qemu-e2k/include/exec/cpu_ldst.h
Richard Henderson 669fd61513 Revert "include/exec: typedef abi_ptr to vaddr in softmmu"
This reverts commit fc15bfb6a6.

This patch caused a regression for tricore-softmmu,
./tests/tcg/tricore-softmmu/test_boot_to_main.c.tst.

Reported-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2023-08-29 11:30:33 -07:00

476 lines
18 KiB
C

/*
* Software MMU support
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
*/
/*
* Generate inline load/store functions for all MMU modes (typically
* at least _user and _kernel) as well as _data versions, for all data
* sizes.
*
* Used by target op helpers.
*
* The syntax for the accessors is:
*
* load: cpu_ld{sign}{size}{end}_{mmusuffix}(env, ptr)
* cpu_ld{sign}{size}{end}_{mmusuffix}_ra(env, ptr, retaddr)
* cpu_ld{sign}{size}{end}_mmuidx_ra(env, ptr, mmu_idx, retaddr)
* cpu_ld{sign}{size}{end}_mmu(env, ptr, oi, retaddr)
*
* store: cpu_st{size}{end}_{mmusuffix}(env, ptr, val)
* cpu_st{size}{end}_{mmusuffix}_ra(env, ptr, val, retaddr)
* cpu_st{size}{end}_mmuidx_ra(env, ptr, val, mmu_idx, retaddr)
* cpu_st{size}{end}_mmu(env, ptr, val, oi, retaddr)
*
* sign is:
* (empty): for 32 and 64 bit sizes
* u : unsigned
* s : signed
*
* size is:
* b: 8 bits
* w: 16 bits
* l: 32 bits
* q: 64 bits
*
* end is:
* (empty): for target native endian, or for 8 bit access
* _be: for forced big endian
* _le: for forced little endian
*
* mmusuffix is one of the generic suffixes "data" or "code", or "mmuidx".
* The "mmuidx" suffix carries an extra mmu_idx argument that specifies
* the index to use; the "data" and "code" suffixes take the index from
* cpu_mmu_index().
*
* The "mmu" suffix carries the full MemOpIdx, with both mmu_idx and the
* MemOp including alignment requirements. The alignment will be enforced.
*/
#ifndef CPU_LDST_H
#define CPU_LDST_H
#include "exec/memopidx.h"
#include "qemu/int128.h"
#include "cpu.h"
#if defined(CONFIG_USER_ONLY)
/* sparc32plus has 64bit long but 32bit space address
* this can make bad result with g2h() and h2g()
*/
#if TARGET_VIRT_ADDR_SPACE_BITS <= 32
typedef uint32_t abi_ptr;
#define TARGET_ABI_FMT_ptr "%x"
#else
typedef uint64_t abi_ptr;
#define TARGET_ABI_FMT_ptr "%"PRIx64
#endif
#ifndef TARGET_TAGGED_ADDRESSES
static inline abi_ptr cpu_untagged_addr(CPUState *cs, abi_ptr x)
{
return x;
}
#endif
/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
static inline void *g2h_untagged(abi_ptr x)
{
return (void *)((uintptr_t)(x) + guest_base);
}
static inline void *g2h(CPUState *cs, abi_ptr x)
{
return g2h_untagged(cpu_untagged_addr(cs, x));
}
static inline bool guest_addr_valid_untagged(abi_ulong x)
{
return x <= GUEST_ADDR_MAX;
}
static inline bool guest_range_valid_untagged(abi_ulong start, abi_ulong len)
{
return len - 1 <= GUEST_ADDR_MAX && start <= GUEST_ADDR_MAX - len + 1;
}
#define h2g_valid(x) \
(HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS || \
(uintptr_t)(x) - guest_base <= GUEST_ADDR_MAX)
#define h2g_nocheck(x) ({ \
uintptr_t __ret = (uintptr_t)(x) - guest_base; \
(abi_ptr)__ret; \
})
#define h2g(x) ({ \
/* Check if given address fits target address space */ \
assert(h2g_valid(x)); \
h2g_nocheck(x); \
})
#else
typedef target_ulong abi_ptr;
#define TARGET_ABI_FMT_ptr TARGET_FMT_lx
