qemu-e2k/target-i386/helper.c
aliguori e00b6f8099 KVM: CPUID takes ecx as input value for some functions (Amit Shah)
The CPUID instruction takes the value of ECX as an input parameter
in addition to the value of EAX as the count for functions 4, 0xb
and 0xd. Make sure we pass the value to the instruction.

Also convert to the qemu-style whitespace for the surrounding code.

Signed-off-by: Amit Shah <amit.shah@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>


git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6565 c046a42c-6fe2-441c-8c8c-71466251a162
2009-02-09 15:50:08 +00:00

1672 lines
54 KiB
C

/*
* i386 helpers (without register variable usage)
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
*/
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include <signal.h>
#include <assert.h>
#include "cpu.h"
#include "exec-all.h"
#include "qemu-common.h"
#include "kvm.h"
//#define DEBUG_MMU
static void add_flagname_to_bitmaps(char *flagname, uint32_t *features,
uint32_t *ext_features,
uint32_t *ext2_features,
uint32_t *ext3_features)
{
int i;
/* feature flags taken from "Intel Processor Identification and the CPUID
* Instruction" and AMD's "CPUID Specification". In cases of disagreement
* about feature names, the Linux name is used. */
static const char *feature_name[] = {
"fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
"cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
"pat", "pse36", "pn" /* Intel psn */, "clflush" /* Intel clfsh */, NULL, "ds" /* Intel dts */, "acpi", "mmx",
"fxsr", "sse", "sse2", "ss", "ht" /* Intel htt */, "tm", "ia64", "pbe",
};
static const char *ext_feature_name[] = {
"pni" /* Intel,AMD sse3 */, NULL, NULL, "monitor", "ds_cpl", "vmx", NULL /* Linux smx */, "est",
"tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
NULL, NULL, "dca", NULL, NULL, NULL, NULL, "popcnt",
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
};
static const char *ext2_feature_name[] = {
"fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
"cx8" /* AMD CMPXCHG8B */, "apic", NULL, "syscall", "mtrr", "pge", "mca", "cmov",
"pat", "pse36", NULL, NULL /* Linux mp */, "nx" /* Intel xd */, NULL, "mmxext", "mmx",
"fxsr", "fxsr_opt" /* AMD ffxsr */, "pdpe1gb" /* AMD Page1GB */, "rdtscp", NULL, "lm" /* Intel 64 */, "3dnowext", "3dnow",
};
static const char *ext3_feature_name[] = {
"lahf_lm" /* AMD LahfSahf */, "cmp_legacy", "svm", "extapic" /* AMD ExtApicSpace */, "cr8legacy" /* AMD AltMovCr8 */, "abm", "sse4a", "misalignsse",
"3dnowprefetch", "osvw", NULL /* Linux ibs */, NULL, "skinit", "wdt", NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
};
for ( i = 0 ; i < 32 ; i++ )
if (feature_name[i] && !strcmp (flagname, feature_name[i])) {
*features |= 1 << i;
return;
}
for ( i = 0 ; i < 32 ; i++ )
if (ext_feature_name[i] && !strcmp (flagname, ext_feature_name[i])) {
*ext_features |= 1 << i;
return;
}
for ( i = 0 ; i < 32 ; i++ )
if (ext2_feature_name[i] && !strcmp (flagname, ext2_feature_name[i])) {
*ext2_features |= 1 << i;
return;
}
for ( i = 0 ; i < 32 ; i++ )
if (ext3_feature_name[i] && !strcmp (flagname, ext3_feature_name[i])) {
*ext3_features |= 1 << i;
return;
}
fprintf(stderr, "CPU feature %s not found\n", flagname);
}
typedef struct x86_def_t {
const char *name;
uint32_t level;
uint32_t vendor1, vendor2, vendor3;
int family;
int model;
int stepping;
uint32_t features, ext_features, ext2_features, ext3_features;
uint32_t xlevel;
char model_id[48];
} x86_def_t;
#define I486_FEATURES (CPUID_FP87 | CPUID_VME | CPUID_PSE)
#define PENTIUM_FEATURES (I486_FEATURES | CPUID_DE | CPUID_TSC | \
CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_MMX)
#define PENTIUM2_FEATURES (PENTIUM_FEATURES | CPUID_PAE | CPUID_SEP | \
CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \
CPUID_PSE36 | CPUID_FXSR)
#define PENTIUM3_FEATURES (PENTIUM2_FEATURES | CPUID_SSE)
#define PPRO_FEATURES (CPUID_FP87 | CPUID_DE | CPUID_PSE | CPUID_TSC | \
CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_PGE | CPUID_CMOV | \
CPUID_PAT | CPUID_FXSR | CPUID_MMX | CPUID_SSE | CPUID_SSE2 | \
CPUID_PAE | CPUID_SEP | CPUID_APIC)
static x86_def_t x86_defs[] = {
#ifdef TARGET_X86_64
{
.name = "qemu64",
.level = 2,
.vendor1 = CPUID_VENDOR_AMD_1,
.vendor2 = CPUID_VENDOR_AMD_2,
.vendor3 = CPUID_VENDOR_AMD_3,
.family = 6,
.model = 2,
.stepping = 3,
.features = PPRO_FEATURES |
/* these features are needed for Win64 and aren't fully implemented */
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
/* this feature is needed for Solaris and isn't fully implemented */
CPUID_PSE36,
.ext_features = CPUID_EXT_SSE3,
.ext2_features = (PPRO_FEATURES & 0x0183F3FF) |
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX |
CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT,
.ext3_features = CPUID_EXT3_SVM,
.xlevel = 0x8000000A,
.model_id = "QEMU Virtual CPU version " QEMU_VERSION,
},
{
.name = "phenom",
.level = 5,
.vendor1 = CPUID_VENDOR_AMD_1,
.vendor2 = CPUID_VENDOR_AMD_2,
.vendor3 = CPUID_VENDOR_AMD_3,
.family = 16,
.model = 2,
.stepping = 3,
/* Missing: CPUID_VME, CPUID_HT */
.features = PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36,
