4a4ff4c58f
Re-run Coccinelle script scripts/coccinelle/return_directly.cocci Signed-off-by: Laurent Vivier <lvivier@redhat.com> ppc part Acked-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
2228 lines
65 KiB
C
2228 lines
65 KiB
C
/*
|
|
* Host code generation
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#ifdef _WIN32
|
|
#include <windows.h>
|
|
#endif
|
|
#include "qemu/osdep.h"
|
|
|
|
|
|
#include "qemu-common.h"
|
|
#define NO_CPU_IO_DEFS
|
|
#include "cpu.h"
|
|
#include "trace.h"
|
|
#include "disas/disas.h"
|
|
#include "exec/exec-all.h"
|
|
#include "tcg.h"
|
|
#if defined(CONFIG_USER_ONLY)
|
|
#include "qemu.h"
|
|
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
|
|
#include <sys/param.h>
|
|
#if __FreeBSD_version >= 700104
|
|
#define HAVE_KINFO_GETVMMAP
|
|
#define sigqueue sigqueue_freebsd /* avoid redefinition */
|
|
#include <sys/proc.h>
|
|
#include <machine/profile.h>
|
|
#define _KERNEL
|
|
#include <sys/user.h>
|
|
#undef _KERNEL
|
|
#undef sigqueue
|
|
#include <libutil.h>
|
|
#endif
|
|
#endif
|
|
#else
|
|
#include "exec/address-spaces.h"
|
|
#endif
|
|
|
|
#include "exec/cputlb.h"
|
|
#include "exec/tb-hash.h"
|
|
#include "translate-all.h"
|
|
#include "qemu/bitmap.h"
|
|
#include "qemu/error-report.h"
|
|
#include "qemu/timer.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "exec/log.h"
|
|
#include "sysemu/cpus.h"
|
|
|
|
/* #define DEBUG_TB_INVALIDATE */
|
|
/* #define DEBUG_TB_FLUSH */
|
|
/* make various TB consistency checks */
|
|
/* #define DEBUG_TB_CHECK */
|
|
|
|
#ifdef DEBUG_TB_INVALIDATE
|
|
#define DEBUG_TB_INVALIDATE_GATE 1
|
|
#else
|
|
#define DEBUG_TB_INVALIDATE_GATE 0
|
|
#endif
|
|
|
|
#ifdef DEBUG_TB_FLUSH
|
|
#define DEBUG_TB_FLUSH_GATE 1
|
|
#else
|
|
#define DEBUG_TB_FLUSH_GATE 0
|
|
#endif
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
/* TB consistency checks only implemented for usermode emulation. */
|
|
#undef DEBUG_TB_CHECK
|
|
#endif
|
|
|
|
#ifdef DEBUG_TB_CHECK
|
|
#define DEBUG_TB_CHECK_GATE 1
|
|
#else
|
|
#define DEBUG_TB_CHECK_GATE 0
|
|
#endif
|
|
|
|
/* Access to the various translations structures need to be serialised via locks
|
|
* for consistency. This is automatic for SoftMMU based system
|
|
* emulation due to its single threaded nature. In user-mode emulation
|
|
* access to the memory related structures are protected with the
|
|
* mmap_lock.
|
|
*/
|
|
#ifdef CONFIG_SOFTMMU
|
|
#define assert_memory_lock() tcg_debug_assert(have_tb_lock)
|
|
#else
|
|
#define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
|
|
#endif
|
|
|
|
#define SMC_BITMAP_USE_THRESHOLD 10
|
|
|
|
typedef struct PageDesc {
|
|
/* list of TBs intersecting this ram page */
|
|
TranslationBlock *first_tb;
|
|
#ifdef CONFIG_SOFTMMU
|
|
/* in order to optimize self modifying code, we count the number
|
|
of lookups we do to a given page to use a bitmap */
|
|
unsigned int code_write_count;
|
|
unsigned long *code_bitmap;
|
|
#else
|
|
unsigned long flags;
|
|
#endif
|
|
} PageDesc;
|
|
|
|
/* In system mode we want L1_MAP to be based on ram offsets,
|
|
while in user mode we want it to be based on virtual addresses. */
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
|
|
# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
|
|
#else
|
|
# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
|
|
#endif
|
|
#else
|
|
# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
|
|
#endif
|
|
|
|
/* Size of the L2 (and L3, etc) page tables. */
|
|
#define V_L2_BITS 10
|
|
#define V_L2_SIZE (1 << V_L2_BITS)
|
|
|
|
/* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
|
|
QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
|
|
sizeof(((TranslationBlock *)0)->trace_vcpu_dstate)
|
|
* BITS_PER_BYTE);
|
|
|
|
/*
|
|
* L1 Mapping properties
|
|
*/
|
|
static int v_l1_size;
|
|
static int v_l1_shift;
|
|
static int v_l2_levels;
|
|
|
|
/* The bottom level has pointers to PageDesc, and is indexed by
|
|
* anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
|
|
*/
|
|
#define V_L1_MIN_BITS 4
|
|
#define V_L1_MAX_BITS (V_L2_BITS + 3)
|
|
#define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
|
|
|
|
static void *l1_map[V_L1_MAX_SIZE];
|
|
|
|
/* code generation context */
|
|
TCGContext tcg_init_ctx;
|
|
__thread TCGContext *tcg_ctx;
|
|
TBContext tb_ctx;
|
|
bool parallel_cpus;
|
|
|
|
/* translation block context */
|
|
static __thread int have_tb_lock;
|
|
|
|
static void page_table_config_init(void)
|
|
{
|
|
uint32_t v_l1_bits;
|
|
|
|
assert(TARGET_PAGE_BITS);
|
|
/* The bits remaining after N lower levels of page tables. */
|
|
v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
|
|
if (v_l1_bits < V_L1_MIN_BITS) {
|
|
v_l1_bits += V_L2_BITS;
|
|
}
|
|
|
|
v_l1_size = 1 << v_l1_bits;
|
|
v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
|
|
v_l2_levels = v_l1_shift / V_L2_BITS - 1;
|
|
|
|
assert(v_l1_bits <= V_L1_MAX_BITS);
|
|
assert(v_l1_shift % V_L2_BITS == 0);
|
|
assert(v_l2_levels >= 0);
|
|
}
|
|
|
|
#define assert_tb_locked() tcg_debug_assert(have_tb_lock)
|
|
#define assert_tb_unlocked() tcg_debug_assert(!have_tb_lock)
|
|
|
|
void tb_lock(void)
|
|
{
|
|
assert_tb_unlocked();
|
|
qemu_mutex_lock(&tb_ctx.tb_lock);
|
|
have_tb_lock++;
|
|
}
|
|
|
|
void tb_unlock(void)
|
|
{
|
|
assert_tb_locked();
|
|
have_tb_lock--;
|
|
qemu_mutex_unlock(&tb_ctx.tb_lock);
|
|
}
|
|
|
|
void tb_lock_reset(void)
|
|
{
|
|
if (have_tb_lock) {
|
|
qemu_mutex_unlock(&tb_ctx.tb_lock);
|
|
have_tb_lock = 0;
|
|
}
|
|
}
|
|
|
|
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
|
|
|
|
void cpu_gen_init(void)
|
|
{
|
|
tcg_context_init(&tcg_init_ctx);
|
|
}
|
|
|
|
/* Encode VAL as a signed leb128 sequence at P.
|
|
Return P incremented past the encoded value. */
|
|
static uint8_t *encode_sleb128(uint8_t *p, target_long val)
|
|
{
|
|
int more, byte;
|
|
|
|
do {
|
|
byte = val & 0x7f;
|
|
val >>= 7;
|
|
more = !((val == 0 && (byte & 0x40) == 0)
|
|
|| (val == -1 && (byte & 0x40) != 0));
|
|
if (more) {
|
|
byte |= 0x80;
|
|
}
|
|
*p++ = byte;
|
|
} while (more);
|
|
|
|
return p;
|
|
}
|
|
|
|
/* Decode a signed leb128 sequence at *PP; increment *PP past the
|
|
decoded value. Return the decoded value. */
|
|
static target_long decode_sleb128(uint8_t **pp)
|
|
{
|
|
uint8_t *p = *pp;
|
|
target_long val = 0;
|
|
int byte, shift = 0;
|
|
|
|
do {
|
|
byte = *p++;
|
|
val |= (target_ulong)(byte & 0x7f) << shift;
|
|
shift += 7;
|
|
} while (byte & 0x80);
|
|
if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
|
|
val |= -(target_ulong)1 << shift;
|
|
}
|
|
|
|
*pp = p;
|
|
return val;
|
|
}
|
|
|
|
/* Encode the data collected about the instructions while compiling TB.
|
|
Place the data at BLOCK, and return the number of bytes consumed.
|
|
|
|
The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
|
|
which come from the target's insn_start data, followed by a uintptr_t
|
|
which comes from the host pc of the end of the code implementing the insn.
