qemu-e2k/block/qcow2-cluster.c
Max Reitz b93f995081 qcow2: Check min_size in qcow2_grow_l1_table()
First, new_l1_size is an int64_t, whereas min_size is a uint64_t.
Therefore, during the loop which adjusts new_l1_size until it equals or
exceeds min_size, new_l1_size might overflow and become negative. The
comparison in the loop condition however will take it as an unsigned
value (because min_size is unsigned) and therefore recognize it as
exceeding min_size. Therefore, the loop is left with a negative
new_l1_size, which is not correct. This could be fixed by making
new_l1_size uint64_t.

On the other hand, however, by doing this, the while loop may take
forever. If min_size is e.g. UINT64_MAX, it will take new_l1_size
probably multiple overflows to reach the exact same value (if it reaches
it at all). Then, right after the loop, new_l1_size will be recognized
as being too big anyway.

Both problems require a ridiculously high min_size value, which is very
unlikely to occur; but both problems are also simply avoided by checking
whether min_size is sane before calculating new_l1_size (which should
still be checked separately, though).

Signed-off-by: Max Reitz <mreitz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2014-04-30 14:46:17 +02:00

1792 lines
55 KiB
C

/*
* Block driver for the QCOW version 2 format
*
* Copyright (c) 2004-2006 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <zlib.h>
#include "qemu-common.h"
#include "block/block_int.h"
#include "block/qcow2.h"
#include "trace.h"
int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
bool exact_size)
{
BDRVQcowState *s = bs->opaque;
int new_l1_size2, ret, i;
uint64_t *new_l1_table;
int64_t old_l1_table_offset, old_l1_size;
int64_t new_l1_table_offset, new_l1_size;
uint8_t data[12];
if (min_size <= s->l1_size)
return 0;
/* Do a sanity check on min_size before trying to calculate new_l1_size
* (this prevents overflows during the while loop for the calculation of
* new_l1_size) */
if (min_size > INT_MAX / sizeof(uint64_t)) {
return -EFBIG;
}
if (exact_size) {
new_l1_size = min_size;
} else {
/* Bump size up to reduce the number of times we have to grow */
new_l1_size = s->l1_size;
if (new_l1_size == 0) {
new_l1_size = 1;
}
while (min_size > new_l1_size) {
new_l1_size = (new_l1_size * 3 + 1) / 2;
}
}
if (new_l1_size > INT_MAX / sizeof(uint64_t)) {
return -EFBIG;
}
#ifdef DEBUG_ALLOC2
fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
s->l1_size, new_l1_size);
#endif
new_l1_size2 = sizeof(uint64_t) * new_l1_size;
new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
/* write new table (align to cluster) */
BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
if (new_l1_table_offset < 0) {
g_free(new_l1_table);
return new_l1_table_offset;
}
ret = qcow2_cache_flush(bs, s->refcount_block_cache);
if (ret < 0) {
goto fail;
}
/* the L1 position has not yet been updated, so these clusters must
* indeed be completely free */
ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
new_l1_size2);
if (ret < 0) {
goto fail;
}
BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
for(i = 0; i < s->l1_size; i++)
new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
if (ret < 0)
goto fail;
for(i = 0; i < s->l1_size; i++)
new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
/* set new table */
BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
cpu_to_be32w((uint32_t*)data, new_l1_size);
stq_be_p(data + 4, new_l1_table_offset);
ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
if (ret < 0) {
goto fail;
}
g_free(s->l1_table);
old_l1_table_offset = s->l1_table_offset;
s->l1_table_offset = new_l1_table_offset;
s->l1_table = new_l1_table;
old_l1_size = s->l1_size;
s->l1_size = new_l1_size;
qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
QCOW2_DISCARD_OTHER);
return 0;
fail:
g_free(new_l1_table);
qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
QCOW2_DISCARD_OTHER);
return ret;
}
/*
* l2_load
*
* Loads a L2 table into memory. If the table is in the cache, the cache
* is used; otherwise the L2 table is loaded from the image file.
*
* Returns a pointer to the L2 table on success, or NULL if the read from
* the image file failed.
*/
static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
uint64_t **l2_table)
{
BDRVQcowState *s = bs->opaque;
int ret;
ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
return ret;
}
/*
* Writes one sector of the L1 table to the disk (can't update single entries
* and we really don't want bdrv_pread to perform a read-modify-write)
*/
#define L1_ENTRIES_PER_SECTOR (512 / 8)
int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
{
BDRVQcowState *s = bs->opaque;
uint64_t buf[L1_ENTRIES_PER_SECTOR];
int l1_start_index;
int i, ret;
l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
}
ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
if (ret < 0) {
return ret;
}
BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
buf, sizeof(buf));
if (ret < 0) {
return ret;
}
return 0;
}
/*
* l2_allocate
*
* Allocate a new l2 entry in the file. If l1_index points to an already
* used entry in the L2 table (i.e. we are doing a copy on write for the L2
* table) copy the contents of the old L2 table into the newly allocated one.