/* Missing: CPUID_EXT_CX16, CPUID_EXT_POPCNT */
.ext_features = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR,
/* Missing: CPUID_EXT2_PDPE1GB, CPUID_EXT2_RDTSCP */
.ext2_features = (PPRO_FEATURES & 0x0183F3FF) |
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX |
CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_MMXEXT |
CPUID_EXT2_FFXSR,
/* Missing: CPUID_EXT3_LAHF_LM, CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC,
CPUID_EXT3_CR8LEG, CPUID_EXT3_ABM, CPUID_EXT3_SSE4A,
CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH,
CPUID_EXT3_OSVW, CPUID_EXT3_IBS */
.ext3_features = CPUID_EXT3_SVM,
.xlevel = 0x8000001A,
.model_id = "AMD Phenom(tm) 9550 Quad-Core Processor"
},
{
.name = "core2duo",
.level = 10,
.family = 6,
.model = 15,
.stepping = 11,
/* The original CPU also implements these features:
CPUID_VME, CPUID_DTS, CPUID_ACPI, CPUID_SS, CPUID_HT,
CPUID_TM, CPUID_PBE */
.features = PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36,
/* The original CPU also implements these ext features:
CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_VMX, CPUID_EXT_EST,
CPUID_EXT_TM2, CPUID_EXT_CX16, CPUID_EXT_XTPR, CPUID_EXT_PDCM */
.ext_features = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3,
.ext2_features = CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
/* Missing: .ext3_features = CPUID_EXT3_LAHF_LM */
.xlevel = 0x80000008,
.model_id = "Intel(R) Core(TM)2 Duo CPU T7700 @ 2.40GHz",
},
#endif
{
.name = "qemu32",
.level = 2,
.family = 6,
.model = 3,
.stepping = 3,
.features = PPRO_FEATURES,
.ext_features = CPUID_EXT_SSE3,
.xlevel = 0,
.model_id = "QEMU Virtual CPU version " QEMU_VERSION,
},
{
.name = "coreduo",
.level = 10,
.family = 6,
.model = 14,
.stepping = 8,
/* The original CPU also implements these features:
CPUID_DTS, CPUID_ACPI, CPUID_SS, CPUID_HT,
CPUID_TM, CPUID_PBE */
.features = PPRO_FEATURES | CPUID_VME |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA,
/* The original CPU also implements these ext features:
CPUID_EXT_VMX, CPUID_EXT_EST, CPUID_EXT_TM2, CPUID_EXT_XTPR,
CPUID_EXT_PDCM */
.ext_features = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR,
.ext2_features = CPUID_EXT2_NX,
.xlevel = 0x80000008,
.model_id = "Genuine Intel(R) CPU T2600 @ 2.16GHz",
},
{
.name = "486",
.level = 0,
.family = 4,
.model = 0,
.stepping = 0,
.features = I486_FEATURES,
.xlevel = 0,
},
{
.name = "pentium",
.level = 1,
.family = 5,
.model = 4,
.stepping = 3,
.features = PENTIUM_FEATURES,
.xlevel = 0,
},
{
.name = "pentium2",
.level = 2,
.family = 6,
.model = 5,
.stepping = 2,
.features = PENTIUM2_FEATURES,
.xlevel = 0,
},
{
.name = "pentium3",
.level = 2,
.family = 6,
.model = 7,
.stepping = 3,
.features = PENTIUM3_FEATURES,
.xlevel = 0,
},
{
.name = "athlon",
.level = 2,
.vendor1 = 0x68747541, /* "Auth" */
.vendor2 = 0x69746e65, /* "enti" */
.vendor3 = 0x444d4163, /* "cAMD" */
.family = 6,
.model = 2,
.stepping = 3,
.features = PPRO_FEATURES | CPUID_PSE36 | CPUID_VME | CPUID_MTRR | CPUID_MCA,
.ext2_features = (PPRO_FEATURES & 0x0183F3FF) | CPUID_EXT2_MMXEXT | CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT,
.xlevel = 0x80000008,
/* XXX: put another string ? */
.model_id = "QEMU Virtual CPU version " QEMU_VERSION,
},
{
.name = "n270",
/* original is on level 10 */
.level = 5,
.family = 6,
.model = 28,
.stepping = 2,
.features = PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_VME,
/* Missing: CPUID_DTS | CPUID_ACPI | CPUID_SS |
* CPUID_HT | CPUID_TM | CPUID_PBE */
/* Some CPUs got no CPUID_SEP */
.ext_features = CPUID_EXT_MONITOR |
CPUID_EXT_SSE3 /* PNI */ | CPUID_EXT_SSSE3,
/* Missing: CPUID_EXT_DSCPL | CPUID_EXT_EST |
* CPUID_EXT_TM2 | CPUID_EXT_XTPR */
.ext2_features = (PPRO_FEATURES & 0x0183F3FF) | CPUID_EXT2_NX,
/* Missing: .ext3_features = CPUID_EXT3_LAHF_LM */
.xlevel = 0x8000000A,
.model_id = "Intel(R) Atom(TM) CPU N270 @ 1.60GHz",
},
};
static int cpu_x86_find_by_name(x86_def_t *x86_cpu_def, const char *cpu_model)
{
unsigned int i;
x86_def_t *def;
char *s = strdup(cpu_model);
char *featurestr, *name = strtok(s, ",");
uint32_t plus_features = 0, plus_ext_features = 0, plus_ext2_features = 0, plus_ext3_features = 0;
uint32_t minus_features = 0, minus_ext_features = 0, minus_ext2_features = 0, minus_ext3_features = 0;
int family = -1, model = -1, stepping = -1;
def = NULL;
for (i = 0; i < ARRAY_SIZE(x86_defs); i++) {
if (strcmp(name, x86_defs[i].name) == 0) {
def = &x86_defs[i];
break;
}
}
if (!def)
goto error;
memcpy(x86_cpu_def, def, sizeof(*def));
featurestr = strtok(NULL, ",");
while (featurestr) {
char *val;
if (featurestr[0] == '+') {
add_flagname_to_bitmaps(featurestr + 1, &plus_features, &plus_ext_features, &plus_ext2_features, &plus_ext3_features);
} else if (featurestr[0] == '-') {
add_flagname_to_bitmaps(featurestr + 1, &minus_features, &minus_ext_features, &minus_ext2_features, &minus_ext3_features);
} else if ((val = strchr(featurestr, '='))) {
*val = 0; val++;
if (!strcmp(featurestr, "family")) {
char *err;
family = strtol(val, &err, 10);
if (!*val || *err || family < 0) {
fprintf(stderr, "bad numerical value %s\n", val);
goto error;
}