#endif
uint32_t cpu_ldub_data(CPUArchState *env, abi_ptr ptr);
int cpu_ldsb_data(CPUArchState *env, abi_ptr ptr);
uint32_t cpu_lduw_be_data(CPUArchState *env, abi_ptr ptr);
int cpu_ldsw_be_data(CPUArchState *env, abi_ptr ptr);
uint32_t cpu_ldl_be_data(CPUArchState *env, abi_ptr ptr);
uint64_t cpu_ldq_be_data(CPUArchState *env, abi_ptr ptr);
uint32_t cpu_lduw_le_data(CPUArchState *env, abi_ptr ptr);
int cpu_ldsw_le_data(CPUArchState *env, abi_ptr ptr);
uint32_t cpu_ldl_le_data(CPUArchState *env, abi_ptr ptr);
uint64_t cpu_ldq_le_data(CPUArchState *env, abi_ptr ptr);
uint32_t cpu_ldub_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
int cpu_ldsb_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
uint32_t cpu_lduw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
int cpu_ldsw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
uint32_t cpu_ldl_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
uint64_t cpu_ldq_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
uint32_t cpu_lduw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
int cpu_ldsw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
uint32_t cpu_ldl_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
uint64_t cpu_ldq_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
void cpu_stb_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
void cpu_stw_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
void cpu_stl_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
void cpu_stq_be_data(CPUArchState *env, abi_ptr ptr, uint64_t val);
void cpu_stw_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
void cpu_stl_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
void cpu_stq_le_data(CPUArchState *env, abi_ptr ptr, uint64_t val);
void cpu_stb_data_ra(CPUArchState *env, abi_ptr ptr,
uint32_t val, uintptr_t ra);
void cpu_stw_be_data_ra(CPUArchState *env, abi_ptr ptr,
uint32_t val, uintptr_t ra);
void cpu_stl_be_data_ra(CPUArchState *env, abi_ptr ptr,
uint32_t val, uintptr_t ra);
void cpu_stq_be_data_ra(CPUArchState *env, abi_ptr ptr,
uint64_t val, uintptr_t ra);
void cpu_stw_le_data_ra(CPUArchState *env, abi_ptr ptr,
uint32_t val, uintptr_t ra);
void cpu_stl_le_data_ra(CPUArchState *env, abi_ptr ptr,
uint32_t val, uintptr_t ra);
void cpu_stq_le_data_ra(CPUArchState *env, abi_ptr ptr,
uint64_t val, uintptr_t ra);
uint32_t cpu_ldub_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
int mmu_idx, uintptr_t ra);
int cpu_ldsb_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
int mmu_idx, uintptr_t ra);
uint32_t cpu_lduw_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
int mmu_idx, uintptr_t ra);
int cpu_ldsw_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
int mmu_idx, uintptr_t ra);
uint32_t cpu_ldl_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
int mmu_idx, uintptr_t ra);
uint64_t cpu_ldq_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
int mmu_idx, uintptr_t ra);
uint32_t cpu_lduw_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
int mmu_idx, uintptr_t ra);
int cpu_ldsw_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
int mmu_idx, uintptr_t ra);
uint32_t cpu_ldl_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
int mmu_idx, uintptr_t ra);