* Otherwise the new table is initialized with zeros.
*
*/
static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
{
BDRVQcowState *s = bs->opaque;
uint64_t old_l2_offset;
uint64_t *l2_table = NULL;
int64_t l2_offset;
int ret;
old_l2_offset = s->l1_table[l1_index];
trace_qcow2_l2_allocate(bs, l1_index);
/* allocate a new l2 entry */
l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
if (l2_offset < 0) {
ret = l2_offset;
goto fail;
}
ret = qcow2_cache_flush(bs, s->refcount_block_cache);
if (ret < 0) {
goto fail;
}
/* allocate a new entry in the l2 cache */
trace_qcow2_l2_allocate_get_empty(bs, l1_index);
ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
if (ret < 0) {
goto fail;
}
l2_table = *table;
if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
/* if there was no old l2 table, clear the new table */
memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
} else {
uint64_t* old_table;
/* if there was an old l2 table, read it from the disk */
BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
ret = qcow2_cache_get(bs, s->l2_table_cache,
old_l2_offset & L1E_OFFSET_MASK,
(void**) &old_table);
if (ret < 0) {
goto fail;
}
memcpy(l2_table, old_table, s->cluster_size);
ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
if (ret < 0) {
goto fail;
}
}
/* write the l2 table to the file */
BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
trace_qcow2_l2_allocate_write_l2(bs, l1_index);
qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
ret = qcow2_cache_flush(bs, s->l2_table_cache);
if (ret < 0) {
goto fail;
}
/* update the L1 entry */
trace_qcow2_l2_allocate_write_l1(bs, l1_index);
s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
ret = qcow2_write_l1_entry(bs, l1_index);
if (ret < 0) {
goto fail;
}
*table = l2_table;
trace_qcow2_l2_allocate_done(bs, l1_index, 0);
return 0;
fail:
trace_qcow2_l2_allocate_done(bs, l1_index, ret);
if (l2_table != NULL) {
qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
}
s->l1_table[l1_index] = old_l2_offset;
if (l2_offset > 0) {
qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
QCOW2_DISCARD_ALWAYS);
}
return ret;
}
/*
* Checks how many clusters in a given L2 table are contiguous in the image
* file. As soon as one of the flags in the bitmask stop_flags changes compared
* to the first cluster, the search is stopped and the cluster is not counted
* as contiguous. (This allows it, for example, to stop at the first compressed
* cluster which may require a different handling)
*/
static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
uint64_t *l2_table, uint64_t stop_flags)
{
int i;
uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
uint64_t first_entry = be64_to_cpu(l2_table[0]);
uint64_t offset = first_entry & mask;
if (!offset)
return 0;
assert(qcow2_get_cluster_type(first_entry) != QCOW2_CLUSTER_COMPRESSED);
for (i = 0; i < nb_clusters; i++) {
uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
if (offset + (uint64_t) i * cluster_size != l2_entry) {
break;
}
}
return i;
}
static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
{
int i;
for (i = 0; i < nb_clusters; i++) {
int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
if (type != QCOW2_CLUSTER_UNALLOCATED) {
break;
}
}
return i;
}
/* The crypt function is compatible with the linux cryptoloop
algorithm for < 4 GB images. NOTE: out_buf == in_buf is
supported */
void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
uint8_t *out_buf, const uint8_t *in_buf,
int nb_sectors, int enc,
const AES_KEY *key)
{
union {
uint64_t ll[2];
uint8_t b[16];
} ivec;
int i;
for(i = 0; i < nb_sectors; i++) {
ivec.ll[0] = cpu_to_le64(sector_num);
ivec.ll[1] = 0;
AES_cbc_encrypt(in_buf, out_buf, 512, key,
ivec.b, enc);
sector_num++;
in_buf += 512;
out_buf += 512;
}
}
static int coroutine_fn copy_sectors(BlockDriverState *bs,
uint64_t start_sect,
uint64_t cluster_offset,
int n_start, int n_end)
{
BDRVQcowState *s = bs->opaque;
QEMUIOVector qiov;
struct iovec iov;
int n, ret;
n = n_end - n_start;
if (n <= 0) {
return 0;
}
iov.iov_len = n * BDRV_SECTOR_SIZE;
iov.iov_base = qemu_blockalign(bs, iov.iov_len);
qemu_iovec_init_external(&qiov, &iov, 1);
BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
if (!bs->drv) {
return -ENOMEDIUM;
}
/* Call .bdrv_co_readv() directly instead of using the public block-layer
* interface. This avoids double I/O throttling and request tracking,
* which can lead to deadlock when block layer copy-on-read is enabled.