x86_cpu_def->family = family;
} else if (!strcmp(featurestr, "model")) {
char *err;
model = strtol(val, &err, 10);
if (!*val || *err || model < 0 || model > 0xff) {
fprintf(stderr, "bad numerical value %s\n", val);
goto error;
}
x86_cpu_def->model = model;
} else if (!strcmp(featurestr, "stepping")) {
char *err;
stepping = strtol(val, &err, 10);
if (!*val || *err || stepping < 0 || stepping > 0xf) {
fprintf(stderr, "bad numerical value %s\n", val);
goto error;
}
x86_cpu_def->stepping = stepping;
} else if (!strcmp(featurestr, "vendor")) {
if (strlen(val) != 12) {
fprintf(stderr, "vendor string must be 12 chars long\n");
goto error;
}
x86_cpu_def->vendor1 = 0;
x86_cpu_def->vendor2 = 0;
x86_cpu_def->vendor3 = 0;
for(i = 0; i < 4; i++) {
x86_cpu_def->vendor1 |= ((uint8_t)val[i ]) << (8 * i);
x86_cpu_def->vendor2 |= ((uint8_t)val[i + 4]) << (8 * i);
x86_cpu_def->vendor3 |= ((uint8_t)val[i + 8]) << (8 * i);
}
} else if (!strcmp(featurestr, "model_id")) {
pstrcpy(x86_cpu_def->model_id, sizeof(x86_cpu_def->model_id),
val);
} else {
fprintf(stderr, "unrecognized feature %s\n", featurestr);
goto error;
}
} else {
fprintf(stderr, "feature string `%s' not in format (+feature|-feature|feature=xyz)\n", featurestr);
goto error;
}
featurestr = strtok(NULL, ",");
}
x86_cpu_def->features |= plus_features;
x86_cpu_def->ext_features |= plus_ext_features;
x86_cpu_def->ext2_features |= plus_ext2_features;
x86_cpu_def->ext3_features |= plus_ext3_features;
x86_cpu_def->features &= ~minus_features;
x86_cpu_def->ext_features &= ~minus_ext_features;
x86_cpu_def->ext2_features &= ~minus_ext2_features;
x86_cpu_def->ext3_features &= ~minus_ext3_features;
free(s);
return 0;
error:
free(s);
return -1;
}
void x86_cpu_list (FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(x86_defs); i++)
(*cpu_fprintf)(f, "x86 %16s\n", x86_defs[i].name);
}
static int cpu_x86_register (CPUX86State *env, const char *cpu_model)
{
x86_def_t def1, *def = &def1;
if (cpu_x86_find_by_name(def, cpu_model) < 0)
return -1;
if (def->vendor1) {
env->cpuid_vendor1 = def->vendor1;
env->cpuid_vendor2 = def->vendor2;
env->cpuid_vendor3 = def->vendor3;
} else {
env->cpuid_vendor1 = CPUID_VENDOR_INTEL_1;
env->cpuid_vendor2 = CPUID_VENDOR_INTEL_2;
env->cpuid_vendor3 = CPUID_VENDOR_INTEL_3;
}
env->cpuid_level = def->level;
if (def->family > 0x0f)
env->cpuid_version = 0xf00 | ((def->family - 0x0f) << 20);
else
env->cpuid_version = def->family << 8;
env->cpuid_version |= ((def->model & 0xf) << 4) | ((def->model >> 4) << 16);
env->cpuid_version |= def->stepping;
env->cpuid_features = def->features;
env->pat = 0x0007040600070406ULL;
env->cpuid_ext_features = def->ext_features;
env->cpuid_ext2_features = def->ext2_features;
env->cpuid_xlevel = def->xlevel;
env->cpuid_ext3_features = def->ext3_features;
{
const char *model_id = def->model_id;
int c, len, i;
if (!model_id)
model_id = "";
len = strlen(model_id);
for(i = 0; i < 48; i++) {
if (i >= len)
c = '\0';
else
c = (uint8_t)model_id[i];
env->cpuid_model[i >> 2] |= c << (8 * (i & 3));
}
}
return 0;
}
/* NOTE: must be called outside the CPU execute loop */
void cpu_reset(CPUX86State *env)
{
int i;
if (qemu_loglevel_mask(CPU_LOG_RESET)) {
qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
}
memset(env, 0, offsetof(CPUX86State, breakpoints));
tlb_flush(env, 1);
env->old_exception = -1;
/* init to reset state */
#ifdef CONFIG_SOFTMMU
env->hflags |= HF_SOFTMMU_MASK;
#endif
env->hflags2 |= HF2_GIF_MASK;
cpu_x86_update_cr0(env, 0x60000010);
env->a20_mask = ~0x0;
env->smbase = 0x30000;
env->idt.limit = 0xffff;
env->gdt.limit = 0xffff;
env->ldt.limit = 0xffff;
env->ldt.flags = DESC_P_MASK | (2 << DESC_TYPE_SHIFT);
env->tr.limit = 0xffff;
env->tr.flags = DESC_P_MASK | (11 << DESC_TYPE_SHIFT);
cpu_x86_load_seg_cache(env, R_CS, 0xf000, 0xffff0000, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK | DESC_R_MASK);
cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK);
cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK);
cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK);
cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK);
cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK);
env->eip = 0xfff0;
env->regs[R_EDX] = env->cpuid_version;
env->eflags = 0x2;
/* FPU init */
for(i = 0;i < 8; i++)
env->fptags[i] = 1;
env->fpuc = 0x37f;
env->mxcsr = 0x1f80;
memset(env->dr, 0, sizeof(env->dr));
env->dr[6] = DR6_FIXED_1;
env->dr[7] = DR7_FIXED_1;
cpu_breakpoint_remove_all(env, BP_CPU);
cpu_watchpoint_remove_all(env, BP_CPU);
}
void cpu_x86_close(CPUX86State *env)
{
qemu_free(env);
}
/***********************************************************/
/* x86 debug */
static const char *cc_op_str[] = {
"DYNAMIC",
"EFLAGS",
"MULB",
"MULW",
"MULL",
"MULQ",
"ADDB",
"ADDW",
"ADDL",
"ADDQ",
"ADCB",
"ADCW",
"ADCL",
"ADCQ",
"SUBB",
"SUBW",
"SUBL",
"SUBQ",
"SBBB",
"SBBW",
"SBBL",
"SBBQ",
"LOGICB",
"LOGICW",
"LOGICL",
"LOGICQ",
"INCB",
"INCW",
"INCL",
"INCQ",
"DECB",
"DECW",
"DECL",
"DECQ",
"SHLB",
"SHLW",
"SHLL",
"SHLQ",
"SARB",
"SARW",
"SARL",
"SARQ",
};
void cpu_dump_state(CPUState *env, FILE *f,
int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
