBlock *tb;
p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
if (!p->code_bitmap)
return;
memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);
tb = p->first_tb;
while (tb != NULL) {
n = (long)tb & 3;
tb = (TranslationBlock *)((long)tb & ~3);
/* NOTE: this is subtle as a TB may span two physical pages */
if (n == 0) {
/* NOTE: tb_end may be after the end of the page, but
it is not a problem */
tb_start = tb->pc & ~TARGET_PAGE_MASK;
tb_end = tb_start + tb->size;
if (tb_end > TARGET_PAGE_SIZE)
tb_end = TARGET_PAGE_SIZE;
} else {
tb_start = 0;
tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
}
set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
tb = tb->page_next[n];
}
}
#ifdef TARGET_HAS_PRECISE_SMC
static void tb_gen_code(CPUState *env,
target_ulong pc, target_ulong cs_base, int flags,
int cflags)
{
TranslationBlock *tb;
uint8_t *tc_ptr;
target_ulong phys_pc, phys_page2, virt_page2;
int code_gen_size;
phys_pc = get_phys_addr_code(env, (unsigned long)pc);
tb = tb_alloc((unsigned long)pc);
if (!tb) {
/* flush must be done */
tb_flush(env);
/* cannot fail at this point */
tb = tb_alloc((unsigned long)pc);
}
tc_ptr = code_gen_ptr;
tb->tc_ptr = tc_ptr;
tb->cs_base = cs_base;
tb->flags = flags;
tb->cflags = cflags;
cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
/* check next page if needed */
virt_page2 = ((unsigned long)pc + tb->size - 1) & TARGET_PAGE_MASK;
phys_page2 = -1;
if (((unsigned long)pc & TARGET_PAGE_MASK) != virt_page2) {
phys_page2 = get_phys_addr_code(env, virt_page2);
}
tb_link_phys(tb, phys_pc, phys_page2);
}
#endif
/* invalidate all TBs which intersect with the target physical page
starting in range [start;end[. NOTE: start and end must refer to
the same physical page. 'is_cpu_write_access' should be true if called
from a real cpu write access: the virtual CPU will exit the current
TB if code is modified inside this TB. */
void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
int is_cpu_write_access)
{
int n, current_tb_modified, current_tb_not_found, current_flags;
CPUState *env = cpu_single_env;
PageDesc *p;
TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
target_ulong tb_start, tb_end;
target_ulong current_pc, current_cs_base;
p = page_find(start >> TARGET_PAGE_BITS);
if (!p)
return;
if (!p->code_bitmap &&
++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
is_cpu_write_access) {
/* build code bitmap */
build_page_bitmap(p);
}
/* we remove all the TBs in the range [start, end[ */
/* XXX: see if in some cases it could be faster to invalidate all the code */
current_tb_not_found = is_cpu_write_access;
current_tb_modified = 0;
current_tb = NULL; /* avoid warning */
current_pc = 0; /* avoid warning */
current_cs_base = 0; /* avoid warning */
current_flags = 0; /* avoid warning */
tb = p->first_tb;
while (tb != NULL) {
n = (long)tb & 3;
tb = (TranslationBlock *)((long)tb & ~3);
tb_next = tb->page_next[n];
/* NOTE: this is subtle as a TB may span two physical pages */
if (n == 0) {
/* NOTE: tb_end may be after the end of the page, but
it is not a problem */
tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
tb_end = tb_start + tb->size;
} else {
tb_start = tb->page_addr[1];
tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
}
if (!(tb_end <= start || tb_start >= end)) {
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb_not_found) {
current_tb_not_found = 0;
current_tb = NULL;
if (env->mem_write_pc) {
/* now we have a real cpu fault */
current_tb = tb_find_pc(env->mem_write_pc);
}
}
if (current_tb == tb &&
!(current_tb->cflags & CF_SINGLE_INSN)) {
/* If we are modifying the current TB, we must stop
its execution. We could be more precise by checking
that the modification is after the current PC, but it
would require a specialized function to partially
restore the CPU state */
current_tb_modified = 1;
cpu_restore_state(current_tb, env,
env->mem_write_pc, NULL);
#if defined(TARGET_I386)
current_flags = env->hflags;
current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
current_cs_base = (target_ulong)env->segs[R_CS].base;
current_pc = current_cs_base + env->eip;
#else
#error unsupported CPU
#endif
}
#endif /* TARGET_HAS_PRECISE_SMC */
saved_tb = env->current_tb;
env->current_tb = NULL;
tb_phys_invalidate(tb, -1);
env->current_tb = saved_tb;
if (env->interrupt_request && env->current_tb)
cpu_interrupt(env, env->interrupt_request);
}
tb = tb_next;
}
#if !defined(CONFIG_USER_ONLY)
/* if no code remaining, no need to continue to use slow writes */
if (!p->first_tb) {
invalidate_page_bitmap(p);
if (is_cpu_write_access) {
tlb_unprotect_code_phys(env, start, env->mem_write_vaddr);
}
}
#endif
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb_modified) {
/* we generate a block containing just the instruction
modifying the memory. It will ensure that it cannot modify
itself */
env->current_tb = NULL;
tb_gen_code(env, current_pc, current_cs_base, current_flags,
