5261dd7b01
qemu_co_queue_next does not need to release and re-acquire the mutex, because the queued coroutine does not run immediately. However, this does not hold for qemu_co_enter_next. Now that qemu_co_queue_wait can synchronize (via QemuLockable) with code that is not running in coroutine context, it's important that code using qemu_co_enter_next can easily use a standardized locking idiom. First of all, qemu_co_enter_next must use aio_co_wake to restart the coroutine. Second, the function gains a second argument, a QemuLockable*, and the comments of qemu_co_queue_next and qemu_co_queue_restart_all are adjusted to clarify the difference. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20180203153935.8056-5-pbonzini@redhat.com> Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Fam Zheng <famz@redhat.com> Signed-off-by: Fam Zheng <famz@redhat.com>
462 lines
14 KiB
C
462 lines
14 KiB
C
/*
|
|
* coroutine queues and locks
|
|
*
|
|
* Copyright (c) 2011 Kevin Wolf <kwolf@redhat.com>
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*
|
|
* The lock-free mutex implementation is based on OSv
|
|
* (core/lfmutex.cc, include/lockfree/mutex.hh).
|
|
* Copyright (C) 2013 Cloudius Systems, Ltd.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu-common.h"
|
|
#include "qemu/coroutine.h"
|
|
#include "qemu/coroutine_int.h"
|
|
#include "qemu/processor.h"
|
|
#include "qemu/queue.h"
|
|
#include "block/aio.h"
|
|
#include "trace.h"
|
|
|
|
void qemu_co_queue_init(CoQueue *queue)
|
|
{
|
|
QSIMPLEQ_INIT(&queue->entries);
|
|
}
|
|
|
|
void coroutine_fn qemu_co_queue_wait_impl(CoQueue *queue, QemuLockable *lock)
|
|
{
|
|
Coroutine *self = qemu_coroutine_self();
|
|
QSIMPLEQ_INSERT_TAIL(&queue->entries, self, co_queue_next);
|
|
|
|
if (lock) {
|
|
qemu_lockable_unlock(lock);
|
|
}
|
|
|
|
/* There is no race condition here. Other threads will call
|
|
* aio_co_schedule on our AioContext, which can reenter this
|
|
* coroutine but only after this yield and after the main loop
|
|
* has gone through the next iteration.
|
|
*/
|
|
qemu_coroutine_yield();
|
|
assert(qemu_in_coroutine());
|
|
|
|
/* TODO: OSv implements wait morphing here, where the wakeup
|
|
* primitive automatically places the woken coroutine on the
|
|
* mutex's queue. This avoids the thundering herd effect.
|
|
* This could be implemented for CoMutexes, but not really for
|
|
* other cases of QemuLockable.
|
|
*/
|
|
if (lock) {
|
|
qemu_lockable_lock(lock);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* qemu_co_queue_run_restart:
|
|
*
|
|
* Enter each coroutine that was previously marked for restart by
|
|
* qemu_co_queue_next() or qemu_co_queue_restart_all(). This function is
|
|
* invoked by the core coroutine code when the current coroutine yields or
|
|
* terminates.
|
|
*/
|
|
void qemu_co_queue_run_restart(Coroutine *co)
|
|
{
|
|
Coroutine *next;
|
|
QSIMPLEQ_HEAD(, Coroutine) tmp_queue_wakeup =
|
|
QSIMPLEQ_HEAD_INITIALIZER(tmp_queue_wakeup);
|
|
|
|
trace_qemu_co_queue_run_restart(co);
|
|
|
|
/* Because "co" has yielded, any coroutine that we wakeup can resume it.
|
|
* If this happens and "co" terminates, co->co_queue_wakeup becomes
|
|
* invalid memory. Therefore, use a temporary queue and do not touch
|
|
* the "co" coroutine as soon as you enter another one.
|
|
*
|
|
* In its turn resumed "co" can pupulate "co_queue_wakeup" queue with
|
|
* new coroutines to be woken up. The caller, who has resumed "co",
|
|
* will be responsible for traversing the same queue, which may cause
|
|
* a different wakeup order but not any missing wakeups.