*/
ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
if (ret < 0) {
goto out;
}
if (s->crypt_method) {
qcow2_encrypt_sectors(s, start_sect + n_start,
iov.iov_base, iov.iov_base, n, 1,
&s->aes_encrypt_key);
}
ret = qcow2_pre_write_overlap_check(bs, 0,
cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE);
if (ret < 0) {
goto out;
}
BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
if (ret < 0) {
goto out;
}
ret = 0;
out:
qemu_vfree(iov.iov_base);
return ret;
}
/*
* get_cluster_offset
*
* For a given offset of the disk image, find the cluster offset in
* qcow2 file. The offset is stored in *cluster_offset.
*
* on entry, *num is the number of contiguous sectors we'd like to
* access following offset.
*
* on exit, *num is the number of contiguous sectors we can read.
*
* Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
* cases.
*/
int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
int *num, uint64_t *cluster_offset)
{
BDRVQcowState *s = bs->opaque;
unsigned int l2_index;
uint64_t l1_index, l2_offset, *l2_table;
int l1_bits, c;
unsigned int index_in_cluster, nb_clusters;
uint64_t nb_available, nb_needed;
int ret;
index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
nb_needed = *num + index_in_cluster;
l1_bits = s->l2_bits + s->cluster_bits;
/* compute how many bytes there are between the offset and
* the end of the l1 entry
*/
nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
/* compute the number of available sectors */
nb_available = (nb_available >> 9) + index_in_cluster;
if (nb_needed > nb_available) {
nb_needed = nb_available;
}
*cluster_offset = 0;
/* seek the the l2 offset in the l1 table */
l1_index = offset >> l1_bits;
if (l1_index >= s->l1_size) {
ret = QCOW2_CLUSTER_UNALLOCATED;
goto out;
}
l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
if (!l2_offset) {
ret = QCOW2_CLUSTER_UNALLOCATED;
goto out;
}
/* load the l2 table in memory */
ret = l2_load(bs, l2_offset, &l2_table);
if (ret < 0) {
return ret;
}
/* find the cluster offset for the given disk offset */
l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
*cluster_offset = be64_to_cpu(l2_table[l2_index]);
nb_clusters = size_to_clusters(s, nb_needed << 9);
ret = qcow2_get_cluster_type(*cluster_offset);
switch (ret) {
case QCOW2_CLUSTER_COMPRESSED:
/* Compressed clusters can only be processed one by one */
c = 1;
*cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
break;
case QCOW2_CLUSTER_ZERO:
if (s->qcow_version < 3) {
qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
return -EIO;
}
c = count_contiguous_clusters(nb_clusters, s->cluster_size,
&l2_table[l2_index], QCOW_OFLAG_ZERO);
*cluster_offset = 0;
break;
case QCOW2_CLUSTER_UNALLOCATED:
/* how many empty clusters ? */
c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
*cluster_offset = 0;
break;
case QCOW2_CLUSTER_NORMAL:
/* how many allocated clusters ? */
c = count_contiguous_clusters(nb_clusters, s->cluster_size,
&l2_table[l2_index], QCOW_OFLAG_ZERO);
*cluster_offset &= L2E_OFFSET_MASK;
break;
default:
abort();
}
qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
nb_available = (c * s->cluster_sectors);
out:
if (nb_available > nb_needed)
nb_available = nb_needed;
*num = nb_available - index_in_cluster;
return ret;
}
/*
* get_cluster_table
*
* for a given disk offset, load (and allocate if needed)
* the l2 table.
*
* the l2 table offset in the qcow2 file and the cluster index
* in the l2 table are given to the caller.