int flags)
{
int eflags, i, nb;
char cc_op_name[32];
static const char *seg_name[6] = { "ES", "CS", "SS", "DS", "FS", "GS" };
eflags = env->eflags;
#ifdef TARGET_X86_64
if (env->hflags & HF_CS64_MASK) {
cpu_fprintf(f,
"RAX=%016" PRIx64 " RBX=%016" PRIx64 " RCX=%016" PRIx64 " RDX=%016" PRIx64 "\n"
"RSI=%016" PRIx64 " RDI=%016" PRIx64 " RBP=%016" PRIx64 " RSP=%016" PRIx64 "\n"
"R8 =%016" PRIx64 " R9 =%016" PRIx64 " R10=%016" PRIx64 " R11=%016" PRIx64 "\n"
"R12=%016" PRIx64 " R13=%016" PRIx64 " R14=%016" PRIx64 " R15=%016" PRIx64 "\n"
"RIP=%016" PRIx64 " RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
env->regs[R_EAX],
env->regs[R_EBX],
env->regs[R_ECX],
env->regs[R_EDX],
env->regs[R_ESI],
env->regs[R_EDI],
env->regs[R_EBP],
env->regs[R_ESP],
env->regs[8],
env->regs[9],
env->regs[10],
env->regs[11],
env->regs[12],
env->regs[13],
env->regs[14],
env->regs[15],
env->eip, eflags,
eflags & DF_MASK ? 'D' : '-',
eflags & CC_O ? 'O' : '-',
eflags & CC_S ? 'S' : '-',
eflags & CC_Z ? 'Z' : '-',
eflags & CC_A ? 'A' : '-',
eflags & CC_P ? 'P' : '-',
eflags & CC_C ? 'C' : '-',
env->hflags & HF_CPL_MASK,
(env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
(int)(env->a20_mask >> 20) & 1,
(env->hflags >> HF_SMM_SHIFT) & 1,
env->halted);
} else
#endif
{
cpu_fprintf(f, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n"
"ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n"
"EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
(uint32_t)env->regs[R_EAX],
(uint32_t)env->regs[R_EBX],
(uint32_t)env->regs[R_ECX],
(uint32_t)env->regs[R_EDX],
(uint32_t)env->regs[R_ESI],
(uint32_t)env->regs[R_EDI],
(uint32_t)env->regs[R_EBP],
(uint32_t)env->regs[R_ESP],
(uint32_t)env->eip, eflags,
eflags & DF_MASK ? 'D' : '-',
eflags & CC_O ? 'O' : '-',
eflags & CC_S ? 'S' : '-',
eflags & CC_Z ? 'Z' : '-',
eflags & CC_A ? 'A' : '-',
eflags & CC_P ? 'P' : '-',
eflags & CC_C ? 'C' : '-',
env->hflags & HF_CPL_MASK,
(env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
(int)(env->a20_mask >> 20) & 1,
(env->hflags >> HF_SMM_SHIFT) & 1,
env->halted);
}
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
for(i = 0; i < 6; i++) {
SegmentCache *sc = &env->segs[i];
cpu_fprintf(f, "%s =%04x %016" PRIx64 " %08x %08x\n",
seg_name[i],
sc->selector,
sc->base,
sc->limit,
sc->flags);
}
cpu_fprintf(f, "LDT=%04x %016" PRIx64 " %08x %08x\n",
env->ldt.selector,
env->ldt.base,
env->ldt.limit,
env->ldt.flags);
cpu_fprintf(f, "TR =%04x %016" PRIx64 " %08x %08x\n",
env->tr.selector,
env->tr.base,
env->tr.limit,
env->tr.flags);
cpu_fprintf(f, "GDT= %016" PRIx64 " %08x\n",
env->gdt.base, env->gdt.limit);
cpu_fprintf(f, "IDT= %016" PRIx64 " %08x\n",
env->idt.base, env->idt.limit);
cpu_fprintf(f, "CR0=%08x CR2=%016" PRIx64 " CR3=%016" PRIx64 " CR4=%08x\n",
(uint32_t)env->cr[0],
env->cr[2],
env->cr[3],
(uint32_t)env->cr[4]);
for(i = 0; i < 4; i++)
cpu_fprintf(f, "DR%d=%016" PRIx64 " ", i, env->dr[i]);
cpu_fprintf(f, "\nDR6=%016" PRIx64 " DR7=%016" PRIx64 "\n",
env->dr[6], env->dr[7]);
} else
#endif
{
for(i = 0; i < 6; i++) {
SegmentCache *sc = &env->segs[i];
cpu_fprintf(f, "%s =%04x %08x %08x %08x\n",
seg_name[i],
sc->selector,
(uint32_t)sc->base,
sc->limit,
sc->flags);
}
cpu_fprintf(f, "LDT=%04x %08x %08x %08x\n",
env->ldt.selector,
(uint32_t)env->ldt.base,
env->ldt.limit,
env->ldt.flags);
cpu_fprintf(f, "TR =%04x %08x %08x %08x\n",
env->tr.selector,
(uint32_t)env->tr.base,
env->tr.limit,
env->tr.flags);
cpu_fprintf(f, "GDT= %08x %08x\n",
(uint32_t)env->gdt.base, env->gdt.limit);
cpu_fprintf(f, "IDT= %08x %08x\n",
(uint32_t)env->idt.base, env->idt.limit);
cpu_fprintf(f, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n",
(uint32_t)env->cr[0],
(uint32_t)env->cr[2],
(uint32_t)env->cr[3],
(uint32_t)env->cr[4]);
for(i = 0; i < 4; i++)
cpu_fprintf(f, "DR%d=%08x ", i, env->dr[i]);
cpu_fprintf(f, "\nDR6=%08x DR7=%08x\n", env->dr[6], env->dr[7]);
}
if (flags & X86_DUMP_CCOP) {
if ((unsigned)env->cc_op < CC_OP_NB)
snprintf(cc_op_name, sizeof(cc_op_name), "%s", cc_op_str[env->cc_op]);
else
snprintf(cc_op_name, sizeof(cc_op_name), "[%d]", env->cc_op);
#ifdef TARGET_X86_64
if (env->hflags & HF_CS64_MASK) {
cpu_fprintf(f, "CCS=%016" PRIx64 " CCD=%016" PRIx64 " CCO=%-8s\n",
env->cc_src, env->cc_dst,
cc_op_name);
} else
#endif
{
cpu_fprintf(f, "CCS=%08x CCD=%08x CCO=%-8s\n",
(uint32_t)env->cc_src, (uint32_t)env->cc_dst,
cc_op_name);
}
}
if (flags & X86_DUMP_FPU) {
int fptag;
fptag = 0;
for(i = 0; i < 8; i++) {
fptag |= ((!env->fptags[i]) << i);
}
cpu_fprintf(f, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n",
env->fpuc,
(env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11,
env->fpstt,
fptag,
env->mxcsr);
for(i=0;i<8;i++) {
#if defined(USE_X86LDOUBLE)
union {
long double d;
struct {
uint64_t lower;
uint16_t upper;
} l;
} tmp;
tmp.d = env->fpregs[i].d;
cpu_fprintf(f, "FPR%d=%016" PRIx64 " %04x",
i, tmp.l.lower, tmp.l.upper);
#else
cpu_fprintf(f, "FPR%d=%016" PRIx64,
i, env->fpregs[i].mmx.q);
#endif
if ((i & 1) == 1)
cpu_fprintf(f, "\n");
else
cpu_fprintf(f, " ");
}
if (env->hflags & HF_CS64_MASK)
nb = 16;
else
nb = 8;
for(i=0;i<nb;i++) {
cpu_fprintf(f, "XMM%02d=%08x%08x%08x%08x",