|
|
*/
|
|
QSIMPLEQ_CONCAT(&tmp_queue_wakeup, &co->co_queue_wakeup);
|
|
|
|
while ((next = QSIMPLEQ_FIRST(&tmp_queue_wakeup))) {
|
|
QSIMPLEQ_REMOVE_HEAD(&tmp_queue_wakeup, co_queue_next);
|
|
qemu_coroutine_enter(next);
|
|
}
|
|
}
|
|
|
|
static bool qemu_co_queue_do_restart(CoQueue *queue, bool single)
|
|
{
|
|
Coroutine *next;
|
|
|
|
if (QSIMPLEQ_EMPTY(&queue->entries)) {
|
|
return false;
|
|
}
|
|
|
|
while ((next = QSIMPLEQ_FIRST(&queue->entries)) != NULL) {
|
|
QSIMPLEQ_REMOVE_HEAD(&queue->entries, co_queue_next);
|
|
aio_co_wake(next);
|
|
if (single) {
|
|
break;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool coroutine_fn qemu_co_queue_next(CoQueue *queue)
|
|
{
|
|
assert(qemu_in_coroutine());
|
|
return qemu_co_queue_do_restart(queue, true);
|
|
}
|
|
|
|
void coroutine_fn qemu_co_queue_restart_all(CoQueue *queue)
|
|
{
|
|
assert(qemu_in_coroutine());
|
|
qemu_co_queue_do_restart(queue, false);
|
|
}
|
|
|
|
bool qemu_co_enter_next_impl(CoQueue *queue, QemuLockable *lock)
|
|
{
|
|
Coroutine *next;
|
|
|
|
next = QSIMPLEQ_FIRST(&queue->entries);
|
|
if (!next) {
|
|
return false;
|
|
}
|
|
|
|
QSIMPLEQ_REMOVE_HEAD(&queue->entries, co_queue_next);
|
|
if (lock) {
|
|
qemu_lockable_unlock(lock);
|
|
}
|
|
aio_co_wake(next);
|
|
if (lock) {
|
|
qemu_lockable_lock(lock);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool qemu_co_queue_empty(CoQueue *queue)
|
|
{
|
|
return QSIMPLEQ_FIRST(&queue->entries) == NULL;
|
|
}
|
|
|
|
/* The wait records are handled with a multiple-producer, single-consumer
|
|
* lock-free queue. There cannot be two concurrent pop_waiter() calls
|
|
* because pop_waiter() can only be called while mutex->handoff is zero.
|
|
* This can happen in three cases:
|
|
* - in qemu_co_mutex_unlock, before the hand-off protocol has started.
|
|
* In this case, qemu_co_mutex_lock will see mutex->handoff == 0 and
|
|
* not take part in the handoff.
|
|
* - in qemu_co_mutex_lock, if it steals the hand-off responsibility from
|
|
* qemu_co_mutex_unlock. In this case, qemu_co_mutex_unlock will fail
|
|
* the cmpxchg (it will see either 0 or the next sequence value) and
|
|
* exit. The next hand-off cannot begin until qemu_co_mutex_lock has
|
|
* woken up someone.
|
|
* - in qemu_co_mutex_unlock, if it takes the hand-off token itself.
|
|
* In this case another iteration starts with mutex->handoff == 0;
|
|
* a concurrent qemu_co_mutex_lock will fail the cmpxchg, and
|
|
* qemu_co_mutex_unlock will go back to case (1).
|
|
*
|
|
* The following functions manage this queue.
|
|
*/
|
|
typedef struct CoWaitRecord {
|
|
Coroutine *co;
|
|
QSLIST_ENTRY(CoWaitRecord) next;
|
|
} CoWaitRecord;
|
|
|
|
static void push_waiter(CoMutex *mutex, CoWaitRecord *w)
|
|
{
|
|
w->co = qemu_coroutine_self();
|
|
QSLIST_INSERT_HEAD_ATOMIC(&mutex->from_push, w, next);
|
|
}
|
|
|
|
static void move_waiters(CoMutex *mutex)
|
|
{
|
|
QSLIST_HEAD(, CoWaitRecord) reversed;
|
|
QSLIST_MOVE_ATOMIC(&reversed, &mutex->from_push);
|
|
while (!QSLIST_EMPTY(&reversed)) {
|
|
CoWaitRecord *w = QSLIST_FIRST(&reversed);
|
|
QSLIST_REMOVE_HEAD(&reversed, next);
|
|
QSLIST_INSERT_HEAD(&mutex->to_pop, w, next);
|
|
}
|
|
}
|
|
|
|
static CoWaitRecord *pop_waiter(CoMutex *mutex)
|
|
{
|
|
CoWaitRecord *w;
|
|
|
|
if (QSLIST_EMPTY(&mutex->to_pop)) {
|
|
move_waiters(mutex);
|
|
if (QSLIST_EMPTY(&mutex->to_pop)) {
|
|
return NULL;
|
|
}
|
|
}
|
|
w = QSLIST_FIRST(&mutex->to_pop);
|
|
QSLIST_REMOVE_HEAD(&mutex->to_pop, next);
|
|
return w;
|
|
}
|
|
|
|
static bool has_waiters(CoMutex *mutex)
|
|
{
|
|
return QSLIST_EMPTY(&mutex->to_pop) || QSLIST_EMPTY(&mutex->from_push);
|
|
}
|
|
|
|
void qemu_co_mutex_init(CoMutex *mutex)
|
|
{
|
|
memset(mutex, 0, sizeof(*mutex));
|
|
}
|
|
|
|
static void coroutine_fn qemu_co_mutex_wake(CoMutex *mutex, Coroutine *co)
|
|
{
|
|
/* Read co before co->ctx; pairs with smp_wmb() in
|
|
* qemu_coroutine_enter().