|
|
|
|
Each line of the table is encoded as sleb128 deltas from the previous
|
|
line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
|
|
That is, the first column is seeded with the guest pc, the last column
|
|
with the host pc, and the middle columns with zeros. */
|
|
|
|
static int encode_search(TranslationBlock *tb, uint8_t *block)
|
|
{
|
|
uint8_t *highwater = tcg_ctx->code_gen_highwater;
|
|
uint8_t *p = block;
|
|
int i, j, n;
|
|
|
|
for (i = 0, n = tb->icount; i < n; ++i) {
|
|
target_ulong prev;
|
|
|
|
for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
|
|
if (i == 0) {
|
|
prev = (j == 0 ? tb->pc : 0);
|
|
} else {
|
|
prev = tcg_ctx->gen_insn_data[i - 1][j];
|
|
}
|
|
p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
|
|
}
|
|
prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
|
|
p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
|
|
|
|
/* Test for (pending) buffer overflow. The assumption is that any
|
|
one row beginning below the high water mark cannot overrun
|
|
the buffer completely. Thus we can test for overflow after
|
|
encoding a row without having to check during encoding. */
|
|
if (unlikely(p > highwater)) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return p - block;
|
|
}
|
|
|
|
/* The cpu state corresponding to 'searched_pc' is restored.
|
|
* Called with tb_lock held.
|
|
* When reset_icount is true, current TB will be interrupted and
|
|
* icount should be recalculated.
|
|
*/
|
|
static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
|
|
uintptr_t searched_pc, bool reset_icount)
|
|
{
|
|
target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
|
|
uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
|
|
CPUArchState *env = cpu->env_ptr;
|
|
uint8_t *p = tb->tc.ptr + tb->tc.size;
|
|
int i, j, num_insns = tb->icount;
|
|
#ifdef CONFIG_PROFILER
|
|
TCGProfile *prof = &tcg_ctx->prof;
|
|
int64_t ti = profile_getclock();
|
|
#endif
|
|
|
|
searched_pc -= GETPC_ADJ;
|
|
|
|
if (searched_pc < host_pc) {
|
|
return -1;
|
|
}
|
|
|
|
/* Reconstruct the stored insn data while looking for the point at
|
|
which the end of the insn exceeds the searched_pc. */
|
|
for (i = 0; i < num_insns; ++i) {
|
|
for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
|
|
data[j] += decode_sleb128(&p);
|
|
}
|
|
host_pc += decode_sleb128(&p);
|
|
if (host_pc > searched_pc) {
|
|
goto found;
|
|
}
|
|
}
|
|
return -1;
|
|
|
|
found:
|
|
if (reset_icount && (tb->cflags & CF_USE_ICOUNT)) {
|
|
assert(use_icount);
|
|
/* Reset the cycle counter to the start of the block
|
|
and shift if to the number of actually executed instructions */
|
|
cpu->icount_decr.u16.low += num_insns - i;
|
|
}
|
|
restore_state_to_opc(env, tb, data);
|
|
|
|
#ifdef CONFIG_PROFILER
|
|
atomic_set(&prof->restore_time,
|
|
prof->restore_time + profile_getclock() - ti);
|
|
atomic_set(&prof->restore_count, prof->restore_count + 1);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
|
|
{
|
|
TranslationBlock *tb;
|
|
bool r = false;
|
|
uintptr_t check_offset;
|
|
|
|
/* The host_pc has to be in the region of current code buffer. If
|
|
* it is not we will not be able to resolve it here. The two cases
|
|
* where host_pc will not be correct are:
|
|
*
|
|
* - fault during translation (instruction fetch)
|
|
* - fault from helper (not using GETPC() macro)
|
|
*
|
|
* Either way we need return early to avoid blowing up on a
|
|
* recursive tb_lock() as we can't resolve it here.
|
|
*
|
|
* We are using unsigned arithmetic so if host_pc <
|
|
* tcg_init_ctx.code_gen_buffer check_offset will wrap to way
|
|
* above the code_gen_buffer_size
|
|
*/
|
|
check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
|
|
|
|
if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
|
|
tb_lock();
|
|
tb = tb_find_pc(host_pc);
|
|
if (tb) {
|
|
cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
|
|
if (tb->cflags & CF_NOCACHE) {
|
|
/* one-shot translation, invalidate it immediately */
|
|
tb_phys_invalidate(tb, -1);
|
|
tb_remove(tb);
|
|
}
|
|
r = true;
|
|
}
|
|
tb_unlock();
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static void page_init(void)
|
|
{
|
|
page_size_init();
|
|
page_table_config_init();
|
|
|
|
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
|
|
{
|
|
#ifdef HAVE_KINFO_GETVMMAP
|
|
struct kinfo_vmentry *freep;
|
|
int i, cnt;
|
|
|
|
freep = kinfo_getvmmap(getpid(), &cnt);
|
|
if (freep) {
|
|
mmap_lock();
|
|
for (i = 0; i < cnt; i++) {
|
|
unsigned long startaddr, endaddr;
|
|
|
|
startaddr = freep[i].kve_start;
|
|
endaddr = freep[i].kve_end;
|
|
if (h2g_valid(startaddr)) {
|
|
startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
|
|
|
|
if (h2g_valid(endaddr)) {
|
|
endaddr = h2g(endaddr);
|
|
page_set_flags(startaddr, endaddr, PAGE_RESERVED);
|
|
} else {
|
|
#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
|
|
endaddr = ~0ul;
|
|
page_set_flags(startaddr, endaddr, PAGE_RESERVED);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
free(freep);
|
|
mmap_unlock();
|
|
}
|
|
#else
|
|
FILE *f;
|
|
|
|
last_brk = (unsigned long)sbrk(0);
|
|
|
|
f = fopen("/compat/linux/proc/self/maps", "r");
|
|
if (f) {
|
|
mmap_lock();
|
|
|
|
do {
|
|
unsigned long startaddr, endaddr;
|
|
int n;
|
|
|
|
n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
|
|
|
|
if (n == 2 && h2g_valid(startaddr)) {
|
|
startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
|
|
|
|
if (h2g_valid(endaddr)) {
|
|
endaddr = h2g(endaddr);
|
|
} else {
|
|
endaddr = ~0ul;
|
|
}
|
|
page_set_flags(startaddr, endaddr, PAGE_RESERVED);
|
|
}
|
|
} while (!feof(f));
|
|
|
|
fclose(f);
|
|
mmap_unlock();
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* If alloc=1:
|
|
* Called with tb_lock held for system emulation.
|
|
* Called with mmap_lock held for user-mode emulation.
|
|
*/
|
|
static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
|
|
{
|
|
PageDesc *pd;
|
|
void **lp;
|
|
int i;
|
|
|
|
if (alloc) {
|
|
assert_memory_lock();
|
|
}
|
|
|
|
/* Level 1. Always allocated. */
|
|
lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
|
|
|
|
/* Level 2..N-1. */
|
|
for (i = v_l2_levels; i > 0; i--) {
|
|
void **p = atomic_rcu_read(lp);
|
|
|
|
if (p == NULL) {
|
|
if (!alloc) {
|
|
return NULL;
|
|
}
|
|
p = g_new0(void *, V_L2_SIZE);
|
|
atomic_rcu_set(lp, p);
|
|
}
|
|
|
|
lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
|
|
}
|
|
|
|
pd = atomic_rcu_read(lp);
|
|
if (pd == NULL) {
|
|
if (!alloc) {
|
|
return NULL;
|
|
}
|
|
pd = g_new0(PageDesc, V_L2_SIZE);
|
|
atomic_rcu_set(lp, pd);
|
|
}
|
|
|
|
return pd + (index & (V_L2_SIZE - 1));
|
|
}
|
|
|
|
static inline PageDesc *page_find(tb_page_addr_t index)
|
|
{
|
|
return page_find_alloc(index, 0);
|
|
}
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
/* Currently it is not recommended to allocate big chunks of data in
|
|
user mode. It will change when a dedicated libc will be used. */
|
|
/* ??? 64-bit hosts ought to have no problem mmaping data outside the
|
|
region in which the guest needs to run. Revisit this. */
|
|
#define USE_STATIC_CODE_GEN_BUFFER
|
|
#endif
|
|
|
|
/* Minimum size of the code gen buffer. This number is randomly chosen,
|
|
but not so small that we can't have a fair number of TB's live. */
|
|
#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
|
|
|
|
/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
|
|
indicated, this is constrained by the range of direct branches on the
|
|
host cpu, as used by the TCG implementation of goto_tb. */
|
|
#if defined(__x86_64__)
|
|
# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
|
|
#elif defined(__sparc__)
|
|
# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
|
|
#elif defined(__powerpc64__)
|
|
# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
|
|
#elif defined(__powerpc__)
|
|
# define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
|
|
#elif defined(__aarch64__)
|
|
# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
|
|
#elif defined(__s390x__)
|
|
/* We have a +- 4GB range on the branches; leave some slop. */
|
|
# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
|
|
#elif defined(__mips__)
|
|
/* We have a 256MB branch region, but leave room to make sure the
|
|
main executable is also within that region. */
|
|
# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
|
|
#else
|
|
# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
|
|
#endif
|
|
|
|
#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
|
|
|
|
#define DEFAULT_CODE_GEN_BUFFER_SIZE \
|
|
(DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
|
|
? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
|
|
|
|
static inline size_t size_code_gen_buffer(size_t tb_size)
|
|
{
|
|
/* Size the buffer. */
|
|
if (tb_size == 0) {
|
|
#ifdef USE_STATIC_CODE_GEN_BUFFER
|
|
tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
|
|
#else
|
|
/* ??? Needs adjustments. */
|
|
/* ??? If we relax the requirement that CONFIG_USER_ONLY use the
|
|
static buffer, we could size this on RESERVED_VA, on the text
|
|
segment size of the executable, or continue to use the default. */
|
|
tb_size = (unsigned long)(ram_size / 4);
|
|
#endif
|
|
}
|
|
if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
|
|
tb_size = MIN_CODE_GEN_BUFFER_SIZE;
|
|
}
|
|
if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
|
|
tb_size = MAX_CODE_GEN_BUFFER_SIZE;
|
|
}
|
|
return tb_size;
|
|
}
|
|
|
|
#ifdef __mips__
|
|
/* In order to use J and JAL within the code_gen_buffer, we require
|
|
that the buffer not cross a 256MB boundary. */
|
|
static inline bool cross_256mb(void *addr, size_t size)
|
|
{
|
|
return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
|
|
}
|
|
|
|
/* We weren't able to allocate a buffer without crossing that boundary,
|
|
so make do with the larger portion of the buffer that doesn't cross.