CF_SINGLE_INSN);
cpu_resume_from_signal(env, NULL);
}
#endif
}
/* len must be <= 8 and start must be a multiple of len */
static inline void tb_invalidate_phys_page_fast(target_ulong start, int len)
{
PageDesc *p;
int offset, b;
#if 0
if (1) {
if (loglevel) {
fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
cpu_single_env->mem_write_vaddr, len,
cpu_single_env->eip,
cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
}
}
#endif
p = page_find(start >> TARGET_PAGE_BITS);
if (!p)
return;
if (p->code_bitmap) {
offset = start & ~TARGET_PAGE_MASK;
b = p->code_bitmap[offset >> 3] >> (offset & 7);
if (b & ((1 << len) - 1))
goto do_invalidate;
} else {
do_invalidate:
tb_invalidate_phys_page_range(start, start + len, 1);
}
}
#if !defined(CONFIG_SOFTMMU)
static void tb_invalidate_phys_page(target_ulong addr,
unsigned long pc, void *puc)
{
int n, current_flags, current_tb_modified;
target_ulong current_pc, current_cs_base;
PageDesc *p;
TranslationBlock *tb, *current_tb;
#ifdef TARGET_HAS_PRECISE_SMC
CPUState *env = cpu_single_env;
#endif
addr &= TARGET_PAGE_MASK;
p = page_find(addr >> TARGET_PAGE_BITS);
if (!p)
return;
tb = p->first_tb;
current_tb_modified = 0;
current_tb = NULL;
current_pc = 0; /* avoid warning */
current_cs_base = 0; /* avoid warning */
current_flags = 0; /* avoid warning */
#ifdef TARGET_HAS_PRECISE_SMC
if (tb && pc != 0) {
current_tb = tb_find_pc(pc);
}
#endif
while (tb != NULL) {
n = (long)tb & 3;
tb = (TranslationBlock *)((long)tb & ~3);
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb == tb &&
!(current_tb->cflags & CF_SINGLE_INSN)) {
/* If we are modifying the current TB, we must stop
its execution. We could be more precise by checking
that the modification is after the current PC, but it
would require a specialized function to partially
restore the CPU state */
current_tb_modified = 1;
cpu_restore_state(current_tb, env, pc, puc);
#if defined(TARGET_I386)
current_flags = env->hflags;
current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
current_cs_base = (target_ulong)env->segs[R_CS].base;
current_pc = current_cs_base + env->eip;
#else
#error unsupported CPU
#endif
}
#endif /* TARGET_HAS_PRECISE_SMC */
tb_phys_invalidate(tb, addr);
tb = tb->page_next[n];
}
p->first_tb = NULL;
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb_modified) {
/* we generate a block containing just the instruction
modifying the memory. It will ensure that it cannot modify
itself */
env->current_tb = NULL;
tb_gen_code(env, current_pc, current_cs_base, current_flags,
CF_SINGLE_INSN);
cpu_resume_from_signal(env, puc);
}
#endif
}
#endif
/* add the tb in the target page and protect it if necessary */
static inline void tb_alloc_page(TranslationBlock *tb,
unsigned int n, unsigned int page_addr)
{
PageDesc *p;
TranslationBlock *last_first_tb;
tb->page_addr[n] = page_addr;
p = page_find(page_addr >> TARGET_PAGE_BITS);
tb->page_next[n] = p->first_tb;
last_first_tb = p->first_tb;
p->first_tb = (TranslationBlock *)((long)tb | n);
invalidate_page_bitmap(p);
#if defined(TARGET_HAS_SMC) || 1
#if defined(CONFIG_USER_ONLY)
if (p->flags & PAGE_WRITE) {
unsigned long host_start, host_end, addr;
int prot;
/* force the host page as non writable (writes will have a
page fault + mprotect overhead) */
host_start = page_addr & qemu_host_page_mask;
host_end = host_start + qemu_host_page_size;
prot = 0;
for(addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE)
prot |= page_get_flags(addr);
mprotect((void *)host_start, qemu_host_page_size,
(prot & PAGE_BITS) & ~PAGE_WRITE);
#ifdef DEBUG_TB_INVALIDATE
printf("protecting code page: 0x%08lx\n",
host_start);
#endif
p->flags &= ~PAGE_WRITE;
}
#else
/* if some code is already present, then the pages are already
protected. So we handle the case where only the first TB is
allocated in a physical page */
if (!last_first_tb) {
target_ulong virt_addr;
virt_addr = (tb->pc & TARGET_PAGE_MASK) + (n << TARGET_PAGE_BITS);
tlb_protect_code(cpu_single_env, virt_addr);
}
#endif
#endif /* TARGET_HAS_SMC */
}
/* Allocate a new translation block. Flush the translation buffer if
too many translation blocks or too much generated code. */
TranslationBlock *tb_alloc(unsigned long pc)
{
TranslationBlock *tb;
if (nb_tbs >= CODE_GEN_MAX_BLOCKS ||
(code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
return NULL;
tb = &tbs[nb_tbs++];
tb->pc = pc;
tb->cflags = 0;
return tb;
}
/* add a new TB and link it to the physical page tables. phys_page2 is
(-1) to indicate that only one page contains the TB. */
void tb_link_phys(TranslationBlock *tb,
target_ulong phys_pc, target_ulong phys_page2)
{
unsigned int h;
TranslationBlock **ptb;
/* add in the physical hash table */
h = tb_phys_hash_func(phys_pc);
ptb = &tb_phys_hash[h];
tb->phys_hash_next = *ptb;
*ptb = tb;
/* add in the page list */
tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