i,
env->xmm_regs[i].XMM_L(3),
env->xmm_regs[i].XMM_L(2),
env->xmm_regs[i].XMM_L(1),
env->xmm_regs[i].XMM_L(0));
if ((i & 1) == 1)
cpu_fprintf(f, "\n");
else
cpu_fprintf(f, " ");
}
}
}
/***********************************************************/
/* x86 mmu */
/* XXX: add PGE support */
void cpu_x86_set_a20(CPUX86State *env, int a20_state)
{
a20_state = (a20_state != 0);
if (a20_state != ((env->a20_mask >> 20) & 1)) {
#if defined(DEBUG_MMU)
printf("A20 update: a20=%d\n", a20_state);
#endif
/* if the cpu is currently executing code, we must unlink it and
all the potentially executing TB */
cpu_interrupt(env, CPU_INTERRUPT_EXITTB);
/* when a20 is changed, all the MMU mappings are invalid, so
we must flush everything */
tlb_flush(env, 1);
env->a20_mask = (~0x100000) | (a20_state << 20);
}
}
void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0)
{
int pe_state;
#if defined(DEBUG_MMU)
printf("CR0 update: CR0=0x%08x\n", new_cr0);
#endif
if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) !=
(env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) {
tlb_flush(env, 1);
}
#ifdef TARGET_X86_64
if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) &&
(env->efer & MSR_EFER_LME)) {
/* enter in long mode */
/* XXX: generate an exception */
if (!(env->cr[4] & CR4_PAE_MASK))
return;
env->efer |= MSR_EFER_LMA;
env->hflags |= HF_LMA_MASK;
} else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) &&
(env->efer & MSR_EFER_LMA)) {
/* exit long mode */
env->efer &= ~MSR_EFER_LMA;
env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
env->eip &= 0xffffffff;
}
#endif
env->cr[0] = new_cr0 | CR0_ET_MASK;
/* update PE flag in hidden flags */
pe_state = (env->cr[0] & CR0_PE_MASK);
env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT);
/* ensure that ADDSEG is always set in real mode */
env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT);
/* update FPU flags */
env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
}
/* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
the PDPT */
void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3)
{
env->cr[3] = new_cr3;
if (env->cr[0] & CR0_PG_MASK) {
#if defined(DEBUG_MMU)
printf("CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3);
#endif
tlb_flush(env, 0);
}
}
void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4)
{
#if defined(DEBUG_MMU)
printf("CR4 update: CR4=%08x\n", (uint32_t)env->cr[4]);
#endif
if ((new_cr4 & (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK)) !=
(env->cr[4] & (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK))) {
tlb_flush(env, 1);
}
/* SSE handling */
if (!(env->cpuid_features & CPUID_SSE))
new_cr4 &= ~CR4_OSFXSR_MASK;
if (new_cr4 & CR4_OSFXSR_MASK)
env->hflags |= HF_OSFXSR_MASK;
else
env->hflags &= ~HF_OSFXSR_MASK;
env->cr[4] = new_cr4;
}
#if defined(CONFIG_USER_ONLY)
int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
int is_write, int mmu_idx, int is_softmmu)
{
/* user mode only emulation */
is_write &= 1;
env->cr[2] = addr;
env->error_code = (is_write << PG_ERROR_W_BIT);
env->error_code |= PG_ERROR_U_MASK;
env->exception_index = EXCP0E_PAGE;
return 1;
}
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
{
return addr;
}
#else
/* XXX: This value should match the one returned by CPUID
* and in exec.c */
#if defined(USE_KQEMU)
#define PHYS_ADDR_MASK 0xfffff000LL
#else
# if defined(TARGET_X86_64)
# define PHYS_ADDR_MASK 0xfffffff000LL
# else
# define PHYS_ADDR_MASK 0xffffff000LL
# endif
#endif
/* return value:
-1 = cannot handle fault
0 = nothing more to do
1 = generate PF fault
2 = soft MMU activation required for this block
*/
int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
int is_write1, int mmu_idx, int is_softmmu)
{
uint64_t ptep, pte;
target_ulong pde_addr, pte_addr;
int error_code, is_dirty, prot, page_size, ret, is_write, is_user;
target_phys_addr_t paddr;
uint32_t page_offset;
target_ulong vaddr, virt_addr;
is_user = mmu_idx == MMU_USER_IDX;
#if defined(DEBUG_MMU)
printf("MMU fault: addr=" TARGET_FMT_lx " w=%d u=%d eip=" TARGET_FMT_lx "\n",
addr, is_write1, is_user, env->eip);
#endif
is_write = is_write1 & 1;
if (!(env->cr[0] & CR0_PG_MASK)) {
pte = addr;
virt_addr = addr & TARGET_PAGE_MASK;
prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
page_size = 4096;
goto do_mapping;
}
if (env->cr[4] & CR4_PAE_MASK) {
uint64_t pde, pdpe;
target_ulong pdpe_addr;
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
uint64_t pml4e_addr, pml4e;
int32_t sext;
/* test virtual address sign extension */
sext = (int64_t)addr >> 47;
if (sext != 0 && sext != -1) {
env->error_code = 0;
env->exception_index = EXCP0D_GPF;
return 1;
}
pml4e_addr = ((env->cr[3] & ~0xfff) + (((addr >> 39) & 0x1ff) << 3)) &
env->a20_mask;
pml4e = ldq_phys(pml4e_addr);
if (!(pml4e & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
if (!(env->efer & MSR_EFER_NXE) && (pml4e & PG_NX_MASK)) {
error_code = PG_ERROR_RSVD_MASK;
goto do_fault;
}
if (!(pml4e & PG_ACCESSED_MASK)) {
pml4e |= PG_ACCESSED_MASK;
stl_phys_notdirty(pml4e_addr, pml4e);
}
ptep = pml4e ^ PG_NX_MASK;
pdpe_addr = ((pml4e & PHYS_ADDR_MASK) + (((addr >> 30) & 0x1ff) << 3)) &