|
|
Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
|
|
static inline void *split_cross_256mb(void *buf1, size_t size1)
|
|
{
|
|
void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
|
|
size_t size2 = buf1 + size1 - buf2;
|
|
|
|
size1 = buf2 - buf1;
|
|
if (size1 < size2) {
|
|
size1 = size2;
|
|
buf1 = buf2;
|
|
}
|
|
|
|
tcg_ctx->code_gen_buffer_size = size1;
|
|
return buf1;
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_STATIC_CODE_GEN_BUFFER
|
|
static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
|
|
__attribute__((aligned(CODE_GEN_ALIGN)));
|
|
|
|
static inline void *alloc_code_gen_buffer(void)
|
|
{
|
|
void *buf = static_code_gen_buffer;
|
|
void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
|
|
size_t size;
|
|
|
|
/* page-align the beginning and end of the buffer */
|
|
buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
|
|
end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
|
|
|
|
size = end - buf;
|
|
|
|
/* Honor a command-line option limiting the size of the buffer. */
|
|
if (size > tcg_ctx->code_gen_buffer_size) {
|
|
size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
|
|
qemu_real_host_page_size);
|
|
}
|
|
tcg_ctx->code_gen_buffer_size = size;
|
|
|
|
#ifdef __mips__
|
|
if (cross_256mb(buf, size)) {
|
|
buf = split_cross_256mb(buf, size);
|
|
size = tcg_ctx->code_gen_buffer_size;
|
|
}
|
|
#endif
|
|
|
|
if (qemu_mprotect_rwx(buf, size)) {
|
|
abort();
|
|
}
|
|
qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
|
|
|
|
return buf;
|
|
}
|
|
#elif defined(_WIN32)
|
|
static inline void *alloc_code_gen_buffer(void)
|
|
{
|
|
size_t size = tcg_ctx->code_gen_buffer_size;
|
|
return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
|
|
PAGE_EXECUTE_READWRITE);
|
|
}
|
|
#else
|
|
static inline void *alloc_code_gen_buffer(void)
|
|
{
|
|
int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
|
|
int flags = MAP_PRIVATE | MAP_ANONYMOUS;
|
|
uintptr_t start = 0;
|
|
size_t size = tcg_ctx->code_gen_buffer_size;
|
|
void *buf;
|
|
|
|
/* Constrain the position of the buffer based on the host cpu.
|
|
Note that these addresses are chosen in concert with the
|
|
addresses assigned in the relevant linker script file. */
|
|
# if defined(__PIE__) || defined(__PIC__)
|
|
/* Don't bother setting a preferred location if we're building
|
|
a position-independent executable. We're more likely to get
|
|
an address near the main executable if we let the kernel
|
|
choose the address. */
|
|
# elif defined(__x86_64__) && defined(MAP_32BIT)
|
|
/* Force the memory down into low memory with the executable.
|
|
Leave the choice of exact location with the kernel. */
|
|
flags |= MAP_32BIT;
|
|
/* Cannot expect to map more than 800MB in low memory. */
|
|
if (size > 800u * 1024 * 1024) {
|
|
tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024;
|
|
}
|
|
# elif defined(__sparc__)
|
|
start = 0x40000000ul;
|
|
# elif defined(__s390x__)
|
|
start = 0x90000000ul;
|
|
# elif defined(__mips__)
|
|
# if _MIPS_SIM == _ABI64
|
|
start = 0x128000000ul;
|
|
# else
|
|
start = 0x08000000ul;
|
|
# endif
|
|
# endif
|
|
|
|
buf = mmap((void *)start, size, prot, flags, -1, 0);
|
|
if (buf == MAP_FAILED) {
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef __mips__
|
|
if (cross_256mb(buf, size)) {
|
|
/* Try again, with the original still mapped, to avoid re-acquiring
|
|
that 256mb crossing. This time don't specify an address. */
|
|
size_t size2;
|
|
void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
|
|
switch ((int)(buf2 != MAP_FAILED)) {
|
|
case 1:
|
|
if (!cross_256mb(buf2, size)) {
|
|
/* Success! Use the new buffer. */
|
|
munmap(buf, size);
|
|
break;
|
|
}
|
|
/* Failure. Work with what we had. */
|
|
munmap(buf2, size);
|
|
/* fallthru */
|
|
default:
|
|
/* Split the original buffer. Free the smaller half. */
|
|
buf2 = split_cross_256mb(buf, size);
|
|
size2 = tcg_ctx->code_gen_buffer_size;
|
|
if (buf == buf2) {
|
|
munmap(buf + size2, size - size2);
|
|
} else {
|
|
munmap(buf, size - size2);
|
|
}
|
|
size = size2;
|
|
break;
|
|
}
|
|
buf = buf2;
|
|
}
|
|
#endif
|
|
|
|
/* Request large pages for the buffer. */
|
|
qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
|
|
|
|
return buf;
|
|
}
|
|
#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
|
|
|
|
/* compare a pointer @ptr and a tb_tc @s */
|
|
static int ptr_cmp_tb_tc(const void *ptr, const struct tb_tc *s)
|
|
{
|
|
if (ptr >= s->ptr + s->size) {
|
|
return 1;
|
|
} else if (ptr < s->ptr) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static gint tb_tc_cmp(gconstpointer ap, gconstpointer bp)
|
|
{
|
|
const struct tb_tc *a = ap;
|
|
const struct tb_tc *b = bp;
|
|
|
|
/*
|
|
* When both sizes are set, we know this isn't a lookup.
|
|
* This is the most likely case: every TB must be inserted; lookups
|
|
* are a lot less frequent.
|
|
*/
|
|
if (likely(a->size && b->size)) {
|
|
if (a->ptr > b->ptr) {
|
|
return 1;
|
|
} else if (a->ptr < b->ptr) {
|
|
return -1;
|
|
}
|
|
/* a->ptr == b->ptr should happen only on deletions */
|
|
g_assert(a->size == b->size);
|
|
return 0;
|
|
}
|
|
/*
|
|
* All lookups have either .size field set to 0.
|
|
* From the glib sources we see that @ap is always the lookup key. However
|
|
* the docs provide no guarantee, so we just mark this case as likely.
|
|
*/
|
|
if (likely(a->size == 0)) {
|
|
return ptr_cmp_tb_tc(a->ptr, b);
|
|
}
|
|
return ptr_cmp_tb_tc(b->ptr, a);
|
|
}
|
|
|
|
static inline void code_gen_alloc(size_t tb_size)
|
|
{
|
|
tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
|
|
tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
|
|
if (tcg_ctx->code_gen_buffer == NULL) {
|
|
fprintf(stderr, "Could not allocate dynamic translator buffer\n");
|
|
exit(1);
|
|
}
|
|
tb_ctx.tb_tree = g_tree_new(tb_tc_cmp);
|
|
qemu_mutex_init(&tb_ctx.tb_lock);
|
|
}
|
|
|
|
static void tb_htable_init(void)
|
|
{
|
|
unsigned int mode = QHT_MODE_AUTO_RESIZE;
|
|
|
|
qht_init(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
|
|
}
|
|
|
|
/* Must be called before using the QEMU cpus. 'tb_size' is the size
|
|
(in bytes) allocated to the translation buffer. Zero means default
|
|
size. */
|
|
void tcg_exec_init(unsigned long tb_size)
|
|
{
|
|
tcg_allowed = true;
|
|
cpu_gen_init();
|
|
page_init();
|
|
tb_htable_init();
|
|
code_gen_alloc(tb_size);
|
|
#if defined(CONFIG_SOFTMMU)
|
|
/* There's no guest base to take into account, so go ahead and
|
|
initialize the prologue now. */
|
|
tcg_prologue_init(tcg_ctx);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Allocate a new translation block. Flush the translation buffer if
|
|
* too many translation blocks or too much generated code.
|
|
*
|
|
* Called with tb_lock held.