if (phys_page2 != -1)
tb_alloc_page(tb, 1, phys_page2);
else
tb->page_addr[1] = -1;
#ifdef DEBUG_TB_CHECK
tb_page_check();
#endif
}
/* link the tb with the other TBs */
void tb_link(TranslationBlock *tb)
{
#if !defined(CONFIG_USER_ONLY)
{
VirtPageDesc *vp;
target_ulong addr;
/* save the code memory mappings (needed to invalidate the code) */
addr = tb->pc & TARGET_PAGE_MASK;
vp = virt_page_find_alloc(addr >> TARGET_PAGE_BITS);
#ifdef DEBUG_TLB_CHECK
if (vp->valid_tag == virt_valid_tag &&
vp->phys_addr != tb->page_addr[0]) {
printf("Error tb addr=0x%x phys=0x%x vp->phys_addr=0x%x\n",
addr, tb->page_addr[0], vp->phys_addr);
}
#endif
vp->phys_addr = tb->page_addr[0];
if (vp->valid_tag != virt_valid_tag) {
vp->valid_tag = virt_valid_tag;
#if !defined(CONFIG_SOFTMMU)
vp->prot = 0;
#endif
}
if (tb->page_addr[1] != -1) {
addr += TARGET_PAGE_SIZE;
vp = virt_page_find_alloc(addr >> TARGET_PAGE_BITS);
#ifdef DEBUG_TLB_CHECK
if (vp->valid_tag == virt_valid_tag &&
vp->phys_addr != tb->page_addr[1]) {
printf("Error tb addr=0x%x phys=0x%x vp->phys_addr=0x%x\n",
addr, tb->page_addr[1], vp->phys_addr);
}
#endif
vp->phys_addr = tb->page_addr[1];
if (vp->valid_tag != virt_valid_tag) {
vp->valid_tag = virt_valid_tag;
#if !defined(CONFIG_SOFTMMU)
vp->prot = 0;
#endif
}
}
}
#endif
tb->jmp_first = (TranslationBlock *)((long)tb | 2);
tb->jmp_next[0] = NULL;
tb->jmp_next[1] = NULL;
#ifdef USE_CODE_COPY
tb->cflags &= ~CF_FP_USED;
if (tb->cflags & CF_TB_FP_USED)
tb->cflags |= CF_FP_USED;
#endif
/* init original jump addresses */
if (tb->tb_next_offset[0] != 0xffff)
tb_reset_jump(tb, 0);
if (tb->tb_next_offset[1] != 0xffff)
tb_reset_jump(tb, 1);
}
/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
tb[1].tc_ptr. Return NULL if not found */
TranslationBlock *tb_find_pc(unsigned long tc_ptr)
{
int m_min, m_max, m;
unsigned long v;
TranslationBlock *tb;
if (nb_tbs <= 0)
return NULL;
if (tc_ptr < (unsigned long)code_gen_buffer ||
tc_ptr >= (unsigned long)code_gen_ptr)
return NULL;
/* binary search (cf Knuth) */
m_min = 0;
m_max = nb_tbs - 1;
while (m_min <= m_max) {
m = (m_min + m_max) >> 1;
tb = &tbs[m];
v = (unsigned long)tb->tc_ptr;
if (v == tc_ptr)
return tb;
else if (tc_ptr < v) {
m_max = m - 1;
} else {
m_min = m + 1;
}
}
return &tbs[m_max];
}
static void tb_reset_jump_recursive(TranslationBlock *tb);
static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
{
TranslationBlock *tb1, *tb_next, **ptb;
unsigned int n1;
tb1 = tb->jmp_next[n];
if (tb1 != NULL) {
/* find head of list */
for(;;) {
n1 = (long)tb1 & 3;
tb1 = (TranslationBlock *)((long)tb1 & ~3);
if (n1 == 2)
break;
tb1 = tb1->jmp_next[n1];
}
/* we are now sure now that tb jumps to tb1 */
tb_next = tb1;
/* remove tb from the jmp_first list */
ptb = &tb_next->jmp_first;
for(;;) {
tb1 = *ptb;
n1 = (long)tb1 & 3;
tb1 = (TranslationBlock *)((long)tb1 & ~3);
if (n1 == n && tb1 == tb)
break;
ptb = &tb1->jmp_next[n1];
}
*ptb = tb->jmp_next[n];
tb->jmp_next[n] = NULL;
/* suppress the jump to next tb in generated code */
tb_reset_jump(tb, n);
/* suppress jumps in the tb on which we could have jumped */
tb_reset_jump_recursive(tb_next);
}
}
static void tb_reset_jump_recursive(TranslationBlock *tb)
{
tb_reset_jump_recursive2(tb, 0);
tb_reset_jump_recursive2(tb, 1);
}
static void breakpoint_invalidate(CPUState *env, target_ulong pc)
{
target_ulong phys_addr;
phys_addr = cpu_get_phys_page_debug(env, pc);
tb_invalidate_phys_page_range(phys_addr, phys_addr + 1, 0);
}
/* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
breakpoint is reached */
int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
{
#if defined(TARGET_I386) || defined(TARGET_PPC)
int i;
for(i = 0; i < env->nb_breakpoints; i++) {
if (env->breakpoints[i] == pc)
return 0;
}
if (env->nb_breakpoints >= MAX_BREAKPOINTS)
return -1;
env->breakpoints[env->nb_breakpoints++] = pc;
breakpoint_invalidate(env, pc);
return 0;
#else
return -1;
#endif
}
/* remove a breakpoint */
int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
{
#if defined(TARGET_I386) || defined(TARGET_PPC)
int i;
for(i = 0; i < env->nb_breakpoints; i++) {
if (env->breakpoints[i] == pc)
goto found;
}
return -1;
found:
memmove(&env->breakpoints[i], &env->breakpoints[i + 1],
(env->nb_breakpoints - (i + 1)) * sizeof(env->breakpoints[0]));
env->nb_breakpoints--;
breakpoint_invalidate(env, pc);
return 0;
#else
return -1;
#endif
}
/* enable or disable single step mode. EXCP_DEBUG is returned by the
CPU loop after each instruction */
void cpu_single_step(CPUState *env, int enabled)
{
#if defined(TARGET_I386) || defined(TARGET_PPC)
if (env->singlestep_enabled != enabled) {
env->singlestep_enabled = enabled;
/* must flush all the translated code to avoid inconsistancies */
/* XXX: only flush what is necessary */
tb_flush(env);
}
#endif
}
/* enable or disable low levels log */
void cpu_set_log(int log_flags)
{
loglevel = log_flags;
if (loglevel && !logfile) {