env->a20_mask;
pdpe = ldq_phys(pdpe_addr);
if (!(pdpe & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
if (!(env->efer & MSR_EFER_NXE) && (pdpe & PG_NX_MASK)) {
error_code = PG_ERROR_RSVD_MASK;
goto do_fault;
}
ptep &= pdpe ^ PG_NX_MASK;
if (!(pdpe & PG_ACCESSED_MASK)) {
pdpe |= PG_ACCESSED_MASK;
stl_phys_notdirty(pdpe_addr, pdpe);
}
} else
#endif
{
/* XXX: load them when cr3 is loaded ? */
pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
env->a20_mask;
pdpe = ldq_phys(pdpe_addr);
if (!(pdpe & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
}
pde_addr = ((pdpe & PHYS_ADDR_MASK) + (((addr >> 21) & 0x1ff) << 3)) &
env->a20_mask;
pde = ldq_phys(pde_addr);
if (!(pde & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
if (!(env->efer & MSR_EFER_NXE) && (pde & PG_NX_MASK)) {
error_code = PG_ERROR_RSVD_MASK;
goto do_fault;
}
ptep &= pde ^ PG_NX_MASK;
if (pde & PG_PSE_MASK) {
/* 2 MB page */
page_size = 2048 * 1024;
ptep ^= PG_NX_MASK;
if ((ptep & PG_NX_MASK) && is_write1 == 2)
goto do_fault_protect;
if (is_user) {
if (!(ptep & PG_USER_MASK))
goto do_fault_protect;
if (is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
} else {
if ((env->cr[0] & CR0_WP_MASK) &&
is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
}
is_dirty = is_write && !(pde & PG_DIRTY_MASK);
if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
pde |= PG_ACCESSED_MASK;
if (is_dirty)
pde |= PG_DIRTY_MASK;
stl_phys_notdirty(pde_addr, pde);
}
/* align to page_size */
pte = pde & ((PHYS_ADDR_MASK & ~(page_size - 1)) | 0xfff);
virt_addr = addr & ~(page_size - 1);
} else {
/* 4 KB page */
if (!(pde & PG_ACCESSED_MASK)) {
pde |= PG_ACCESSED_MASK;
stl_phys_notdirty(pde_addr, pde);
}
pte_addr = ((pde & PHYS_ADDR_MASK) + (((addr >> 12) & 0x1ff) << 3)) &
env->a20_mask;
pte = ldq_phys(pte_addr);
if (!(pte & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
if (!(env->efer & MSR_EFER_NXE) && (pte & PG_NX_MASK)) {
error_code = PG_ERROR_RSVD_MASK;
goto do_fault;
}
/* combine pde and pte nx, user and rw protections */
ptep &= pte ^ PG_NX_MASK;
ptep ^= PG_NX_MASK;
if ((ptep & PG_NX_MASK) && is_write1 == 2)
goto do_fault_protect;
if (is_user) {
if (!(ptep & PG_USER_MASK))
goto do_fault_protect;
if (is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
} else {
if ((env->cr[0] & CR0_WP_MASK) &&
is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
}
is_dirty = is_write && !(pte & PG_DIRTY_MASK);
if (!(pte & PG_ACCESSED_MASK) || is_dirty) {
pte |= PG_ACCESSED_MASK;
if (is_dirty)
pte |= PG_DIRTY_MASK;
stl_phys_notdirty(pte_addr, pte);
}
page_size = 4096;
virt_addr = addr & ~0xfff;
pte = pte & (PHYS_ADDR_MASK | 0xfff);
}
} else {
uint32_t pde;
/* page directory entry */
pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) &
env->a20_mask;
pde = ldl_phys(pde_addr);
if (!(pde & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
/* if PSE bit is set, then we use a 4MB page */
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
page_size = 4096 * 1024;
if (is_user) {
if (!(pde & PG_USER_MASK))
goto do_fault_protect;
if (is_write && !(pde & PG_RW_MASK))
goto do_fault_protect;
} else {
if ((env->cr[0] & CR0_WP_MASK) &&
is_write && !(pde & PG_RW_MASK))
goto do_fault_protect;
}
is_dirty = is_write && !(pde & PG_DIRTY_MASK);
if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
pde |= PG_ACCESSED_MASK;
if (is_dirty)
pde |= PG_DIRTY_MASK;
stl_phys_notdirty(pde_addr, pde);
}
pte = pde & ~( (page_size - 1) & ~0xfff); /* align to page_size */
ptep = pte;
virt_addr = addr & ~(page_size - 1);
} else {
if (!(pde & PG_ACCESSED_MASK)) {
pde |= PG_ACCESSED_MASK;
stl_phys_notdirty(pde_addr, pde);
}
/* page directory entry */
pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) &
env->a20_mask;
pte = ldl_phys(pte_addr);
if (!(pte & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
/* combine pde and pte user and rw protections */
ptep = pte & pde;
if (is_user) {
if (!(ptep & PG_USER_MASK))
goto do_fault_protect;
if (is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
} else {
if ((env->cr[0] & CR0_WP_MASK) &&
is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
}
is_dirty = is_write && !(pte & PG_DIRTY_MASK);
if (!(pte & PG_ACCESSED_MASK) || is_dirty) {
pte |= PG_ACCESSED_MASK;
if (is_dirty)
pte |= PG_DIRTY_MASK;
stl_phys_notdirty(pte_addr, pte);
}
page_size = 4096;
virt_addr = addr & ~0xfff;
}
}
/* the page can be put in the TLB */
prot = PAGE_READ;
if (!(ptep & PG_NX_MASK))
prot |= PAGE_EXEC;
if (pte & PG_DIRTY_MASK) {
/* only set write access if already dirty... otherwise wait
for dirty access */
if (is_user) {
if (ptep & PG_RW_MASK)
prot |= PAGE_WRITE;
} else {
if (!(env->cr[0] & CR0_WP_MASK) ||
(ptep & PG_RW_MASK))
prot |= PAGE_WRITE;
}
}
do_mapping:
pte = pte & env->a20_mask;
/* Even if 4MB pages, we map only one 4KB page in the cache to
avoid filling it too fast */
page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
paddr = (pte & TARGET_PAGE_MASK) + page_offset;
vaddr = virt_addr + page_offset;
ret = tlb_set_page_exec(env, vaddr, paddr, prot, mmu_idx, is_softmmu);
return ret;
do_fault_protect:
error_code = PG_ERROR_P_MASK;
do_fault:
error_code |= (is_write << PG_ERROR_W_BIT);
if (is_user)
error_code |= PG_ERROR_U_MASK;
if (is_write1 == 2 &&
(env->efer & MSR_EFER_NXE) &&
(env->cr[4] & CR4_PAE_MASK))
error_code |= PG_ERROR_I_D_MASK;
if (env->intercept_exceptions & (1 << EXCP0E_PAGE)) {
/* cr2 is not modified in case of exceptions */
stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
addr);
} else {
env->cr[2] = addr;
}
env->error_code = error_code;
env->exception_index = EXCP0E_PAGE;
return 1;
}
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
{
target_ulong pde_addr, pte_addr;
uint64_t pte;
target_phys_addr_t paddr;
uint32_t page_offset;
int page_size;
if (env->cr[4] & CR4_PAE_MASK) {
target_ulong pdpe_addr;
uint64_t pde, pdpe;
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
uint64_t pml4e_addr, pml4e;
int32_t sext;
/* test virtual address sign extension */
sext = (int64_t)addr >> 47;
if (sext != 0 && sext != -1)
return -1;
pml4e_addr = ((env->cr[3] & ~0xfff) + (((addr >> 39) & 0x1ff) << 3)) &
env->a20_mask;
pml4e = ldq_phys(pml4e_addr);
if (!(pml4e & PG_PRESENT_MASK))
return -1;
pdpe_addr = ((pml4e & ~0xfff) + (((addr >> 30) & 0x1ff) << 3)) &
env->a20_mask;
pdpe = ldq_phys(pdpe_addr);
if (!(pdpe & PG_PRESENT_MASK))
return -1;
} else
#endif
{
pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
env->a20_mask;
pdpe = ldq_phys(pdpe_addr);
if (!(pdpe & PG_PRESENT_MASK))
return -1;
}
pde_addr = ((pdpe & ~0xfff) + (((addr >> 21) & 0x1ff) << 3)) &
env->a20_mask;
pde = ldq_phys(pde_addr);
if (!(pde & PG_PRESENT_MASK)) {
return -1;
}
if (pde & PG_PSE_MASK) {
/* 2 MB page */
page_size = 2048 * 1024;
pte = pde & ~( (page_size - 1) & ~0xfff); /* align to page_size */
} else {
/* 4 KB page */
pte_addr = ((pde & ~0xfff) + (((addr >> 12) & 0x1ff) << 3)) &
env->a20_mask;
page_size = 4096;
pte = ldq_phys(pte_addr);
}
if (!(pte & PG_PRESENT_MASK))
return -1;
} else {
uint32_t pde;
if (!(env->cr[0] & CR0_PG_MASK)) {
pte = addr;
page_size = 4096;
} else {
/* page directory entry */
pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & env->a20_mask;
pde = ldl_phys(pde_addr);
if (!(pde & PG_PRESENT_MASK))
return -1;
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
pte = pde & ~0x003ff000; /* align to 4MB */
page_size = 4096 * 1024;
} else {
/* page directory entry */
pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & env->a20_mask;
pte = ldl_phys(pte_addr);
if (!(pte & PG_PRESENT_MASK))
return -1;
page_size = 4096;
}
}
pte = pte & env->a20_mask;
}
page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
paddr = (pte & TARGET_PAGE_MASK) + page_offset;
return paddr;
}
void hw_breakpoint_insert(CPUState *env, int index)
{
int type, err = 0;
switch (hw_breakpoint_type(env->dr[7], index)) {
case 0:
if (hw_breakpoint_enabled(env->dr[7], index))
err = cpu_breakpoint_insert(env, env->dr[index], BP_CPU,
&env->cpu_breakpoint[index]);
break;
case 1:
type = BP_CPU | BP_MEM_WRITE;
goto insert_wp;
case 2:
/* No support for I/O watchpoints yet */
break;
case 3:
type = BP_CPU | BP_MEM_ACCESS;
insert_wp:
err = cpu_watchpoint_insert(env, env->dr[index],
hw_breakpoint_len(env->dr[7], index),
type, &env->cpu_watchpoint[index]);
break;
}
if (err)
env->cpu_breakpoint[index] = NULL;
}
void hw_breakpoint_remove(CPUState *env, int index)
{
if (!env->cpu_breakpoint[index])
return;
switch (hw_breakpoint_type(env->dr[7], index)) {
case 0:
if (hw_breakpoint_enabled(env->dr[7], index))
cpu_breakpoint_remove_by_ref(env, env->cpu_breakpoint[index]);
break;
case 1:
case 3:
cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[index]);
break;
case 2:
/* No support for I/O watchpoints yet */
break;
}
}
int check_hw_breakpoints(CPUState *env, int force_dr6_update)
{
target_ulong dr6;
int reg, type;
int hit_enabled = 0;
dr6 = env->dr[6] & ~0xf;
for (reg = 0; reg < 4; reg++) {
type = hw_breakpoint_type(env->dr[7], reg);
if ((type == 0 && env->dr[reg] == env->eip) ||
((type & 1) && env->cpu_watchpoint[reg] &&
(env->cpu_watchpoint[reg]->flags & BP_WATCHPOINT_HIT))) {
dr6 |= 1 << reg;
if (hw_breakpoint_enabled(env->dr[7], reg))
hit_enabled = 1;
}
}
if (hit_enabled || force_dr6_update)
env->dr[6] = dr6;
return hit_enabled;
}
static CPUDebugExcpHandler *prev_debug_excp_handler;
void raise_exception(int exception_index);
static void breakpoint_handler(CPUState *env)
{
CPUBreakpoint *bp;
if (env->watchpoint_hit) {
if (env->watchpoint_hit->flags & BP_CPU) {
env->watchpoint_hit = NULL;
if (check_hw_breakpoints(env, 0))
raise_exception(EXCP01_DB);
else
cpu_resume_from_signal(env, NULL);
}
} else {
TAILQ_FOREACH(bp, &env->breakpoints, entry)
if (bp->pc == env->eip) {
if (bp->flags & BP_CPU) {
check_hw_breakpoints(env, 1);
raise_exception(EXCP01_DB);
}
break;
}
}
if (prev_debug_excp_handler)
prev_debug_excp_handler(env);
}
#endif /* !CONFIG_USER_ONLY */
static void host_cpuid(uint32_t function, uint32_t count,
uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
#if defined(CONFIG_KVM)
uint32_t vec[4];
#ifdef __x86_64__
asm volatile("cpuid"
: "=a"(vec[0]), "=b"(vec[1]),
"=c"(vec[2]), "=d"(vec[3])
: "0"(function), "c"(count) : "cc");
#else
asm volatile("pusha \n\t"
"cpuid \n\t"
"mov %%eax, 0(%1) \n\t"