|
|
*/
|
|
static TranslationBlock *tb_alloc(target_ulong pc)
|
|
{
|
|
TranslationBlock *tb;
|
|
|
|
assert_tb_locked();
|
|
|
|
tb = tcg_tb_alloc(tcg_ctx);
|
|
if (unlikely(tb == NULL)) {
|
|
return NULL;
|
|
}
|
|
return tb;
|
|
}
|
|
|
|
/* Called with tb_lock held. */
|
|
void tb_remove(TranslationBlock *tb)
|
|
{
|
|
assert_tb_locked();
|
|
|
|
g_tree_remove(tb_ctx.tb_tree, &tb->tc);
|
|
}
|
|
|
|
static inline void invalidate_page_bitmap(PageDesc *p)
|
|
{
|
|
#ifdef CONFIG_SOFTMMU
|
|
g_free(p->code_bitmap);
|
|
p->code_bitmap = NULL;
|
|
p->code_write_count = 0;
|
|
#endif
|
|
}
|
|
|
|
/* Set to NULL all the 'first_tb' fields in all PageDescs. */
|
|
static void page_flush_tb_1(int level, void **lp)
|
|
{
|
|
int i;
|
|
|
|
if (*lp == NULL) {
|
|
return;
|
|
}
|
|
if (level == 0) {
|
|
PageDesc *pd = *lp;
|
|
|
|
for (i = 0; i < V_L2_SIZE; ++i) {
|
|
pd[i].first_tb = NULL;
|
|
invalidate_page_bitmap(pd + i);
|
|
}
|
|
} else {
|
|
void **pp = *lp;
|
|
|
|
for (i = 0; i < V_L2_SIZE; ++i) {
|
|
page_flush_tb_1(level - 1, pp + i);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void page_flush_tb(void)
|
|
{
|
|
int i, l1_sz = v_l1_size;
|
|
|
|
for (i = 0; i < l1_sz; i++) {
|
|
page_flush_tb_1(v_l2_levels, l1_map + i);
|
|
}
|
|
}
|
|
|
|
static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
|
|
{
|
|
const TranslationBlock *tb = value;
|
|
size_t *size = data;
|
|
|
|
*size += tb->tc.size;
|
|
return false;
|
|
}
|
|
|
|
/* flush all the translation blocks */
|
|
static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
|
|
{
|
|
tb_lock();
|
|
|
|
/* If it is already been done on request of another CPU,
|
|
* just retry.
|
|
*/
|
|
if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
|
|
goto done;
|
|
}
|
|
|
|
if (DEBUG_TB_FLUSH_GATE) {
|
|
size_t nb_tbs = g_tree_nnodes(tb_ctx.tb_tree);
|
|
size_t host_size = 0;
|
|
|
|
g_tree_foreach(tb_ctx.tb_tree, tb_host_size_iter, &host_size);
|
|
printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
|
|
tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
|
|
}
|
|
|
|
CPU_FOREACH(cpu) {
|
|
cpu_tb_jmp_cache_clear(cpu);
|
|
}
|
|
|
|
/* Increment the refcount first so that destroy acts as a reset */
|
|
g_tree_ref(tb_ctx.tb_tree);
|
|
g_tree_destroy(tb_ctx.tb_tree);
|
|
|
|
qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
|
|
page_flush_tb();
|
|
|
|
tcg_region_reset_all();
|
|
/* XXX: flush processor icache at this point if cache flush is
|
|
expensive */
|
|
atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
|
|
|
|
done:
|
|
tb_unlock();
|
|
}
|
|
|
|
void tb_flush(CPUState *cpu)
|
|
{
|
|
if (tcg_enabled()) {
|
|
unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
|
|
async_safe_run_on_cpu(cpu, do_tb_flush,
|
|
RUN_ON_CPU_HOST_INT(tb_flush_count));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
|
|
* so in order to prevent bit rot we compile them unconditionally in user-mode,
|
|
* and let the optimizer get rid of them by wrapping their user-only callers
|
|
* with if (DEBUG_TB_CHECK_GATE).
|
|
*/
|
|
#ifdef CONFIG_USER_ONLY
|
|
|
|
static void
|
|
do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
|
|
{
|
|
TranslationBlock *tb = p;
|
|
target_ulong addr = *(target_ulong *)userp;
|
|
|
|
if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
|
|
printf("ERROR invalidate: address=" TARGET_FMT_lx
|
|
" PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
|
|
}
|
|
}
|
|
|
|
/* verify that all the pages have correct rights for code
|
|
*
|
|
* Called with tb_lock held.
|
|
*/
|
|
static void tb_invalidate_check(target_ulong address)
|
|
{
|
|
address &= TARGET_PAGE_MASK;
|
|
qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
|
|
}
|
|
|
|
static void
|
|
do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
|
|
{
|
|
TranslationBlock *tb = p;
|
|
int flags1, flags2;
|
|
|
|
flags1 = page_get_flags(tb->pc);
|
|
flags2 = page_get_flags(tb->pc + tb->size - 1);
|
|
if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
|
|
printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
|
|
(long)tb->pc, tb->size, flags1, flags2);
|
|
}
|
|
}
|
|
|
|
/* verify that all the pages have correct rights for code */
|
|
static void tb_page_check(void)
|
|
{
|
|
qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
|
|
}
|
|
|
|
#endif /* CONFIG_USER_ONLY */
|
|
|
|
static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
|
|
{
|
|
TranslationBlock *tb1;
|
|
unsigned int n1;
|
|
|
|
for (;;) {
|
|
tb1 = *ptb;
|
|
n1 = (uintptr_t)tb1 & 3;
|
|
tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
|
|
if (tb1 == tb) {
|
|
*ptb = tb1->page_next[n1];
|
|
break;
|
|
}
|
|
ptb = &tb1->page_next[n1];
|
|
}
|
|
}
|
|
|
|
/* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
|
|
static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
|
|
{
|
|
TranslationBlock *tb1;
|
|
uintptr_t *ptb, ntb;
|
|
unsigned int n1;
|
|
|
|
ptb = &tb->jmp_list_next[n];
|
|
if (*ptb) {
|
|
/* find tb(n) in circular list */
|
|
for (;;) {
|
|
ntb = *ptb;
|
|
n1 = ntb & 3;
|
|
tb1 = (TranslationBlock *)(ntb & ~3);
|
|
if (n1 == n && tb1 == tb) {
|
|
break;
|
|
}
|
|
if (n1 == 2) {
|
|
ptb = &tb1->jmp_list_first;
|
|
} else {
|
|
ptb = &tb1->jmp_list_next[n1];
|
|
}
|
|
}
|
|
/* now we can suppress tb(n) from the list */
|
|
*ptb = tb->jmp_list_next[n];
|
|
|
|
tb->jmp_list_next[n] = (uintptr_t)NULL;
|
|
}
|
|
}
|
|
|
|
/* reset the jump entry 'n' of a TB so that it is not chained to
|
|
another TB */
|
|
static inline void tb_reset_jump(TranslationBlock *tb, int n)
|
|
{
|
|
uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
|
|
tb_set_jmp_target(tb, n, addr);
|
|
}
|
|
|
|
/* remove any jumps to the TB */
|
|
static inline void tb_jmp_unlink(TranslationBlock *tb)
|
|
{
|
|
TranslationBlock *tb1;
|
|
uintptr_t *ptb, ntb;
|
|
unsigned int n1;
|
|
|
|
ptb = &tb->jmp_list_first;
|
|
for (;;) {
|
|
ntb = *ptb;
|
|
n1 = ntb & 3;
|
|
tb1 = (TranslationBlock *)(ntb & ~3);
|
|
if (n1 == 2) {
|
|
break;
|
|
}
|
|
tb_reset_jump(tb1, n1);
|
|
*ptb = tb1->jmp_list_next[n1];
|
|
tb1->jmp_list_next[n1] = (uintptr_t)NULL;
|
|
}
|
|
}
|
|
|
|
/* invalidate one TB
|
|
*
|
|
* Called with tb_lock held.
|
|
*/
|
|
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
|
|
{
|
|
CPUState *cpu;
|
|
PageDesc *p;
|
|
uint32_t h;
|
|
tb_page_addr_t phys_pc;
|
|
|
|
assert_tb_locked();
|
|
|
|
atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
|
|
|
|
/* remove the TB from the hash list */
|
|
phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
|
|
h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
|
|
tb->trace_vcpu_dstate);
|
|
if (!qht_remove(&tb_ctx.htable, tb, h)) {
|
|
return;
|
|
}
|
|
|
|
/* remove the TB from the page list */
|
|
if (tb->page_addr[0] != page_addr) {
|
|
p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
|
|
tb_page_remove(&p->first_tb, tb);
|
|
invalidate_page_bitmap(p);
|
|
}
|
|
if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
|
|
p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
|
|
tb_page_remove(&p->first_tb, tb);
|
|
invalidate_page_bitmap(p);
|
|
}
|
|
|
|
/* remove the TB from the hash list */
|
|
h = tb_jmp_cache_hash_func(tb->pc);
|
|
CPU_FOREACH(cpu) {
|
|
if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
|
|
atomic_set(&cpu->tb_jmp_cache[h], NULL);
|
|
}
|
|
}
|
|
|
|
/* suppress this TB from the two jump lists */
|
|
tb_remove_from_jmp_list(tb, 0);
|
|
tb_remove_from_jmp_list(tb, 1);
|
|
|
|
/* suppress any remaining jumps to this TB */
|
|
tb_jmp_unlink(tb);
|
|
|
|
tb_ctx.tb_phys_invalidate_count++;
|
|
}
|
|
|
|
#ifdef CONFIG_SOFTMMU
|
|
static void build_page_bitmap(PageDesc *p)
|
|
{
|
|
int n, tb_start, tb_end;
|
|
TranslationBlock *tb;
|
|
|
|
p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
|
|
|
|
tb = p->first_tb;
|
|
while (tb != NULL) {
|
|
n = (uintptr_t)tb & 3;
|
|
tb = (TranslationBlock *)((uintptr_t)tb & ~3);
|
|
/* NOTE: this is subtle as a TB may span two physical pages */
|
|
if (n == 0) {
|
|
/* NOTE: tb_end may be after the end of the page, but
|
|
it is not a problem */
|
|
tb_start = tb->pc & ~TARGET_PAGE_MASK;
|
|
tb_end = tb_start + tb->size;
|
|
if (tb_end > TARGET_PAGE_SIZE) {
|
|
tb_end = TARGET_PAGE_SIZE;
|
|
}
|
|
} else {
|
|
tb_start = 0;
|
|
tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
|
|
}
|
|
bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
|
|
tb = tb->page_next[n];
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* add the tb in the target page and protect it if necessary
|
|
*
|
|
* Called with mmap_lock held for user-mode emulation.