logfile = fopen(logfilename, "w");
if (!logfile) {
perror(logfilename);
_exit(1);
}
#if !defined(CONFIG_SOFTMMU)
/* must avoid mmap() usage of glibc by setting a buffer "by hand" */
{
static uint8_t logfile_buf[4096];
setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
}
#else
setvbuf(logfile, NULL, _IOLBF, 0);
#endif
}
}
void cpu_set_log_filename(const char *filename)
{
logfilename = strdup(filename);
}
/* mask must never be zero, except for A20 change call */
void cpu_interrupt(CPUState *env, int mask)
{
TranslationBlock *tb;
static int interrupt_lock;
env->interrupt_request |= mask;
/* if the cpu is currently executing code, we must unlink it and
all the potentially executing TB */
tb = env->current_tb;
if (tb && !testandset(&interrupt_lock)) {
env->current_tb = NULL;
tb_reset_jump_recursive(tb);
interrupt_lock = 0;
}
}
void cpu_reset_interrupt(CPUState *env, int mask)
{
env->interrupt_request &= ~mask;
}
CPULogItem cpu_log_items[] = {
{ CPU_LOG_TB_OUT_ASM, "out_asm",
"show generated host assembly code for each compiled TB" },
{ CPU_LOG_TB_IN_ASM, "in_asm",
"show target assembly code for each compiled TB" },
{ CPU_LOG_TB_OP, "op",
"show micro ops for each compiled TB (only usable if 'in_asm' used)" },
#ifdef TARGET_I386
{ CPU_LOG_TB_OP_OPT, "op_opt",
"show micro ops after optimization for each compiled TB" },
#endif
{ CPU_LOG_INT, "int",
"show interrupts/exceptions in short format" },
{ CPU_LOG_EXEC, "exec",
"show trace before each executed TB (lots of logs)" },
{ CPU_LOG_TB_CPU, "cpu",
"show CPU state before bloc translation" },
#ifdef TARGET_I386
{ CPU_LOG_PCALL, "pcall",
"show protected mode far calls/returns/exceptions" },
#endif
{ CPU_LOG_IOPORT, "ioport",
"show all i/o ports accesses" },
{ 0, NULL, NULL },
};
static int cmp1(const char *s1, int n, const char *s2)
{
if (strlen(s2) != n)
return 0;
return memcmp(s1, s2, n) == 0;
}
/* takes a comma separated list of log masks. Return 0 if error. */
int cpu_str_to_log_mask(const char *str)
{
CPULogItem *item;
int mask;
const char *p, *p1;
p = str;
mask = 0;
for(;;) {
p1 = strchr(p, ',');
if (!p1)
p1 = p + strlen(p);
for(item = cpu_log_items; item->mask != 0; item++) {
if (cmp1(p, p1 - p, item->name))
goto found;
}
return 0;
found:
mask |= item->mask;
if (*p1 != ',')
break;
p = p1 + 1;
}
return mask;
}
void cpu_abort(CPUState *env, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
fprintf(stderr, "qemu: fatal: ");
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
#ifdef TARGET_I386
cpu_x86_dump_state(env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
#endif
va_end(ap);
abort();
}
#if !defined(CONFIG_USER_ONLY)
/* NOTE: if flush_global is true, also flush global entries (not
implemented yet) */
void tlb_flush(CPUState *env, int flush_global)
{
int i;
#if defined(DEBUG_TLB)
printf("tlb_flush:\n");
#endif
/* must reset current TB so that interrupts cannot modify the
links while we are modifying them */
env->current_tb = NULL;
for(i = 0; i < CPU_TLB_SIZE; i++) {
env->tlb_read[0][i].address = -1;
env->tlb_write[0][i].address = -1;
env->tlb_read[1][i].address = -1;
env->tlb_write[1][i].address = -1;
}
virt_page_flush();
for(i = 0;i < CODE_GEN_HASH_SIZE; i++)
tb_hash[i] = NULL;
#if !defined(CONFIG_SOFTMMU)
munmap((void *)MMAP_AREA_START, MMAP_AREA_END - MMAP_AREA_START);
#endif
}
static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
{
if (addr == (tlb_entry->address &
(TARGET_PAGE_MASK | TLB_INVALID_MASK)))
tlb_entry->address = -1;
}
void tlb_flush_page(CPUState *env, target_ulong addr)
{
int i, n;
VirtPageDesc *vp;
PageDesc *p;
TranslationBlock *tb;
#if defined(DEBUG_TLB)
printf("tlb_flush_page: 0x%08x\n", addr);
#endif
/* must reset current TB so that interrupts cannot modify the
links while we are modifying them */
env->current_tb = NULL;
addr &= TARGET_PAGE_MASK;
i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
tlb_flush_entry(&env->tlb_read[0][i], addr);
tlb_flush_entry(&env->tlb_write[0][i], addr);
tlb_flush_entry(&env->tlb_read[1][i], addr);
tlb_flush_entry(&env->tlb_write[1][i], addr);
/* remove from the virtual pc hash table all the TB at this
virtual address */
vp = virt_page_find(addr >> TARGET_PAGE_BITS);
if (vp && vp->valid_tag == virt_valid_tag) {
p = page_find(vp->phys_addr >> TARGET_PAGE_BITS);
if (p) {
/* we remove all the links to the TBs in this virtual page */
tb = p->first_tb;
while (tb != NULL) {
n = (long)tb & 3;
tb = (TranslationBlock *)((long)tb & ~3);
if ((tb->pc & TARGET_PAGE_MASK) == addr ||
((tb->pc + tb->size - 1) & TARGET_PAGE_MASK) == addr) {
tb_invalidate(tb);
}
tb = tb->page_next[n];
}
}
vp->valid_tag = 0;
}
#if !defined(CONFIG_SOFTMMU)
if (addr < MMAP_AREA_END)
munmap((void *)addr, TARGET_PAGE_SIZE);
#endif
}
static inline void tlb_protect_code1(CPUTLBEntry *tlb_entry, target_ulong addr)
{
if (addr == (tlb_entry->address &
(TARGET_PAGE_MASK | TLB_INVALID_MASK)) &&