|
|
*/
|
|
smp_read_barrier_depends();
|
|
mutex->ctx = co->ctx;
|
|
aio_co_wake(co);
|
|
}
|
|
|
|
static void coroutine_fn qemu_co_mutex_lock_slowpath(AioContext *ctx,
|
|
CoMutex *mutex)
|
|
{
|
|
Coroutine *self = qemu_coroutine_self();
|
|
CoWaitRecord w;
|
|
unsigned old_handoff;
|
|
|
|
trace_qemu_co_mutex_lock_entry(mutex, self);
|
|
w.co = self;
|
|
push_waiter(mutex, &w);
|
|
|
|
/* This is the "Responsibility Hand-Off" protocol; a lock() picks from
|
|
* a concurrent unlock() the responsibility of waking somebody up.
|
|
*/
|
|
old_handoff = atomic_mb_read(&mutex->handoff);
|
|
if (old_handoff &&
|
|
has_waiters(mutex) &&
|
|
atomic_cmpxchg(&mutex->handoff, old_handoff, 0) == old_handoff) {
|
|
/* There can be no concurrent pops, because there can be only
|
|
* one active handoff at a time.
|
|
*/
|
|
CoWaitRecord *to_wake = pop_waiter(mutex);
|
|
Coroutine *co = to_wake->co;
|
|
if (co == self) {
|
|
/* We got the lock ourselves! */
|
|
assert(to_wake == &w);
|
|
mutex->ctx = ctx;
|
|
return;
|
|
}
|
|
|
|
qemu_co_mutex_wake(mutex, co);
|
|
}
|
|
|
|
qemu_coroutine_yield();
|
|
trace_qemu_co_mutex_lock_return(mutex, self);
|
|
}
|
|
|
|
void coroutine_fn qemu_co_mutex_lock(CoMutex *mutex)
|
|
{
|
|
AioContext *ctx = qemu_get_current_aio_context();
|
|
Coroutine *self = qemu_coroutine_self();
|
|
int waiters, i;
|
|
|
|
/* Running a very small critical section on pthread_mutex_t and CoMutex
|
|
* shows that pthread_mutex_t is much faster because it doesn't actually
|
|
* go to sleep. What happens is that the critical section is shorter
|
|
* than the latency of entering the kernel and thus FUTEX_WAIT always
|
|
* fails. With CoMutex there is no such latency but you still want to
|
|
* avoid wait and wakeup. So introduce it artificially.
|
|
*/
|
|
i = 0;
|
|
retry_fast_path:
|
|
waiters = atomic_cmpxchg(&mutex->locked, 0, 1);
|
|
if (waiters != 0) {
|
|
while (waiters == 1 && ++i < 1000) {
|
|
if (atomic_read(&mutex->ctx) == ctx) {
|
|
break;
|
|
}
|
|
if (atomic_read(&mutex->locked) == 0) {
|
|
goto retry_fast_path;
|
|
}
|
|
cpu_relax();
|
|
}
|
|
waiters = atomic_fetch_inc(&mutex->locked);
|
|
}
|
|
|
|
if (waiters == 0) {
|
|
/* Uncontended. */
|
|
trace_qemu_co_mutex_lock_uncontended(mutex, self);
|
|
mutex->ctx = ctx;
|
|
} else {
|
|
qemu_co_mutex_lock_slowpath(ctx, mutex);
|
|
}
|
|
mutex->holder = self;
|
|
self->locks_held++;
|
|
}
|
|
|
|
void coroutine_fn qemu_co_mutex_unlock(CoMutex *mutex)
|
|
{
|
|
Coroutine *self = qemu_coroutine_self();
|
|
|
|
trace_qemu_co_mutex_unlock_entry(mutex, self);
|
|
|
|
assert(mutex->locked);
|
|
assert(mutex->holder == self);
|
|
assert(qemu_in_coroutine());
|
|
|
|
mutex->ctx = NULL;
|
|
mutex->holder = NULL;
|
|
self->locks_held--;
|
|
if (atomic_fetch_dec(&mutex->locked) == 1) {
|
|
/* No waiting qemu_co_mutex_lock(). Pfew, that was easy! */
|
|
return;
|
|
}
|
|
|
|
for (;;) {
|
|
CoWaitRecord *to_wake = pop_waiter(mutex);
|
|
unsigned our_handoff;
|
|
|
|
if (to_wake) {
|
|
qemu_co_mutex_wake(mutex, to_wake->co);
|
|
break;
|
|
}
|
|
|
|
/* Some concurrent lock() is in progress (we know this because
|
|
* mutex->locked was >1) but it hasn't yet put itself on the wait
|
|
* queue. Pick a sequence number for the handoff protocol (not 0).