|
|
*/
|
|
static inline void tb_alloc_page(TranslationBlock *tb,
|
|
unsigned int n, tb_page_addr_t page_addr)
|
|
{
|
|
PageDesc *p;
|
|
#ifndef CONFIG_USER_ONLY
|
|
bool page_already_protected;
|
|
#endif
|
|
|
|
assert_memory_lock();
|
|
|
|
tb->page_addr[n] = page_addr;
|
|
p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
|
|
tb->page_next[n] = p->first_tb;
|
|
#ifndef CONFIG_USER_ONLY
|
|
page_already_protected = p->first_tb != NULL;
|
|
#endif
|
|
p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
|
|
invalidate_page_bitmap(p);
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
if (p->flags & PAGE_WRITE) {
|
|
target_ulong addr;
|
|
PageDesc *p2;
|
|
int prot;
|
|
|
|
/* force the host page as non writable (writes will have a
|
|
page fault + mprotect overhead) */
|
|
page_addr &= qemu_host_page_mask;
|
|
prot = 0;
|
|
for (addr = page_addr; addr < page_addr + qemu_host_page_size;
|
|
addr += TARGET_PAGE_SIZE) {
|
|
|
|
p2 = page_find(addr >> TARGET_PAGE_BITS);
|
|
if (!p2) {
|
|
continue;
|
|
}
|
|
prot |= p2->flags;
|
|
p2->flags &= ~PAGE_WRITE;
|
|
}
|
|
mprotect(g2h(page_addr), qemu_host_page_size,
|
|
(prot & PAGE_BITS) & ~PAGE_WRITE);
|
|
if (DEBUG_TB_INVALIDATE_GATE) {
|
|
printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
|
|
}
|
|
}
|
|
#else
|
|
/* if some code is already present, then the pages are already
|
|
protected. So we handle the case where only the first TB is
|
|
allocated in a physical page */
|
|
if (!page_already_protected) {
|
|
tlb_protect_code(page_addr);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* add a new TB and link it to the physical page tables. phys_page2 is
|
|
* (-1) to indicate that only one page contains the TB.
|
|
*
|
|
* Called with mmap_lock held for user-mode emulation.
|
|
*/
|
|
static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
|
|
tb_page_addr_t phys_page2)
|
|
{
|
|
uint32_t h;
|
|
|
|
assert_memory_lock();
|
|
|
|
/* add in the page list */
|
|
tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
|
|
if (phys_page2 != -1) {
|
|
tb_alloc_page(tb, 1, phys_page2);
|
|
} else {
|
|
tb->page_addr[1] = -1;
|
|
}
|
|
|
|
/* add in the hash table */
|
|
h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
|
|
tb->trace_vcpu_dstate);
|
|
qht_insert(&tb_ctx.htable, tb, h);
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
if (DEBUG_TB_CHECK_GATE) {
|
|
tb_page_check();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Called with mmap_lock held for user mode emulation. */
|
|
TranslationBlock *tb_gen_code(CPUState *cpu,
|
|
target_ulong pc, target_ulong cs_base,
|
|
uint32_t flags, int cflags)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
TranslationBlock *tb;
|
|
tb_page_addr_t phys_pc, phys_page2;
|
|
target_ulong virt_page2;
|
|
tcg_insn_unit *gen_code_buf;
|
|
int gen_code_size, search_size;
|
|
#ifdef CONFIG_PROFILER
|
|
TCGProfile *prof = &tcg_ctx->prof;
|
|
int64_t ti;
|
|
#endif
|
|
assert_memory_lock();
|
|
|
|
phys_pc = get_page_addr_code(env, pc);
|
|
|
|
buffer_overflow:
|
|
tb = tb_alloc(pc);
|
|
if (unlikely(!tb)) {
|
|
/* flush must be done */
|
|
tb_flush(cpu);
|
|
mmap_unlock();
|
|
/* Make the execution loop process the flush as soon as possible. */
|
|
cpu->exception_index = EXCP_INTERRUPT;
|
|
cpu_loop_exit(cpu);
|
|
}
|
|
|
|
gen_code_buf = tcg_ctx->code_gen_ptr;
|
|
tb->tc.ptr = gen_code_buf;
|
|
tb->pc = pc;
|
|
tb->cs_base = cs_base;
|
|
tb->flags = flags;
|
|
tb->cflags = cflags;
|
|
tb->trace_vcpu_dstate = *cpu->trace_dstate;
|
|
tcg_ctx->tb_cflags = cflags;
|
|
|
|
#ifdef CONFIG_PROFILER
|
|
/* includes aborted translations because of exceptions */
|
|
atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
|
|
ti = profile_getclock();
|
|
#endif
|
|
|
|
tcg_func_start(tcg_ctx);
|
|
|
|
tcg_ctx->cpu = ENV_GET_CPU(env);
|
|
gen_intermediate_code(cpu, tb);
|
|
tcg_ctx->cpu = NULL;
|
|
|
|
trace_translate_block(tb, tb->pc, tb->tc.ptr);
|
|
|
|
/* generate machine code */
|
|
tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
|
|
tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
|
|
tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
|
|
if (TCG_TARGET_HAS_direct_jump) {
|
|
tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
|
|
tcg_ctx->tb_jmp_target_addr = NULL;
|
|
} else {
|
|
tcg_ctx->tb_jmp_insn_offset = NULL;
|
|
tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
|
|
}
|
|
|
|
#ifdef CONFIG_PROFILER
|
|
atomic_set(&prof->tb_count, prof->tb_count + 1);
|
|
atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
|
|
ti = profile_getclock();
|
|
#endif
|
|
|
|
/* ??? Overflow could be handled better here. In particular, we
|
|
don't need to re-do gen_intermediate_code, nor should we re-do
|
|
the tcg optimization currently hidden inside tcg_gen_code. All
|
|
that should be required is to flush the TBs, allocate a new TB,
|
|
re-initialize it per above, and re-do the actual code generation. */
|
|
gen_code_size = tcg_gen_code(tcg_ctx, tb);
|
|
if (unlikely(gen_code_size < 0)) {
|
|
goto buffer_overflow;
|
|
}
|
|
search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
|
|
if (unlikely(search_size < 0)) {
|
|
goto buffer_overflow;
|
|
}
|
|
tb->tc.size = gen_code_size;
|
|
|
|
#ifdef CONFIG_PROFILER
|
|
atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
|
|
atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
|
|
atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
|
|
atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
|
|
#endif
|
|
|
|
#ifdef DEBUG_DISAS
|
|
if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
|
|
qemu_log_in_addr_range(tb->pc)) {
|
|
qemu_log_lock();
|
|
qemu_log("OUT: [size=%d]\n", gen_code_size);
|
|
if (tcg_ctx->data_gen_ptr) {
|
|
size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
|
|
size_t data_size = gen_code_size - code_size;
|
|
size_t i;
|
|
|
|
log_disas(tb->tc.ptr, code_size);
|
|
|
|
for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
|
|
if (sizeof(tcg_target_ulong) == 8) {
|
|
qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n",
|
|
(uintptr_t)tcg_ctx->data_gen_ptr + i,
|
|
*(uint64_t *)(tcg_ctx->data_gen_ptr + i));
|
|
} else {
|
|
qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n",
|
|
(uintptr_t)tcg_ctx->data_gen_ptr + i,
|
|
*(uint32_t *)(tcg_ctx->data_gen_ptr + i));
|
|
}
|
|
}
|
|
} else {
|
|
log_disas(tb->tc.ptr, gen_code_size);
|
|
}
|
|
qemu_log("\n");
|
|
qemu_log_flush();
|
|
qemu_log_unlock();
|
|
}
|
|
#endif
|
|
|
|
atomic_set(&tcg_ctx->code_gen_ptr, (void *)
|
|
ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
|
|
CODE_GEN_ALIGN));
|
|
|
|
/* init jump list */
|
|
assert(((uintptr_t)tb & 3) == 0);
|
|
tb->jmp_list_first = (uintptr_t)tb | 2;
|
|
tb->jmp_list_next[0] = (uintptr_t)NULL;
|
|
tb->jmp_list_next[1] = (uintptr_t)NULL;
|
|
|
|
/* init original jump addresses wich has been set during tcg_gen_code() */
|
|
if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
|
|
tb_reset_jump(tb, 0);
|
|
}
|
|
if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
|
|
tb_reset_jump(tb, 1);
|
|
}
|
|
|
|
/* check next page if needed */
|
|
virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
|
|
phys_page2 = -1;
|
|
if ((pc & TARGET_PAGE_MASK) != virt_page2) {
|
|
phys_page2 = get_page_addr_code(env, virt_page2);
|
|
}
|
|
/* As long as consistency of the TB stuff is provided by tb_lock in user
|
|
* mode and is implicit in single-threaded softmmu emulation, no explicit
|
|
* memory barrier is required before tb_link_page() makes the TB visible
|
|
* through the physical hash table and physical page list.
|
|
*/
|
|
tb_link_page(tb, phys_pc, phys_page2);
|
|
g_tree_insert(tb_ctx.tb_tree, &tb->tc, tb);
|
|
return tb;
|
|
}
|
|
|
|
/*
|
|
* Invalidate all TBs which intersect with the target physical address range
|
|
* [start;end[. NOTE: start and end may refer to *different* physical pages.