(tlb_entry->address & ~TARGET_PAGE_MASK) != IO_MEM_CODE &&
(tlb_entry->address & ~TARGET_PAGE_MASK) != IO_MEM_ROM) {
tlb_entry->address = (tlb_entry->address & TARGET_PAGE_MASK) | IO_MEM_CODE;
}
}
/* update the TLBs so that writes to code in the virtual page 'addr'
can be detected */
static void tlb_protect_code(CPUState *env, target_ulong addr)
{
int i;
addr &= TARGET_PAGE_MASK;
i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
tlb_protect_code1(&env->tlb_write[0][i], addr);
tlb_protect_code1(&env->tlb_write[1][i], addr);
#if !defined(CONFIG_SOFTMMU)
/* NOTE: as we generated the code for this page, it is already at
least readable */
if (addr < MMAP_AREA_END)
mprotect((void *)addr, TARGET_PAGE_SIZE, PROT_READ);
#endif
}
static inline void tlb_unprotect_code2(CPUTLBEntry *tlb_entry,
unsigned long phys_addr)
{
if ((tlb_entry->address & ~TARGET_PAGE_MASK) == IO_MEM_CODE &&
((tlb_entry->address & TARGET_PAGE_MASK) + tlb_entry->addend) == phys_addr) {
tlb_entry->address = (tlb_entry->address & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
}
}
/* update the TLB so that writes in physical page 'phys_addr' are no longer
tested self modifying code */
static void tlb_unprotect_code_phys(CPUState *env, unsigned long phys_addr, target_ulong vaddr)
{
int i;
phys_addr &= TARGET_PAGE_MASK;
phys_addr += (long)phys_ram_base;
i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
tlb_unprotect_code2(&env->tlb_write[0][i], phys_addr);
tlb_unprotect_code2(&env->tlb_write[1][i], phys_addr);
}
static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
unsigned long start, unsigned long length)
{
unsigned long addr;
if ((tlb_entry->address & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
addr = (tlb_entry->address & TARGET_PAGE_MASK) + tlb_entry->addend;
if ((addr - start) < length) {
tlb_entry->address = (tlb_entry->address & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
}
}
}
void cpu_physical_memory_reset_dirty(target_ulong start, target_ulong end)
{
CPUState *env;
unsigned long length, start1;
int i;
start &= TARGET_PAGE_MASK;
end = TARGET_PAGE_ALIGN(end);
length = end - start;
if (length == 0)
return;
memset(phys_ram_dirty + (start >> TARGET_PAGE_BITS), 0, length >> TARGET_PAGE_BITS);
env = cpu_single_env;
/* we modify the TLB cache so that the dirty bit will be set again
when accessing the range */
start1 = start + (unsigned long)phys_ram_base;
for(i = 0; i < CPU_TLB_SIZE; i++)
tlb_reset_dirty_range(&env->tlb_write[0][i], start1, length);
for(i = 0; i < CPU_TLB_SIZE; i++)
tlb_reset_dirty_range(&env->tlb_write[1][i], start1, length);
#if !defined(CONFIG_SOFTMMU)
/* XXX: this is expensive */
{
VirtPageDesc *p;
int j;
target_ulong addr;
for(i = 0; i < L1_SIZE; i++) {
p = l1_virt_map[i];
if (p) {
addr = i << (TARGET_PAGE_BITS + L2_BITS);
for(j = 0; j < L2_SIZE; j++) {
if (p->valid_tag == virt_valid_tag &&
p->phys_addr >= start && p->phys_addr < end &&
(p->prot & PROT_WRITE)) {
if (addr < MMAP_AREA_END) {
mprotect((void *)addr, TARGET_PAGE_SIZE,
p->prot & ~PROT_WRITE);
}
}
addr += TARGET_PAGE_SIZE;
p++;
}
}
}
}
#endif
}
static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry,
unsigned long start)
{
unsigned long addr;
if ((tlb_entry->address & ~TARGET_PAGE_MASK) == IO_MEM_NOTDIRTY) {
addr = (tlb_entry->address & TARGET_PAGE_MASK) + tlb_entry->addend;
if (addr == start) {
tlb_entry->address = (tlb_entry->address & TARGET_PAGE_MASK) | IO_MEM_RAM;
}
}
}
/* update the TLB corresponding to virtual page vaddr and phys addr
addr so that it is no longer dirty */
static inline void tlb_set_dirty(unsigned long addr, target_ulong vaddr)
{
CPUState *env = cpu_single_env;
int i;
phys_ram_dirty[(addr - (unsigned long)phys_ram_base) >> TARGET_PAGE_BITS] = 1;
addr &= TARGET_PAGE_MASK;
i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
tlb_set_dirty1(&env->tlb_write[0][i], addr);
tlb_set_dirty1(&env->tlb_write[1][i], addr);
}
/* add a new TLB entry. At most one entry for a given virtual address
is permitted. Return 0 if OK or 2 if the page could not be mapped
(can only happen in non SOFTMMU mode for I/O pages or pages
conflicting with the host address space). */
int tlb_set_page(CPUState *env, target_ulong vaddr,
target_phys_addr_t paddr, int prot,
int is_user, int is_softmmu)
{
PhysPageDesc *p;
unsigned long pd;
TranslationBlock *first_tb;
unsigned int index;
target_ulong address;
unsigned long addend;
int ret;
p = phys_page_find(paddr >> TARGET_PAGE_BITS);
first_tb = NULL;
if (!p) {
pd = IO_MEM_UNASSIGNED;
} else {
PageDesc *p1;
pd = p->phys_offset;
if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
/* NOTE: we also allocate the page at this stage */
p1 = page_find_alloc(pd >> TARGET_PAGE_BITS);
first_tb = p1->first_tb;
}
}
#if defined(DEBUG_TLB)
printf("tlb_set_page: vaddr=0x%08x paddr=0x%08x prot=%x u=%d c=%d smmu=%d pd=0x%08x\n",
vaddr, paddr, prot, is_user, (first_tb != NULL), is_softmmu, pd);
#endif