"mov %%ebx, 4(%1) \n\t"
"mov %%ecx, 8(%1) \n\t"
"mov %%edx, 12(%1) \n\t"
"popa"
: : "a"(function), "c"(count), "S"(vec)
: "memory", "cc");
#endif
if (eax)
*eax = vec[0];
if (ebx)
*ebx = vec[1];
if (ecx)
*ecx = vec[2];
if (edx)
*edx = vec[3];
#endif
}
void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
/* test if maximum index reached */
if (index & 0x80000000) {
if (index > env->cpuid_xlevel)
index = env->cpuid_level;
} else {
if (index > env->cpuid_level)
index = env->cpuid_level;
}
switch(index) {
case 0:
*eax = env->cpuid_level;
*ebx = env->cpuid_vendor1;
*edx = env->cpuid_vendor2;
*ecx = env->cpuid_vendor3;
/* sysenter isn't supported on compatibility mode on AMD. and syscall
* isn't supported in compatibility mode on Intel. so advertise the
* actuall cpu, and say goodbye to migration between different vendors
* is you use compatibility mode. */
if (kvm_enabled())
host_cpuid(0, 0, NULL, ebx, ecx, edx);
break;
case 1:
*eax = env->cpuid_version;
*ebx = (env->cpuid_apic_id << 24) | 8 << 8; /* CLFLUSH size in quad words, Linux wants it. */
*ecx = env->cpuid_ext_features;
*edx = env->cpuid_features;
/* "Hypervisor present" bit required for Microsoft SVVP */
if (kvm_enabled())
*ecx |= (1 << 31);
break;
case 2:
/* cache info: needed for Pentium Pro compatibility */
*eax = 1;
*ebx = 0;
*ecx = 0;
*edx = 0x2c307d;
break;
case 4:
/* cache info: needed for Core compatibility */
switch (count) {
case 0: /* L1 dcache info */
*eax = 0x0000121;
*ebx = 0x1c0003f;
*ecx = 0x000003f;
*edx = 0x0000001;
break;
case 1: /* L1 icache info */
*eax = 0x0000122;
*ebx = 0x1c0003f;
*ecx = 0x000003f;
*edx = 0x0000001;
break;
case 2: /* L2 cache info */
*eax = 0x0000143;
*ebx = 0x3c0003f;
*ecx = 0x0000fff;
*edx = 0x0000001;
break;
default: /* end of info */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
}
break;
case 5:
/* mwait info: needed for Core compatibility */
*eax = 0; /* Smallest monitor-line size in bytes */
*ebx = 0; /* Largest monitor-line size in bytes */
*ecx = CPUID_MWAIT_EMX | CPUID_MWAIT_IBE;
*edx = 0;
break;
case 6:
/* Thermal and Power Leaf */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 9:
/* Direct Cache Access Information Leaf */
*eax = 0; /* Bits 0-31 in DCA_CAP MSR */
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0xA:
/* Architectural Performance Monitoring Leaf */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0x80000000:
*eax = env->cpuid_xlevel;
*ebx = env->cpuid_vendor1;
*edx = env->cpuid_vendor2;
*ecx = env->cpuid_vendor3;
break;
case 0x80000001:
*eax = env->cpuid_features;
*ebx = 0;
*ecx = env->cpuid_ext3_features;
*edx = env->cpuid_ext2_features;
if (kvm_enabled()) {
uint32_t h_eax, h_edx;
host_cpuid(index, 0, &h_eax, NULL, NULL, &h_edx);
/* disable CPU features that the host does not support */
/* long mode */
if ((h_edx & 0x20000000) == 0 /* || !lm_capable_kernel */)
*edx &= ~0x20000000;
/* syscall */
if ((h_edx & 0x00000800) == 0)
*edx &= ~0x00000800;
/* nx */
if ((h_edx & 0x00100000) == 0)
*edx &= ~0x00100000;
/* disable CPU features that KVM cannot support */
/* svm */
*ecx &= ~4UL;
/* 3dnow */
*edx &= ~0xc0000000;
}
break;
case 0x80000002:
case 0x80000003:
case 0x80000004:
*eax = env->cpuid_model[(index - 0x80000002) * 4 + 0];
*ebx = env->cpuid_model[(index - 0x80000002) * 4 + 1];
*ecx = env->cpuid_model[(index - 0x80000002) * 4 + 2];
*edx = env->cpuid_model[(index - 0x80000002) * 4 + 3];
break;
case 0x80000005:
/* cache info (L1 cache) */
*eax = 0x01ff01ff;
*ebx = 0x01ff01ff;
*ecx = 0x40020140;
*edx = 0x40020140;
break;
case 0x80000006:
/* cache info (L2 cache) */
*eax = 0;
*ebx = 0x42004200;
*ecx = 0x02008140;
*edx = 0;
break;
case 0x80000008:
/* virtual & phys address size in low 2 bytes. */
/* XXX: This value must match the one used in the MMU code. */
if (env->cpuid_ext2_features & CPUID_EXT2_LM) {
/* 64 bit processor */
#if defined(USE_KQEMU)
*eax = 0x00003020; /* 48 bits virtual, 32 bits physical */
#else
/* XXX: The physical address space is limited to 42 bits in exec.c. */
*eax = 0x00003028; /* 48 bits virtual, 40 bits physical */
#endif
} else {
#if defined(USE_KQEMU)
*eax = 0x00000020; /* 32 bits physical */
#else
if (env->cpuid_features & CPUID_PSE36)
*eax = 0x00000024; /* 36 bits physical */
else
*eax = 0x00000020; /* 32 bits physical */
#endif
}
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0x8000000A:
*eax = 0x00000001; /* SVM Revision */
*ebx = 0x00000010; /* nr of ASIDs */
*ecx = 0;
*edx = 0; /* optional features */
break;
default:
/* reserved values: zero */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
}
}
CPUX86State *cpu_x86_init(const char *cpu_model)
{
CPUX86State *env;
static int inited;
env = qemu_mallocz(sizeof(CPUX86State));
cpu_exec_init(env);
env->cpu_model_str = cpu_model;
/* init various static tables */
if (!inited) {
inited = 1;
optimize_flags_init();
#ifndef CONFIG_USER_ONLY
prev_debug_excp_handler =
cpu_set_debug_excp_handler(breakpoint_handler);
#endif
}
if (cpu_x86_register(env, cpu_model) < 0) {
cpu_x86_close(env);
return NULL;
}
cpu_reset(env);
#ifdef USE_KQEMU
kqemu_init(env);
#endif
if (kvm_enabled())
kvm_init_vcpu(env);
return env;
}