|
|
* 'is_cpu_write_access' should be true if called from a real cpu write
|
|
* access: the virtual CPU will exit the current TB if code is modified inside
|
|
* this TB.
|
|
*
|
|
* Called with mmap_lock held for user-mode emulation, grabs tb_lock
|
|
* Called with tb_lock held for system-mode emulation
|
|
*/
|
|
static void tb_invalidate_phys_range_1(tb_page_addr_t start, tb_page_addr_t end)
|
|
{
|
|
while (start < end) {
|
|
tb_invalidate_phys_page_range(start, end, 0);
|
|
start &= TARGET_PAGE_MASK;
|
|
start += TARGET_PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SOFTMMU
|
|
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
|
|
{
|
|
assert_tb_locked();
|
|
tb_invalidate_phys_range_1(start, end);
|
|
}
|
|
#else
|
|
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
|
|
{
|
|
assert_memory_lock();
|
|
tb_lock();
|
|
tb_invalidate_phys_range_1(start, end);
|
|
tb_unlock();
|
|
}
|
|
#endif
|
|
/*
|
|
* Invalidate all TBs which intersect with the target physical address range
|
|
* [start;end[. NOTE: start and end must refer to the *same* physical page.
|
|
* 'is_cpu_write_access' should be true if called from a real cpu write
|
|
* access: the virtual CPU will exit the current TB if code is modified inside
|
|
* this TB.
|
|
*
|
|
* Called with tb_lock/mmap_lock held for user-mode emulation
|
|
* Called with tb_lock held for system-mode emulation
|
|
*/
|
|
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
|
|
int is_cpu_write_access)
|
|
{
|
|
TranslationBlock *tb, *tb_next;
|
|
tb_page_addr_t tb_start, tb_end;
|
|
PageDesc *p;
|
|
int n;
|
|
#ifdef TARGET_HAS_PRECISE_SMC
|
|
CPUState *cpu = current_cpu;
|
|
CPUArchState *env = NULL;
|
|
int current_tb_not_found = is_cpu_write_access;
|
|
TranslationBlock *current_tb = NULL;
|
|
int current_tb_modified = 0;
|
|
target_ulong current_pc = 0;
|
|
target_ulong current_cs_base = 0;
|
|
uint32_t current_flags = 0;
|
|
#endif /* TARGET_HAS_PRECISE_SMC */
|
|
|
|
assert_memory_lock();
|
|
assert_tb_locked();
|
|
|
|
p = page_find(start >> TARGET_PAGE_BITS);
|
|
if (!p) {
|
|
return;
|
|
}
|
|
#if defined(TARGET_HAS_PRECISE_SMC)
|
|
if (cpu != NULL) {
|
|
env = cpu->env_ptr;
|
|
}
|
|
#endif
|
|
|
|
/* we remove all the TBs in the range [start, end[ */
|
|
/* XXX: see if in some cases it could be faster to invalidate all
|
|
the code */
|
|
tb = p->first_tb;
|
|
while (tb != NULL) {
|
|
n = (uintptr_t)tb & 3;
|
|
tb = (TranslationBlock *)((uintptr_t)tb & ~3);
|
|
tb_next = tb->page_next[n];
|
|
/* NOTE: this is subtle as a TB may span two physical pages */
|
|
if (n == 0) {
|
|
/* NOTE: tb_end may be after the end of the page, but
|
|
it is not a problem */
|
|
tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
|
|
tb_end = tb_start + tb->size;
|
|
} else {
|
|
tb_start = tb->page_addr[1];
|
|
tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
|
|
}
|
|
if (!(tb_end <= start || tb_start >= end)) {
|
|
#ifdef TARGET_HAS_PRECISE_SMC
|
|
if (current_tb_not_found) {
|
|
current_tb_not_found = 0;
|
|
current_tb = NULL;
|
|
if (cpu->mem_io_pc) {
|
|
/* now we have a real cpu fault */
|
|
current_tb = tb_find_pc(cpu->mem_io_pc);
|
|
}
|
|
}
|
|
if (current_tb == tb &&
|
|
(current_tb->cflags & CF_COUNT_MASK) != 1) {
|
|
/* If we are modifying the current TB, we must stop
|
|
its execution. We could be more precise by checking
|
|
that the modification is after the current PC, but it
|
|
would require a specialized function to partially
|
|
restore the CPU state */
|
|
|
|
current_tb_modified = 1;
|
|
cpu_restore_state_from_tb(cpu, current_tb,
|
|
cpu->mem_io_pc, true);
|
|
cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
|
|
¤t_flags);
|
|
}
|
|
#endif /* TARGET_HAS_PRECISE_SMC */
|
|
tb_phys_invalidate(tb, -1);
|
|
}
|
|
tb = tb_next;
|
|
}
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
/* if no code remaining, no need to continue to use slow writes */
|
|
if (!p->first_tb) {
|
|
invalidate_page_bitmap(p);
|
|
tlb_unprotect_code(start);
|
|
}
|
|
#endif
|
|
#ifdef TARGET_HAS_PRECISE_SMC
|
|
if (current_tb_modified) {
|
|
/* Force execution of one insn next time. */
|
|
cpu->cflags_next_tb = 1 | curr_cflags();
|
|
cpu_loop_exit_noexc(cpu);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_SOFTMMU
|
|
/* len must be <= 8 and start must be a multiple of len.
|
|
* Called via softmmu_template.h when code areas are written to with
|
|
* iothread mutex not held.
|
|
*/
|
|
void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
|
|
{
|
|
PageDesc *p;
|
|
|
|
#if 0
|
|
if (1) {
|
|
qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
|
|
cpu_single_env->mem_io_vaddr, len,
|
|
cpu_single_env->eip,
|
|
cpu_single_env->eip +
|
|
(intptr_t)cpu_single_env->segs[R_CS].base);
|
|
}
|
|
#endif
|
|
assert_memory_lock();
|
|
|
|
p = page_find(start >> TARGET_PAGE_BITS);
|
|
if (!p) {
|
|
return;
|
|
}
|
|
if (!p->code_bitmap &&
|
|
++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
|
|
/* build code bitmap. FIXME: writes should be protected by
|
|
* tb_lock, reads by tb_lock or RCU.
|
|
*/
|
|
build_page_bitmap(p);
|
|
}
|
|
if (p->code_bitmap) {
|
|
unsigned int nr;
|
|
unsigned long b;
|
|
|
|
nr = start & ~TARGET_PAGE_MASK;
|
|
b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
|
|
if (b & ((1 << len) - 1)) {
|
|
goto do_invalidate;
|
|
}
|
|
} else {
|
|
do_invalidate:
|
|
tb_invalidate_phys_page_range(start, start + len, 1);
|
|
}
|
|
}
|
|
#else
|
|
/* Called with mmap_lock held. If pc is not 0 then it indicates the
|
|
* host PC of the faulting store instruction that caused this invalidate.
|
|
* Returns true if the caller needs to abort execution of the current
|
|
* TB (because it was modified by this store and the guest CPU has
|
|
* precise-SMC semantics).
|
|
*/
|
|
static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
|
|
{
|
|
TranslationBlock *tb;
|
|
PageDesc *p;
|
|
int n;
|
|
#ifdef TARGET_HAS_PRECISE_SMC
|
|
TranslationBlock *current_tb = NULL;
|
|
CPUState *cpu = current_cpu;
|
|
CPUArchState *env = NULL;
|
|
int current_tb_modified = 0;
|
|
target_ulong current_pc = 0;
|
|
target_ulong current_cs_base = 0;
|
|
uint32_t current_flags = 0;
|
|
#endif
|
|
|
|
assert_memory_lock();
|
|
|
|
addr &= TARGET_PAGE_MASK;
|
|
p = page_find(addr >> TARGET_PAGE_BITS);
|
|
if (!p) {
|
|
return false;
|
|
}
|
|
|
|
tb_lock();
|
|
tb = p->first_tb;
|
|
#ifdef TARGET_HAS_PRECISE_SMC
|
|
if (tb && pc != 0) {
|
|
current_tb = tb_find_pc(pc);
|
|
}
|
|
if (cpu != NULL) {
|
|
env = cpu->env_ptr;
|
|
}
|
|
#endif
|
|
while (tb != NULL) {
|
|
n = (uintptr_t)tb & 3;
|
|
tb = (TranslationBlock *)((uintptr_t)tb & ~3);
|
|
#ifdef TARGET_HAS_PRECISE_SMC
|
|
if (current_tb == tb &&
|
|
(current_tb->cflags & CF_COUNT_MASK) != 1) {
|
|
/* If we are modifying the current TB, we must stop
|
|
its execution. We could be more precise by checking
|
|
that the modification is after the current PC, but it
|
|
would require a specialized function to partially
|
|
restore the CPU state */
|
|
|
|
current_tb_modified = 1;
|
|
cpu_restore_state_from_tb(cpu, current_tb, pc, true);
|
|
cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
|
|
¤t_flags);
|
|
}
|
|
#endif /* TARGET_HAS_PRECISE_SMC */
|
|
tb_phys_invalidate(tb, addr);
|
|
tb = tb->page_next[n];
|
|
}
|
|
p->first_tb = NULL;
|
|
#ifdef TARGET_HAS_PRECISE_SMC
|
|
if (current_tb_modified) {
|
|
/* Force execution of one insn next time. */
|
|
cpu->cflags_next_tb = 1 | curr_cflags();
|
|
/* tb_lock will be reset after cpu_loop_exit_noexc longjmps
|
|
* back into the cpu_exec loop. */
|
|
return true;
|
|
}
|
|
#endif
|
|
tb_unlock();
|
|
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Find the TB 'tb' such that
|
|
* tb->tc.ptr <= tc_ptr < tb->tc.ptr + tb->tc.size
|
|
* Return NULL if not found.