uint64_t cpu_ldq_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
int mmu_idx, uintptr_t ra);
void cpu_stb_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val,
int mmu_idx, uintptr_t ra);
void cpu_stw_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val,
int mmu_idx, uintptr_t ra);
void cpu_stl_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val,
int mmu_idx, uintptr_t ra);
void cpu_stq_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint64_t val,
int mmu_idx, uintptr_t ra);
void cpu_stw_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val,
int mmu_idx, uintptr_t ra);
void cpu_stl_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val,
int mmu_idx, uintptr_t ra);
void cpu_stq_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint64_t val,
int mmu_idx, uintptr_t ra);
uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr ptr, MemOpIdx oi, uintptr_t ra);
uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr ptr, MemOpIdx oi, uintptr_t ra);
uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr ptr, MemOpIdx oi, uintptr_t ra);
uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr ptr, MemOpIdx oi, uintptr_t ra);
Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra);
void cpu_stb_mmu(CPUArchState *env, abi_ptr ptr, uint8_t val,
MemOpIdx oi, uintptr_t ra);
void cpu_stw_mmu(CPUArchState *env, abi_ptr ptr, uint16_t val,
MemOpIdx oi, uintptr_t ra);
void cpu_stl_mmu(CPUArchState *env, abi_ptr ptr, uint32_t val,
MemOpIdx oi, uintptr_t ra);
void cpu_stq_mmu(CPUArchState *env, abi_ptr ptr, uint64_t val,
MemOpIdx oi, uintptr_t ra);
void cpu_st16_mmu(CPUArchState *env, abi_ptr addr, Int128 val,
MemOpIdx oi, uintptr_t ra);
uint32_t cpu_atomic_cmpxchgb_mmu(CPUArchState *env, abi_ptr addr,
uint32_t cmpv, uint32_t newv,
MemOpIdx oi, uintptr_t retaddr);
uint32_t cpu_atomic_cmpxchgw_le_mmu(CPUArchState *env, abi_ptr addr,
uint32_t cmpv, uint32_t newv,
MemOpIdx oi, uintptr_t retaddr);
uint32_t cpu_atomic_cmpxchgl_le_mmu(CPUArchState *env, abi_ptr addr,
uint32_t cmpv, uint32_t newv,
MemOpIdx oi, uintptr_t retaddr);
uint64_t cpu_atomic_cmpxchgq_le_mmu(CPUArchState *env, abi_ptr addr,
uint64_t cmpv, uint64_t newv,
MemOpIdx oi, uintptr_t retaddr);
uint32_t cpu_atomic_cmpxchgw_be_mmu(CPUArchState *env, abi_ptr addr,
uint32_t cmpv, uint32_t newv,
MemOpIdx oi, uintptr_t retaddr);
uint32_t cpu_atomic_cmpxchgl_be_mmu(CPUArchState *env, abi_ptr addr,
uint32_t cmpv, uint32_t newv,
MemOpIdx oi, uintptr_t retaddr);
uint64_t cpu_atomic_cmpxchgq_be_mmu(CPUArchState *env, abi_ptr addr,
uint64_t cmpv, uint64_t newv,
MemOpIdx oi, uintptr_t retaddr);
#define GEN_ATOMIC_HELPER(NAME, TYPE, SUFFIX) \
TYPE cpu_atomic_ ## NAME ## SUFFIX ## _mmu \
(CPUArchState *env, abi_ptr addr, TYPE val, \
MemOpIdx oi, uintptr_t retaddr);
#ifdef CONFIG_ATOMIC64
#define GEN_ATOMIC_HELPER_ALL(NAME) \
GEN_ATOMIC_HELPER(NAME, uint32_t, b) \
GEN_ATOMIC_HELPER(NAME, uint32_t, w_le) \
GEN_ATOMIC_HELPER(NAME, uint32_t, w_be) \
GEN_ATOMIC_HELPER(NAME, uint32_t, l_le) \
GEN_ATOMIC_HELPER(NAME, uint32_t, l_be) \
GEN_ATOMIC_HELPER(NAME, uint64_t, q_le) \
GEN_ATOMIC_HELPER(NAME, uint64_t, q_be)
#else
#define GEN_ATOMIC_HELPER_ALL(NAME) \
GEN_ATOMIC_HELPER(NAME, uint32_t, b) \
GEN_ATOMIC_HELPER(NAME, uint32_t, w_le) \
GEN_ATOMIC_HELPER(NAME, uint32_t, w_be) \