*
* Returns 0 on success, -errno in failure case
*/
static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
uint64_t **new_l2_table,
int *new_l2_index)
{
BDRVQcowState *s = bs->opaque;
unsigned int l2_index;
uint64_t l1_index, l2_offset;
uint64_t *l2_table = NULL;
int ret;
/* seek the the l2 offset in the l1 table */
l1_index = offset >> (s->l2_bits + s->cluster_bits);
if (l1_index >= s->l1_size) {
ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
if (ret < 0) {
return ret;
}
}
assert(l1_index < s->l1_size);
l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
/* seek the l2 table of the given l2 offset */
if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
/* load the l2 table in memory */
ret = l2_load(bs, l2_offset, &l2_table);
if (ret < 0) {
return ret;
}
} else {
/* First allocate a new L2 table (and do COW if needed) */
ret = l2_allocate(bs, l1_index, &l2_table);
if (ret < 0) {
return ret;
}
/* Then decrease the refcount of the old table */
if (l2_offset) {
qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
QCOW2_DISCARD_OTHER);
}
}
/* find the cluster offset for the given disk offset */
l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
*new_l2_table = l2_table;
*new_l2_index = l2_index;
return 0;
}
/*
* alloc_compressed_cluster_offset
*
* For a given offset of the disk image, return cluster offset in
* qcow2 file.
*
* If the offset is not found, allocate a new compressed cluster.
*
* Return the cluster offset if successful,
* Return 0, otherwise.
*
*/
uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
uint64_t offset,
int compressed_size)
{
BDRVQcowState *s = bs->opaque;
int l2_index, ret;
uint64_t *l2_table;
int64_t cluster_offset;
int nb_csectors;
ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
if (ret < 0) {
return 0;
}
/* Compression can't overwrite anything. Fail if the cluster was already
* allocated. */
cluster_offset = be64_to_cpu(l2_table[l2_index]);
if (cluster_offset & L2E_OFFSET_MASK) {
qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
return 0;
}
cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
if (cluster_offset < 0) {
qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
return 0;
}
nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
(cluster_offset >> 9);
cluster_offset |= QCOW_OFLAG_COMPRESSED |
((uint64_t)nb_csectors << s->csize_shift);
/* update L2 table */
/* compressed clusters never have the copied flag */
BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
l2_table[l2_index] = cpu_to_be64(cluster_offset);
ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
if (ret < 0) {
return 0;
}
return cluster_offset;
}
static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
{
BDRVQcowState *s = bs->opaque;
int ret;
if (r->nb_sectors == 0) {
return 0;
}
qemu_co_mutex_unlock(&s->lock);
ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
r->offset / BDRV_SECTOR_SIZE,
r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
qemu_co_mutex_lock(&s->lock);
if (ret < 0) {
return ret;
}
/*
* Before we update the L2 table to actually point to the new cluster, we
* need to be sure that the refcounts have been increased and COW was
* handled.
*/
qcow2_cache_depends_on_flush(s->l2_table_cache);
return 0;
}
int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
{
BDRVQcowState *s = bs->opaque;
int i, j = 0, l2_index, ret;
uint64_t *old_cluster, *l2_table;
uint64_t cluster_offset = m->alloc_offset;
trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
assert(m->nb_clusters > 0);
old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
/* copy content of unmodified sectors */
ret = perform_cow(bs, m, &m->cow_start);
if (ret < 0) {
goto err;
}
ret = perform_cow(bs, m, &m->cow_end);
if (ret < 0) {
goto err;
}
/* Update L2 table. */
if (s->use_lazy_refcounts) {
qcow2_mark_dirty(bs);
}
if (qcow2_need_accurate_refcounts(s)) {
qcow2_cache_set_dependency(bs, s->l2_table_cache,
s->refcount_block_cache);
}
ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
if (ret < 0) {
goto err;
}
qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
assert(l2_index + m->nb_clusters <= s->l2_size);
for (i = 0; i < m->nb_clusters; i++) {
/* if two concurrent writes happen to the same unallocated cluster
* each write allocates separate cluster and writes data concurrently.
* The first one to complete updates l2 table with pointer to its
* cluster the second one has to do RMW (which is done above by
* copy_sectors()), update l2 table with its cluster pointer and free
* old cluster. This is what this loop does */
if(l2_table[l2_index + i] != 0)
old_cluster[j++] = l2_table[l2_index + i];
l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
(i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
}
ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
if (ret < 0) {
goto err;
}
/*
* If this was a COW, we need to decrease the refcount of the old cluster.
* Also flush bs->file to get the right order for L2 and refcount update.
*
* Don't discard clusters that reach a refcount of 0 (e.g. compressed
* clusters), the next write will reuse them anyway.