|
|
*/
|
|
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
|
|
{
|
|
struct tb_tc s = { .ptr = (void *)tc_ptr };
|
|
|
|
return g_tree_lookup(tb_ctx.tb_tree, &s);
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
|
|
{
|
|
ram_addr_t ram_addr;
|
|
MemoryRegion *mr;
|
|
hwaddr l = 1;
|
|
|
|
rcu_read_lock();
|
|
mr = address_space_translate(as, addr, &addr, &l, false);
|
|
if (!(memory_region_is_ram(mr)
|
|
|| memory_region_is_romd(mr))) {
|
|
rcu_read_unlock();
|
|
return;
|
|
}
|
|
ram_addr = memory_region_get_ram_addr(mr) + addr;
|
|
tb_lock();
|
|
tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
|
|
tb_unlock();
|
|
rcu_read_unlock();
|
|
}
|
|
#endif /* !defined(CONFIG_USER_ONLY) */
|
|
|
|
/* Called with tb_lock held. */
|
|
void tb_check_watchpoint(CPUState *cpu)
|
|
{
|
|
TranslationBlock *tb;
|
|
|
|
tb = tb_find_pc(cpu->mem_io_pc);
|
|
if (tb) {
|
|
/* We can use retranslation to find the PC. */
|
|
cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc, true);
|
|
tb_phys_invalidate(tb, -1);
|
|
} else {
|
|
/* The exception probably happened in a helper. The CPU state should
|
|
have been saved before calling it. Fetch the PC from there. */
|
|
CPUArchState *env = cpu->env_ptr;
|
|
target_ulong pc, cs_base;
|
|
tb_page_addr_t addr;
|
|
uint32_t flags;
|
|
|
|
cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
|
|
addr = get_page_addr_code(env, pc);
|
|
tb_invalidate_phys_range(addr, addr + 1);
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* in deterministic execution mode, instructions doing device I/Os
|
|
* must be at the end of the TB.
|
|
*
|
|
* Called by softmmu_template.h, with iothread mutex not held.
|
|
*/
|
|
void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
|
|
{
|
|
#if defined(TARGET_MIPS) || defined(TARGET_SH4)
|
|
CPUArchState *env = cpu->env_ptr;
|
|
#endif
|
|
TranslationBlock *tb;
|
|
uint32_t n;
|
|
|
|
tb_lock();
|
|
tb = tb_find_pc(retaddr);
|
|
if (!tb) {
|
|
cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
|
|
(void *)retaddr);
|
|
}
|
|
cpu_restore_state_from_tb(cpu, tb, retaddr, true);
|
|
|
|
/* On MIPS and SH, delay slot instructions can only be restarted if
|
|
they were already the first instruction in the TB. If this is not
|
|
the first instruction in a TB then re-execute the preceding
|
|
branch. */
|
|
n = 1;
|
|
#if defined(TARGET_MIPS)
|
|
if ((env->hflags & MIPS_HFLAG_BMASK) != 0
|
|
&& env->active_tc.PC != tb->pc) {
|
|
env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
|
|
cpu->icount_decr.u16.low++;
|
|
env->hflags &= ~MIPS_HFLAG_BMASK;
|
|
n = 2;
|
|
}
|
|
#elif defined(TARGET_SH4)
|
|
if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
|
|
&& env->pc != tb->pc) {
|
|
env->pc -= 2;
|
|
cpu->icount_decr.u16.low++;
|
|
env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
|
|
n = 2;
|
|
}
|
|
#endif
|
|
|
|
/* Generate a new TB executing the I/O insn. */
|
|
cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
|
|
|
|
if (tb->cflags & CF_NOCACHE) {
|
|
if (tb->orig_tb) {
|
|
/* Invalidate original TB if this TB was generated in
|
|
* cpu_exec_nocache() */
|
|
tb_phys_invalidate(tb->orig_tb, -1);
|
|
}
|
|
tb_remove(tb);
|
|
}
|
|
|
|
/* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
|
|
* the first in the TB) then we end up generating a whole new TB and
|
|
* repeating the fault, which is horribly inefficient.
|
|
* Better would be to execute just this insn uncached, or generate a
|
|
* second new TB.
|
|
*
|
|
* cpu_loop_exit_noexc will longjmp back to cpu_exec where the
|
|
* tb_lock gets reset.
|
|
*/
|
|
cpu_loop_exit_noexc(cpu);
|
|
}
|
|
|
|
static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
|
|
{
|
|
unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
|
|
|
|
for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
|
|
atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
|
|
}
|
|
}
|
|
|
|
void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
|
|
{
|
|
/* Discard jump cache entries for any tb which might potentially
|
|
overlap the flushed page. */
|
|
tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
|
|
tb_jmp_cache_clear_page(cpu, addr);
|
|
}
|
|
|
|
static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
|
|
struct qht_stats hst)
|
|
{
|
|
uint32_t hgram_opts;
|
|
size_t hgram_bins;
|
|
char *hgram;
|
|
|
|
if (!hst.head_buckets) {
|
|
return;
|
|
}
|
|
cpu_fprintf(f, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
|
|
hst.used_head_buckets, hst.head_buckets,
|
|
(double)hst.used_head_buckets / hst.head_buckets * 100);
|
|
|
|
hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
|
|
hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
|
|
if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
|
|
hgram_opts |= QDIST_PR_NODECIMAL;
|
|
}
|
|
hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
|
|
cpu_fprintf(f, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
|
|
qdist_avg(&hst.occupancy) * 100, hgram);
|
|
g_free(hgram);
|
|
|
|
hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
|
|
hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
|
|
if (hgram_bins > 10) {
|
|
hgram_bins = 10;
|
|
} else {
|
|
hgram_bins = 0;
|
|
hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
|
|
}
|
|
hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
|
|
cpu_fprintf(f, "TB hash avg chain %0.3f buckets. Histogram: %s\n",
|
|
qdist_avg(&hst.chain), hgram);
|
|
g_free(hgram);
|
|
}
|
|
|
|
struct tb_tree_stats {
|
|
size_t host_size;
|
|
size_t target_size;
|
|
size_t max_target_size;
|
|
size_t direct_jmp_count;
|
|
size_t direct_jmp2_count;
|
|
size_t cross_page;
|
|
};
|
|
|
|
static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
|
|
{
|
|
const TranslationBlock *tb = value;
|
|
struct tb_tree_stats *tst = data;
|
|
|
|
tst->host_size += tb->tc.size;
|
|
tst->target_size += tb->size;
|
|
if (tb->size > tst->max_target_size) {
|
|
tst->max_target_size = tb->size;
|
|
}
|
|
if (tb->page_addr[1] != -1) {
|
|
tst->cross_page++;
|
|
}
|
|
if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
|
|
tst->direct_jmp_count++;
|
|
if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
|
|
tst->direct_jmp2_count++;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
|
|
{
|
|
struct tb_tree_stats tst = {};
|
|
struct qht_stats hst;
|
|
size_t nb_tbs;
|
|
|
|
tb_lock();
|
|
|
|
nb_tbs = g_tree_nnodes(tb_ctx.tb_tree);
|
|
g_tree_foreach(tb_ctx.tb_tree, tb_tree_stats_iter, &tst);
|
|
/* XXX: avoid using doubles ? */
|
|
cpu_fprintf(f, "Translation buffer state:\n");
|
|
/*
|
|
* Report total code size including the padding and TB structs;
|
|
* otherwise users might think "-tb-size" is not honoured.
|
|
* For avg host size we use the precise numbers from tb_tree_stats though.
|
|
*/
|
|
cpu_fprintf(f, "gen code size %zu/%zu\n",
|
|
tcg_code_size(), tcg_code_capacity());
|
|
cpu_fprintf(f, "TB count %zu\n", nb_tbs);
|
|
cpu_fprintf(f, "TB avg target size %zu max=%zu bytes\n",
|
|
nb_tbs ? tst.target_size / nb_tbs : 0,
|
|
tst.max_target_size);
|
|
cpu_fprintf(f, "TB avg host size %zu bytes (expansion ratio: %0.1f)\n",
|
|
nb_tbs ? tst.host_size / nb_tbs : 0,
|
|
tst.target_size ? (double)tst.host_size / tst.target_size : 0);
|
|
cpu_fprintf(f, "cross page TB count %zu (%zu%%)\n", tst.cross_page,
|
|
nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
|
|
cpu_fprintf(f, "direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
|
|
tst.direct_jmp_count,
|
|
nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
|
|
tst.direct_jmp2_count,
|
|
nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
|
|
|
|
qht_statistics_init(&tb_ctx.htable, &hst);
|
|
print_qht_statistics(f, cpu_fprintf, hst);
|
|
qht_statistics_destroy(&hst);
|
|
|
|
cpu_fprintf(f, "\nStatistics:\n");
|
|
cpu_fprintf(f, "TB flush count %u\n",
|
|
atomic_read(&tb_ctx.tb_flush_count));
|
|
cpu_fprintf(f, "TB invalidate count %d\n", tb_ctx.tb_phys_invalidate_count);
|
|
cpu_fprintf(f, "TLB flush count %zu\n", tlb_flush_count());
|
|
tcg_dump_info(f, cpu_fprintf);
|
|
|
|
tb_unlock();
|
|
}
|
|
|
|
void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
|
|
{
|
|
tcg_dump_op_count(f, cpu_fprintf);
|
|
}
|
|
|
|
#else /* CONFIG_USER_ONLY */
|
|
|
|
void cpu_interrupt(CPUState *cpu, int mask)
|
|
{
|
|
g_assert(qemu_mutex_iothread_locked());
|
|
cpu->interrupt_request |= mask;
|
|
cpu->icount_decr.u16.high = -1;
|
|
}
|
|
|
|
/*
|
|
* Walks guest process memory "regions" one by one
|
|
* and calls callback function 'fn' for each region.