GEN_ATOMIC_HELPER(NAME, uint32_t, l_le) \
GEN_ATOMIC_HELPER(NAME, uint32_t, l_be)
#endif
GEN_ATOMIC_HELPER_ALL(fetch_add)
GEN_ATOMIC_HELPER_ALL(fetch_sub)
GEN_ATOMIC_HELPER_ALL(fetch_and)
GEN_ATOMIC_HELPER_ALL(fetch_or)
GEN_ATOMIC_HELPER_ALL(fetch_xor)
GEN_ATOMIC_HELPER_ALL(fetch_smin)
GEN_ATOMIC_HELPER_ALL(fetch_umin)
GEN_ATOMIC_HELPER_ALL(fetch_smax)
GEN_ATOMIC_HELPER_ALL(fetch_umax)
GEN_ATOMIC_HELPER_ALL(add_fetch)
GEN_ATOMIC_HELPER_ALL(sub_fetch)
GEN_ATOMIC_HELPER_ALL(and_fetch)
GEN_ATOMIC_HELPER_ALL(or_fetch)
GEN_ATOMIC_HELPER_ALL(xor_fetch)
GEN_ATOMIC_HELPER_ALL(smin_fetch)
GEN_ATOMIC_HELPER_ALL(umin_fetch)
GEN_ATOMIC_HELPER_ALL(smax_fetch)
GEN_ATOMIC_HELPER_ALL(umax_fetch)
GEN_ATOMIC_HELPER_ALL(xchg)
#undef GEN_ATOMIC_HELPER_ALL
#undef GEN_ATOMIC_HELPER
Int128 cpu_atomic_cmpxchgo_le_mmu(CPUArchState *env, abi_ptr addr,
Int128 cmpv, Int128 newv,
MemOpIdx oi, uintptr_t retaddr);
Int128 cpu_atomic_cmpxchgo_be_mmu(CPUArchState *env, abi_ptr addr,
Int128 cmpv, Int128 newv,
MemOpIdx oi, uintptr_t retaddr);
#if defined(CONFIG_USER_ONLY)
extern __thread uintptr_t helper_retaddr;
static inline void set_helper_retaddr(uintptr_t ra)
{
helper_retaddr = ra;
/*
* Ensure that this write is visible to the SIGSEGV handler that
* may be invoked due to a subsequent invalid memory operation.
*/
signal_barrier();
}
static inline void clear_helper_retaddr(void)
{
/*
* Ensure that previous memory operations have succeeded before
* removing the data visible to the signal handler.
*/
signal_barrier();
helper_retaddr = 0;
}
#else
#include "tcg/oversized-guest.h"
static inline uint64_t tlb_read_idx(const CPUTLBEntry *entry,
MMUAccessType access_type)
{
/* Do not rearrange the CPUTLBEntry structure members. */
QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_read) !=
MMU_DATA_LOAD * sizeof(uint64_t));
QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_write) !=
MMU_DATA_STORE * sizeof(uint64_t));
QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_code) !=
MMU_INST_FETCH * sizeof(uint64_t));
#if TARGET_LONG_BITS == 32
/* Use qatomic_read, in case of addr_write; only care about low bits. */
const uint32_t *ptr = (uint32_t *)&entry->addr_idx[access_type];
ptr += HOST_BIG_ENDIAN;
return qatomic_read(ptr);
#else
const uint64_t *ptr = &entry->addr_idx[access_type];
# if TCG_OVERSIZED_GUEST
return *ptr;
# else
/* ofs might correspond to .addr_write, so use qatomic_read */
return qatomic_read(ptr);
# endif
#endif
}
static inline uint64_t tlb_addr_write(const CPUTLBEntry *entry)
{
return tlb_read_idx(entry, MMU_DATA_STORE);
}
/* Find the TLB index corresponding to the mmu_idx + address pair. */
static inline uintptr_t tlb_index(CPUArchState *env, uintptr_t mmu_idx,
vaddr addr)
{
uintptr_t size_mask = env_tlb(env)->f[mmu_idx].mask >> CPU_TLB_ENTRY_BITS;
return (addr >> TARGET_PAGE_BITS) & size_mask;
}
/* Find the TLB entry corresponding to the mmu_idx + address pair. */
static inline CPUTLBEntry *tlb_entry(CPUArchState *env, uintptr_t mmu_idx,
vaddr addr)
{
return &env_tlb(env)->f[mmu_idx].table[tlb_index(env, mmu_idx, addr)];
}
#endif /* defined(CONFIG_USER_ONLY) */
#if TARGET_BIG_ENDIAN