ret = 0;
#if !defined(CONFIG_SOFTMMU)
if (is_softmmu)
#endif
{
if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
/* IO memory case */
address = vaddr | pd;
addend = paddr;
} else {
/* standard memory */
address = vaddr;
addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
}
index = (vaddr >> 12) & (CPU_TLB_SIZE - 1);
addend -= vaddr;
if (prot & PAGE_READ) {
env->tlb_read[is_user][index].address = address;
env->tlb_read[is_user][index].addend = addend;
} else {
env->tlb_read[is_user][index].address = -1;
env->tlb_read[is_user][index].addend = -1;
}
if (prot & PAGE_WRITE) {
if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM) {
/* ROM: access is ignored (same as unassigned) */
env->tlb_write[is_user][index].address = vaddr | IO_MEM_ROM;
env->tlb_write[is_user][index].addend = addend;
} else
/* XXX: the PowerPC code seems not ready to handle
self modifying code with DCBI */
#if defined(TARGET_HAS_SMC) || 1
if (first_tb) {
/* if code is present, we use a specific memory
handler. It works only for physical memory access */
env->tlb_write[is_user][index].address = vaddr | IO_MEM_CODE;
env->tlb_write[is_user][index].addend = addend;
} else
#endif
if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
!cpu_physical_memory_is_dirty(pd)) {
env->tlb_write[is_user][index].address = vaddr | IO_MEM_NOTDIRTY;
env->tlb_write[is_user][index].addend = addend;
} else {
env->tlb_write[is_user][index].address = address;
env->tlb_write[is_user][index].addend = addend;
}
} else {
env->tlb_write[is_user][index].address = -1;
env->tlb_write[is_user][index].addend = -1;
}
}
#if !defined(CONFIG_SOFTMMU)
else {
if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
/* IO access: no mapping is done as it will be handled by the
soft MMU */
if (!(env->hflags & HF_SOFTMMU_MASK))
ret = 2;
} else {
void *map_addr;
if (vaddr >= MMAP_AREA_END) {
ret = 2;
} else {
if (prot & PROT_WRITE) {
if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
#if defined(TARGET_HAS_SMC) || 1
first_tb ||
#endif
((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
!cpu_physical_memory_is_dirty(pd))) {
/* ROM: we do as if code was inside */
/* if code is present, we only map as read only and save the
original mapping */
VirtPageDesc *vp;
vp = virt_page_find_alloc(vaddr >> TARGET_PAGE_BITS);
vp->phys_addr = pd;
vp->prot = prot;
vp->valid_tag = virt_valid_tag;
prot &= ~PAGE_WRITE;
}
}
map_addr = mmap((void *)vaddr, TARGET_PAGE_SIZE, prot,
MAP_SHARED | MAP_FIXED, phys_ram_fd, (pd & TARGET_PAGE_MASK));
if (map_addr == MAP_FAILED) {
cpu_abort(env, "mmap failed when mapped physical address 0x%08x to virtual address 0x%08x\n",
paddr, vaddr);
}
}
}
}
#endif
return ret;
}
/* called from signal handler: invalidate the code and unprotect the
page. Return TRUE if the fault was succesfully handled. */
int page_unprotect(unsigned long addr, unsigned long pc, void *puc)
{
#if !defined(CONFIG_SOFTMMU)
VirtPageDesc *vp;
#if defined(DEBUG_TLB)
printf("page_unprotect: addr=0x%08x\n", addr);
#endif
addr &= TARGET_PAGE_MASK;
/* if it is not mapped, no need to worry here */
if (addr >= MMAP_AREA_END)
return 0;
vp = virt_page_find(addr >> TARGET_PAGE_BITS);
if (!vp)
return 0;
/* NOTE: in this case, validate_tag is _not_ tested as it
validates only the code TLB */
if (vp->valid_tag != virt_valid_tag)
return 0;
if (!(vp->prot & PAGE_WRITE))
return 0;
#if defined(DEBUG_TLB)
printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
addr, vp->phys_addr, vp->prot);
#endif
if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
(unsigned long)addr, vp->prot);
/* set the dirty bit */
phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 1;
/* flush the code inside */
tb_invalidate_phys_page(vp->phys_addr, pc, puc);
return 1;
#else
return 0;
#endif
}
#else
void tlb_flush(CPUState *env, int flush_global)
{
}
void tlb_flush_page(CPUState *env, target_ulong addr)
{
}
int tlb_set_page(CPUState *env, target_ulong vaddr,
target_phys_addr_t paddr, int prot,
int is_user, int is_softmmu)
{
return 0;
}
/* dump memory mappings */
void page_dump(FILE *f)
{
unsigned long start, end;
int i, j, prot, prot1;
PageDesc *p;
fprintf(f, "%-8s %-8s %-8s %s\n",
"start", "end", "size", "prot");
start = -1;
end = -1;
prot = 0;
for(i = 0; i <= L1_SIZE; i++) {
if (i < L1_SIZE)
p = l1_map[i];
else
p = NULL;
for(j = 0;j < L2_SIZE; j++) {
if (!p)
prot1 = 0;
else
prot1 = p[j].flags;
if (prot1 != prot) {
end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
if (start != -1) {
fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
start, end, end - start,
prot & PAGE_READ ? 'r' : '-',
prot & PAGE_WRITE ? 'w' : '-',
prot & PAGE_EXEC ? 'x' : '-');
}
if (prot1 != 0)
start = end;
else
start = -1;
prot = prot1;
}
if (!p)
break;
}
}
}
int page_get_flags(unsigned long address)
{
PageDesc *p;
p = page_find(address >> TARGET_PAGE_BITS);
if (!p)
return 0;
return p->flags;
}