|
|
*/
|
|
if (++mutex->sequence == 0) {
|
|
mutex->sequence = 1;
|
|
}
|
|
|
|
our_handoff = mutex->sequence;
|
|
atomic_mb_set(&mutex->handoff, our_handoff);
|
|
if (!has_waiters(mutex)) {
|
|
/* The concurrent lock has not added itself yet, so it
|
|
* will be able to pick our handoff.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/* Try to do the handoff protocol ourselves; if somebody else has
|
|
* already taken it, however, we're done and they're responsible.
|
|
*/
|
|
if (atomic_cmpxchg(&mutex->handoff, our_handoff, 0) != our_handoff) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
trace_qemu_co_mutex_unlock_return(mutex, self);
|
|
}
|
|
|
|
void qemu_co_rwlock_init(CoRwlock *lock)
|
|
{
|
|
memset(lock, 0, sizeof(*lock));
|
|
qemu_co_queue_init(&lock->queue);
|
|
qemu_co_mutex_init(&lock->mutex);
|
|
}
|
|
|
|
void qemu_co_rwlock_rdlock(CoRwlock *lock)
|
|
{
|
|
Coroutine *self = qemu_coroutine_self();
|
|
|
|
qemu_co_mutex_lock(&lock->mutex);
|
|
/* For fairness, wait if a writer is in line. */
|
|
while (lock->pending_writer) {
|
|
qemu_co_queue_wait(&lock->queue, &lock->mutex);
|
|
}
|
|
lock->reader++;
|
|
qemu_co_mutex_unlock(&lock->mutex);
|
|
|
|
/* The rest of the read-side critical section is run without the mutex. */
|
|
self->locks_held++;
|
|
}
|
|
|
|
void qemu_co_rwlock_unlock(CoRwlock *lock)
|
|
{
|
|
Coroutine *self = qemu_coroutine_self();
|
|
|
|
assert(qemu_in_coroutine());
|
|
if (!lock->reader) {
|
|
/* The critical section started in qemu_co_rwlock_wrlock. */
|
|
qemu_co_queue_restart_all(&lock->queue);
|
|
} else {
|
|
self->locks_held--;
|
|
|
|
qemu_co_mutex_lock(&lock->mutex);
|
|
lock->reader--;
|
|
assert(lock->reader >= 0);
|
|
/* Wakeup only one waiting writer */
|
|
if (!lock->reader) {
|
|
qemu_co_queue_next(&lock->queue);
|
|
}
|
|
}
|
|
qemu_co_mutex_unlock(&lock->mutex);
|
|
}
|
|
|
|
void qemu_co_rwlock_downgrade(CoRwlock *lock)
|
|
{
|
|
Coroutine *self = qemu_coroutine_self();
|
|
|
|
/* lock->mutex critical section started in qemu_co_rwlock_wrlock or
|
|
* qemu_co_rwlock_upgrade.
|
|
*/
|
|
assert(lock->reader == 0);
|
|
lock->reader++;
|
|
qemu_co_mutex_unlock(&lock->mutex);
|
|
|
|
/* The rest of the read-side critical section is run without the mutex. */
|
|
self->locks_held++;
|
|
}
|
|
|
|
void qemu_co_rwlock_wrlock(CoRwlock *lock)
|
|
{
|
|
qemu_co_mutex_lock(&lock->mutex);
|
|
lock->pending_writer++;
|
|
while (lock->reader) {
|
|
qemu_co_queue_wait(&lock->queue, &lock->mutex);
|
|
}
|
|
lock->pending_writer--;
|
|
|
|
/* The rest of the write-side critical section is run with
|
|
* the mutex taken, so that lock->reader remains zero.
|
|
* There is no need to update self->locks_held.
|
|
*/
|
|
}
|
|
|
|
void qemu_co_rwlock_upgrade(CoRwlock *lock)
|
|
{
|
|
Coroutine *self = qemu_coroutine_self();
|
|
|
|
qemu_co_mutex_lock(&lock->mutex);
|
|
assert(lock->reader > 0);
|
|
lock->reader--;
|
|
lock->pending_writer++;
|
|
while (lock->reader) {
|
|
qemu_co_queue_wait(&lock->queue, &lock->mutex);
|
|
}
|
|
lock->pending_writer--;
|
|
|
|
/* The rest of the write-side critical section is run with
|
|
* the mutex taken, similar to qemu_co_rwlock_wrlock. Do
|
|
* not account for the lock twice in self->locks_held.
|
|
*/
|
|
self->locks_held--;
|
|
}
|