# define cpu_lduw_data cpu_lduw_be_data
# define cpu_ldsw_data cpu_ldsw_be_data
# define cpu_ldl_data cpu_ldl_be_data
# define cpu_ldq_data cpu_ldq_be_data
# define cpu_lduw_data_ra cpu_lduw_be_data_ra
# define cpu_ldsw_data_ra cpu_ldsw_be_data_ra
# define cpu_ldl_data_ra cpu_ldl_be_data_ra
# define cpu_ldq_data_ra cpu_ldq_be_data_ra
# define cpu_lduw_mmuidx_ra cpu_lduw_be_mmuidx_ra
# define cpu_ldsw_mmuidx_ra cpu_ldsw_be_mmuidx_ra
# define cpu_ldl_mmuidx_ra cpu_ldl_be_mmuidx_ra
# define cpu_ldq_mmuidx_ra cpu_ldq_be_mmuidx_ra
# define cpu_stw_data cpu_stw_be_data
# define cpu_stl_data cpu_stl_be_data
# define cpu_stq_data cpu_stq_be_data
# define cpu_stw_data_ra cpu_stw_be_data_ra
# define cpu_stl_data_ra cpu_stl_be_data_ra
# define cpu_stq_data_ra cpu_stq_be_data_ra
# define cpu_stw_mmuidx_ra cpu_stw_be_mmuidx_ra
# define cpu_stl_mmuidx_ra cpu_stl_be_mmuidx_ra
# define cpu_stq_mmuidx_ra cpu_stq_be_mmuidx_ra
#else
# define cpu_lduw_data cpu_lduw_le_data
# define cpu_ldsw_data cpu_ldsw_le_data
# define cpu_ldl_data cpu_ldl_le_data
# define cpu_ldq_data cpu_ldq_le_data
# define cpu_lduw_data_ra cpu_lduw_le_data_ra
# define cpu_ldsw_data_ra cpu_ldsw_le_data_ra
# define cpu_ldl_data_ra cpu_ldl_le_data_ra
# define cpu_ldq_data_ra cpu_ldq_le_data_ra
# define cpu_lduw_mmuidx_ra cpu_lduw_le_mmuidx_ra
# define cpu_ldsw_mmuidx_ra cpu_ldsw_le_mmuidx_ra
# define cpu_ldl_mmuidx_ra cpu_ldl_le_mmuidx_ra
# define cpu_ldq_mmuidx_ra cpu_ldq_le_mmuidx_ra
# define cpu_stw_data cpu_stw_le_data
# define cpu_stl_data cpu_stl_le_data
# define cpu_stq_data cpu_stq_le_data
# define cpu_stw_data_ra cpu_stw_le_data_ra
# define cpu_stl_data_ra cpu_stl_le_data_ra
# define cpu_stq_data_ra cpu_stq_le_data_ra
# define cpu_stw_mmuidx_ra cpu_stw_le_mmuidx_ra
# define cpu_stl_mmuidx_ra cpu_stl_le_mmuidx_ra
# define cpu_stq_mmuidx_ra cpu_stq_le_mmuidx_ra
#endif
uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra);
uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra);
uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra);
uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra);
uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr);
uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr);
uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr);
uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr);
static inline int cpu_ldsb_code(CPUArchState *env, abi_ptr addr)
{
return (int8_t)cpu_ldub_code(env, addr);
}
static inline int cpu_ldsw_code(CPUArchState *env, abi_ptr addr)
{
return (int16_t)cpu_lduw_code(env, addr);
}
/**
* tlb_vaddr_to_host:
* @env: CPUArchState
* @addr: guest virtual address to look up
* @access_type: 0 for read, 1 for write, 2 for execute
* @mmu_idx: MMU index to use for lookup
*
* Look up the specified guest virtual index in the TCG softmmu TLB.
* If we can translate a host virtual address suitable for direct RAM
* access, without causing a guest exception, then return it.
* Otherwise (TLB entry is for an I/O access, guest software
* TLB fill required, etc) return NULL.
*/
#ifdef CONFIG_USER_ONLY
static inline void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
MMUAccessType access_type, int mmu_idx)
{
return g2h(env_cpu(env), addr);
}
#else
void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
MMUAccessType access_type, int mmu_idx);
#endif
#endif /* CPU_LDST_H */