/* modify the flags of a page and invalidate the code if
necessary. The flag PAGE_WRITE_ORG is positionned automatically
depending on PAGE_WRITE */
void page_set_flags(unsigned long start, unsigned long end, int flags)
{
PageDesc *p;
unsigned long addr;
start = start & TARGET_PAGE_MASK;
end = TARGET_PAGE_ALIGN(end);
if (flags & PAGE_WRITE)
flags |= PAGE_WRITE_ORG;
spin_lock(&tb_lock);
for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
p = page_find_alloc(addr >> TARGET_PAGE_BITS);
/* if the write protection is set, then we invalidate the code
inside */
if (!(p->flags & PAGE_WRITE) &&
(flags & PAGE_WRITE) &&
p->first_tb) {
tb_invalidate_phys_page(addr, 0, NULL);
}
p->flags = flags;
}
spin_unlock(&tb_lock);
}
/* called from signal handler: invalidate the code and unprotect the
page. Return TRUE if the fault was succesfully handled. */
int page_unprotect(unsigned long address, unsigned long pc, void *puc)
{
unsigned int page_index, prot, pindex;
PageDesc *p, *p1;
unsigned long host_start, host_end, addr;
host_start = address & qemu_host_page_mask;
page_index = host_start >> TARGET_PAGE_BITS;
p1 = page_find(page_index);
if (!p1)
return 0;
host_end = host_start + qemu_host_page_size;
p = p1;
prot = 0;
for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
prot |= p->flags;
p++;
}
/* if the page was really writable, then we change its
protection back to writable */
if (prot & PAGE_WRITE_ORG) {
pindex = (address - host_start) >> TARGET_PAGE_BITS;
if (!(p1[pindex].flags & PAGE_WRITE)) {
mprotect((void *)host_start, qemu_host_page_size,
(prot & PAGE_BITS) | PAGE_WRITE);
p1[pindex].flags |= PAGE_WRITE;
/* and since the content will be modified, we must invalidate
the corresponding translated code. */
tb_invalidate_phys_page(address, pc, puc);
#ifdef DEBUG_TB_CHECK
tb_invalidate_check(address);
#endif
return 1;
}
}
return 0;
}
/* call this function when system calls directly modify a memory area */
void page_unprotect_range(uint8_t *data, unsigned long data_size)
{
unsigned long start, end, addr;
start = (unsigned long)data;
end = start + data_size;
start &= TARGET_PAGE_MASK;
end = TARGET_PAGE_ALIGN(end);
for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
page_unprotect(addr, 0, NULL);
}
}
static inline void tlb_set_dirty(unsigned long addr, target_ulong vaddr)
{
}
#endif /* defined(CONFIG_USER_ONLY) */
/* register physical memory. 'size' must be a multiple of the target
page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
io memory page */
void cpu_register_physical_memory(target_phys_addr_t start_addr,
unsigned long size,
unsigned long phys_offset)
{
unsigned long addr, end_addr;
PhysPageDesc *p;
size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
end_addr = start_addr + size;
for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS);
p->phys_offset = phys_offset;
if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM)
phys_offset += TARGET_PAGE_SIZE;
}
}
static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
{
return 0;
}
static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
}
static CPUReadMemoryFunc *unassigned_mem_read[3] = {
unassigned_mem_readb,
unassigned_mem_readb,
unassigned_mem_readb,
};
static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
unassigned_mem_writeb,
unassigned_mem_writeb,
unassigned_mem_writeb,
};
/* self modifying code support in soft mmu mode : writing to a page
containing code comes to these functions */
static void code_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
unsigned long phys_addr;
phys_addr = addr - (unsigned long)phys_ram_base;
#if !defined(CONFIG_USER_ONLY)
tb_invalidate_phys_page_fast(phys_addr, 1);
#endif
stb_raw((uint8_t *)addr, val);
phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 1;
}
static void code_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
unsigned long phys_addr;
phys_addr = addr - (unsigned long)phys_ram_base;
#if !defined(CONFIG_USER_ONLY)
tb_invalidate_phys_page_fast(phys_addr, 2);
#endif
stw_raw((uint8_t *)addr, val);
phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 1;
}
static void code_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
unsigned long phys_addr;
phys_addr = addr - (unsigned long)phys_ram_base;
#if !defined(CONFIG_USER_ONLY)
tb_invalidate_phys_page_fast(phys_addr, 4);
#endif
stl_raw((uint8_t *)addr, val);
phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 1;
}
static CPUReadMemoryFunc *code_mem_read[3] = {
NULL, /* never used */
NULL, /* never used */
NULL, /* never used */
};
static CPUWriteMemoryFunc *code_mem_write[3] = {
code_mem_writeb,
code_mem_writew,
code_mem_writel,
};
static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
stb_raw((uint8_t *)addr, val);
tlb_set_dirty(addr, cpu_single_env->mem_write_vaddr);
}
static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
stw_raw((uint8_t *)addr, val);
tlb_set_dirty(addr, cpu_single_env->mem_write_vaddr);
}