|
|
*/
|
|
struct walk_memory_regions_data {
|
|
walk_memory_regions_fn fn;
|
|
void *priv;
|
|
target_ulong start;
|
|
int prot;
|
|
};
|
|
|
|
static int walk_memory_regions_end(struct walk_memory_regions_data *data,
|
|
target_ulong end, int new_prot)
|
|
{
|
|
if (data->start != -1u) {
|
|
int rc = data->fn(data->priv, data->start, end, data->prot);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
data->start = (new_prot ? end : -1u);
|
|
data->prot = new_prot;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int walk_memory_regions_1(struct walk_memory_regions_data *data,
|
|
target_ulong base, int level, void **lp)
|
|
{
|
|
target_ulong pa;
|
|
int i, rc;
|
|
|
|
if (*lp == NULL) {
|
|
return walk_memory_regions_end(data, base, 0);
|
|
}
|
|
|
|
if (level == 0) {
|
|
PageDesc *pd = *lp;
|
|
|
|
for (i = 0; i < V_L2_SIZE; ++i) {
|
|
int prot = pd[i].flags;
|
|
|
|
pa = base | (i << TARGET_PAGE_BITS);
|
|
if (prot != data->prot) {
|
|
rc = walk_memory_regions_end(data, pa, prot);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
void **pp = *lp;
|
|
|
|
for (i = 0; i < V_L2_SIZE; ++i) {
|
|
pa = base | ((target_ulong)i <<
|
|
(TARGET_PAGE_BITS + V_L2_BITS * level));
|
|
rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
|
|
{
|
|
struct walk_memory_regions_data data;
|
|
uintptr_t i, l1_sz = v_l1_size;
|
|
|
|
data.fn = fn;
|
|
data.priv = priv;
|
|
data.start = -1u;
|
|
data.prot = 0;
|
|
|
|
for (i = 0; i < l1_sz; i++) {
|
|
target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
|
|
int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return walk_memory_regions_end(&data, 0, 0);
|
|
}
|
|
|
|
static int dump_region(void *priv, target_ulong start,
|
|
target_ulong end, unsigned long prot)
|
|
{
|
|
FILE *f = (FILE *)priv;
|
|
|
|
(void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
|
|
" "TARGET_FMT_lx" %c%c%c\n",
|
|
start, end, end - start,
|
|
((prot & PAGE_READ) ? 'r' : '-'),
|
|
((prot & PAGE_WRITE) ? 'w' : '-'),
|
|
((prot & PAGE_EXEC) ? 'x' : '-'));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* dump memory mappings */
|
|
void page_dump(FILE *f)
|
|
{
|
|
const int length = sizeof(target_ulong) * 2;
|
|
(void) fprintf(f, "%-*s %-*s %-*s %s\n",
|
|
length, "start", length, "end", length, "size", "prot");
|
|
walk_memory_regions(f, dump_region);
|
|
}
|
|
|
|
int page_get_flags(target_ulong address)
|
|
{
|
|
PageDesc *p;
|
|
|
|
p = page_find(address >> TARGET_PAGE_BITS);
|
|
if (!p) {
|
|
return 0;
|
|
}
|
|
return p->flags;
|
|
}
|
|
|
|
/* Modify the flags of a page and invalidate the code if necessary.
|
|
The flag PAGE_WRITE_ORG is positioned automatically depending
|
|
on PAGE_WRITE. The mmap_lock should already be held. */
|
|
void page_set_flags(target_ulong start, target_ulong end, int flags)
|
|
{
|
|
target_ulong addr, len;
|
|
|
|
/* This function should never be called with addresses outside the
|
|
guest address space. If this assert fires, it probably indicates
|
|
a missing call to h2g_valid. */
|
|
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
|
|
assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
|
|
#endif
|
|
assert(start < end);
|
|
assert_memory_lock();
|
|
|
|
start = start & TARGET_PAGE_MASK;
|
|
end = TARGET_PAGE_ALIGN(end);
|
|
|
|
if (flags & PAGE_WRITE) {
|
|
flags |= PAGE_WRITE_ORG;
|
|
}
|
|
|
|
for (addr = start, len = end - start;
|
|
len != 0;
|
|
len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
|
|
PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
|
|
|
|
/* If the write protection bit is set, then we invalidate
|
|
the code inside. */
|
|
if (!(p->flags & PAGE_WRITE) &&
|
|
(flags & PAGE_WRITE) &&
|
|
p->first_tb) {
|
|
tb_invalidate_phys_page(addr, 0);
|
|
}
|
|
p->flags = flags;
|
|
}
|
|
}
|
|
|
|
int page_check_range(target_ulong start, target_ulong len, int flags)
|
|
{
|
|
PageDesc *p;
|
|
target_ulong end;
|
|
target_ulong addr;
|
|
|
|
/* This function should never be called with addresses outside the
|
|
guest address space. If this assert fires, it probably indicates
|
|
a missing call to h2g_valid. */
|
|
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
|
|
assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
|
|
#endif
|
|
|
|
if (len == 0) {
|
|
return 0;
|
|
}
|
|
if (start + len - 1 < start) {
|
|
/* We've wrapped around. */
|
|
return -1;
|
|
}
|
|
|
|
/* must do before we loose bits in the next step */
|
|
end = TARGET_PAGE_ALIGN(start + len);
|
|
start = start & TARGET_PAGE_MASK;
|
|
|
|
for (addr = start, len = end - start;
|
|
len != 0;
|
|
len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
|
|
p = page_find(addr >> TARGET_PAGE_BITS);
|
|
if (!p) {
|
|
return -1;
|
|
}
|
|
if (!(p->flags & PAGE_VALID)) {
|
|
return -1;
|
|
}
|
|
|
|
if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
|
|
return -1;
|
|
}
|
|
if (flags & PAGE_WRITE) {
|
|
if (!(p->flags & PAGE_WRITE_ORG)) {
|
|
return -1;
|
|
}
|
|
/* unprotect the page if it was put read-only because it
|
|
contains translated code */
|
|
if (!(p->flags & PAGE_WRITE)) {
|
|
if (!page_unprotect(addr, 0)) {
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* called from signal handler: invalidate the code and unprotect the
|
|
* page. Return 0 if the fault was not handled, 1 if it was handled,
|
|
* and 2 if it was handled but the caller must cause the TB to be
|
|
* immediately exited. (We can only return 2 if the 'pc' argument is
|
|
* non-zero.)
|
|
*/
|
|
int page_unprotect(target_ulong address, uintptr_t pc)
|
|
{
|
|
unsigned int prot;
|
|
bool current_tb_invalidated;
|
|
PageDesc *p;
|
|
target_ulong host_start, host_end, addr;
|
|
|
|
/* Technically this isn't safe inside a signal handler. However we
|
|
know this only ever happens in a synchronous SEGV handler, so in
|
|
practice it seems to be ok. */
|
|
mmap_lock();
|
|
|
|
p = page_find(address >> TARGET_PAGE_BITS);
|
|
if (!p) {
|
|
mmap_unlock();
|
|
return 0;
|
|
}
|
|
|
|
/* if the page was really writable, then we change its
|
|
protection back to writable */
|
|
if (p->flags & PAGE_WRITE_ORG) {
|
|
current_tb_invalidated = false;
|
|
if (p->flags & PAGE_WRITE) {
|
|
/* If the page is actually marked WRITE then assume this is because
|
|
* this thread raced with another one which got here first and
|
|
* set the page to PAGE_WRITE and did the TB invalidate for us.
|
|
*/
|
|
#ifdef TARGET_HAS_PRECISE_SMC
|
|
TranslationBlock *current_tb = tb_find_pc(pc);
|
|
if (current_tb) {
|
|
current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
|
|
}
|
|
#endif
|
|
} else {
|
|
host_start = address & qemu_host_page_mask;
|
|
host_end = host_start + qemu_host_page_size;
|
|
|
|
prot = 0;
|
|
for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
|
|
p = page_find(addr >> TARGET_PAGE_BITS);
|
|
p->flags |= PAGE_WRITE;
|
|
prot |= p->flags;
|
|
|
|
/* and since the content will be modified, we must invalidate
|
|
the corresponding translated code. */
|
|
current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
|
|
#ifdef CONFIG_USER_ONLY
|
|
if (DEBUG_TB_CHECK_GATE) {
|
|
tb_invalidate_check(addr);
|
|
}
|
|
#endif
|
|
}
|
|
mprotect((void *)g2h(host_start), qemu_host_page_size,
|
|
prot & PAGE_BITS);
|
|
}
|
|
mmap_unlock();
|
|
/* If current TB was invalidated return to main loop */
|
|
return current_tb_invalidated ? 2 : 1;
|
|
}
|
|
mmap_unlock();
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_USER_ONLY */
|
|
|
|
/* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
|
|
void tcg_flush_softmmu_tlb(CPUState *cs)
|
|
{
|
|
#ifdef CONFIG_SOFTMMU
|
|
tlb_flush(cs);
|
|
#endif
|
|
}
|