static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
stl_raw((uint8_t *)addr, val);
tlb_set_dirty(addr, cpu_single_env->mem_write_vaddr);
}
static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
notdirty_mem_writeb,
notdirty_mem_writew,
notdirty_mem_writel,
};
static void io_mem_init(void)
{
cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, code_mem_read, unassigned_mem_write, NULL);
cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
cpu_register_io_memory(IO_MEM_CODE >> IO_MEM_SHIFT, code_mem_read, code_mem_write, NULL);
cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, code_mem_read, notdirty_mem_write, NULL);
io_mem_nb = 5;
/* alloc dirty bits array */
phys_ram_dirty = qemu_malloc(phys_ram_size >> TARGET_PAGE_BITS);
}
/* mem_read and mem_write are arrays of functions containing the
function to access byte (index 0), word (index 1) and dword (index
2). All functions must be supplied. If io_index is non zero, the
corresponding io zone is modified. If it is zero, a new io zone is
allocated. The return value can be used with
cpu_register_physical_memory(). (-1) is returned if error. */
int cpu_register_io_memory(int io_index,
CPUReadMemoryFunc **mem_read,
CPUWriteMemoryFunc **mem_write,
void *opaque)
{
int i;
if (io_index <= 0) {
if (io_index >= IO_MEM_NB_ENTRIES)
return -1;
io_index = io_mem_nb++;
} else {
if (io_index >= IO_MEM_NB_ENTRIES)
return -1;
}
for(i = 0;i < 3; i++) {
io_mem_read[io_index][i] = mem_read[i];
io_mem_write[io_index][i] = mem_write[i];
}
io_mem_opaque[io_index] = opaque;
return io_index << IO_MEM_SHIFT;
}
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
int len, int is_write)
{
int l, flags;
target_ulong page;
while (len > 0) {
page = addr & TARGET_PAGE_MASK;
l = (page + TARGET_PAGE_SIZE) - addr;
if (l > len)
l = len;
flags = page_get_flags(page);
if (!(flags & PAGE_VALID))
return;
if (is_write) {
if (!(flags & PAGE_WRITE))
return;
memcpy((uint8_t *)addr, buf, len);
} else {
if (!(flags & PAGE_READ))
return;
memcpy(buf, (uint8_t *)addr, len);
}
len -= l;
buf += l;
addr += l;
}
}
#else
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
int len, int is_write)
{
int l, io_index;
uint8_t *ptr;
uint32_t val;
target_phys_addr_t page;
unsigned long pd;
PhysPageDesc *p;
while (len > 0) {
page = addr & TARGET_PAGE_MASK;
l = (page + TARGET_PAGE_SIZE) - addr;
if (l > len)
l = len;
p = phys_page_find(page >> TARGET_PAGE_BITS);
if (!p) {
pd = IO_MEM_UNASSIGNED;
} else {
pd = p->phys_offset;
}
if (is_write) {
if ((pd & ~TARGET_PAGE_MASK) != 0) {
io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
if (l >= 4 && ((addr & 3) == 0)) {
/* 32 bit read access */
val = ldl_raw(buf);
io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
l = 4;
} else if (l >= 2 && ((addr & 1) == 0)) {
/* 16 bit read access */
val = lduw_raw(buf);
io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
l = 2;
} else {
/* 8 bit access */
val = ldub_raw(buf);
io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
l = 1;
}
} else {
unsigned long addr1;
addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
/* RAM case */
ptr = phys_ram_base + addr1;
memcpy(ptr, buf, l);
/* invalidate code */
tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
/* set dirty bit */
phys_ram_dirty[page >> TARGET_PAGE_BITS] = 1;
}
} else {
if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
(pd & ~TARGET_PAGE_MASK) != IO_MEM_CODE) {
/* I/O case */
io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
if (l >= 4 && ((addr & 3) == 0)) {
/* 32 bit read access */
val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
stl_raw(buf, val);
l = 4;
} else if (l >= 2 && ((addr & 1) == 0)) {
/* 16 bit read access */
val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
stw_raw(buf, val);
l = 2;
} else {
/* 8 bit access */
val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
stb_raw(buf, val);
l = 1;
}
} else {
/* RAM case */
ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
(addr & ~TARGET_PAGE_MASK);
memcpy(buf, ptr, l);
}
}
len -= l;
buf += l;
addr += l;
}
}
#endif
/* virtual memory access for debug */
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
uint8_t *buf, int len, int is_write)
{
int l;
target_ulong page, phys_addr;
while (len > 0) {
page = addr & TARGET_PAGE_MASK;
phys_addr = cpu_get_phys_page_debug(env, page);
/* if no physical page mapped, return an error */
if (phys_addr == -1)
return -1;
l = (page + TARGET_PAGE_SIZE) - addr;
if (l > len)
l = len;
cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
buf, l, is_write);
len -= l;
buf += l;
addr += l;
}
return 0;
}
#if !defined(CONFIG_USER_ONLY)
#define MMUSUFFIX _cmmu
#define GETPC() NULL
#define env cpu_single_env
#define SHIFT 0
#include "softmmu_template.h"
#define SHIFT 1
#include "softmmu_template.h"
#define SHIFT 2
#include "softmmu_template.h"
#define SHIFT 3
#include "softmmu_template.h"
#undef env
#endif