*/
if (j != 0) {
for (i = 0; i < j; i++) {
qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
QCOW2_DISCARD_NEVER);
}
}
ret = 0;
err:
g_free(old_cluster);
return ret;
}
/*
* Returns the number of contiguous clusters that can be used for an allocating
* write, but require COW to be performed (this includes yet unallocated space,
* which must copy from the backing file)
*/
static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
uint64_t *l2_table, int l2_index)
{
int i;
for (i = 0; i < nb_clusters; i++) {
uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
int cluster_type = qcow2_get_cluster_type(l2_entry);
switch(cluster_type) {
case QCOW2_CLUSTER_NORMAL:
if (l2_entry & QCOW_OFLAG_COPIED) {
goto out;
}
break;
case QCOW2_CLUSTER_UNALLOCATED:
case QCOW2_CLUSTER_COMPRESSED:
case QCOW2_CLUSTER_ZERO:
break;
default:
abort();
}
}
out:
assert(i <= nb_clusters);
return i;
}
/*
* Check if there already is an AIO write request in flight which allocates
* the same cluster. In this case we need to wait until the previous
* request has completed and updated the L2 table accordingly.
*
* Returns:
* 0 if there was no dependency. *cur_bytes indicates the number of
* bytes from guest_offset that can be read before the next
* dependency must be processed (or the request is complete)
*
* -EAGAIN if we had to wait for another request, previously gathered
* information on cluster allocation may be invalid now. The caller
* must start over anyway, so consider *cur_bytes undefined.
*/
static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
uint64_t *cur_bytes, QCowL2Meta **m)
{
BDRVQcowState *s = bs->opaque;
QCowL2Meta *old_alloc;
uint64_t bytes = *cur_bytes;
QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
uint64_t start = guest_offset;
uint64_t end = start + bytes;
uint64_t old_start = l2meta_cow_start(old_alloc);
uint64_t old_end = l2meta_cow_end(old_alloc);
if (end <= old_start || start >= old_end) {
/* No intersection */
} else {
if (start < old_start) {
/* Stop at the start of a running allocation */
bytes = old_start - start;
} else {
bytes = 0;
}
/* Stop if already an l2meta exists. After yielding, it wouldn't
* be valid any more, so we'd have to clean up the old L2Metas
* and deal with requests depending on them before starting to
* gather new ones. Not worth the trouble. */
if (bytes == 0 && *m) {
*cur_bytes = 0;
return 0;
}
if (bytes == 0) {
/* Wait for the dependency to complete. We need to recheck
* the free/allocated clusters when we continue. */
qemu_co_mutex_unlock(&s->lock);
qemu_co_queue_wait(&old_alloc->dependent_requests);
qemu_co_mutex_lock(&s->lock);
return -EAGAIN;
}
}
}
/* Make sure that existing clusters and new allocations are only used up to
* the next dependency if we shortened the request above */
*cur_bytes = bytes;
return 0;
}
/*
* Checks how many already allocated clusters that don't require a copy on
* write there are at the given guest_offset (up to *bytes). If
* *host_offset is not zero, only physically contiguous clusters beginning at
* this host offset are counted.
*
* Note that guest_offset may not be cluster aligned. In this case, the
* returned *host_offset points to exact byte referenced by guest_offset and
* therefore isn't cluster aligned as well.
*
* Returns:
* 0: if no allocated clusters are available at the given offset.
* *bytes is normally unchanged. It is set to 0 if the cluster
* is allocated and doesn't need COW, but doesn't have the right
* physical offset.
*
* 1: if allocated clusters that don't require a COW are available at
* the requested offset. *bytes may have decreased and describes
* the length of the area that can be written to.
*
* -errno: in error cases
*/
static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
{
BDRVQcowState *s = bs->opaque;
int l2_index;
uint64_t cluster_offset;
uint64_t *l2_table;
unsigned int nb_clusters;
unsigned int keep_clusters;
int ret, pret;
trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
*bytes);
assert(*host_offset == 0 || offset_into_cluster(s, guest_offset)
== offset_into_cluster(s, *host_offset));
/*
* Calculate the number of clusters to look for. We stop at L2 table
* boundaries to keep things simple.
*/
nb_clusters =
size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
l2_index = offset_to_l2_index(s, guest_offset);
nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
/* Find L2 entry for the first involved cluster */
ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
if (ret < 0) {
return ret;
}
cluster_offset = be64_to_cpu(l2_table[l2_index]);
/* Check how many clusters are already allocated and don't need COW */
if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
&& (cluster_offset & QCOW_OFLAG_COPIED))
{
/* If a specific host_offset is required, check it */
bool offset_matches =
(cluster_offset & L2E_OFFSET_MASK) == *host_offset;
if (*host_offset != 0 && !offset_matches) {
*bytes = 0;
ret = 0;
goto out;
}
/* We keep all QCOW_OFLAG_COPIED clusters */
keep_clusters =
count_contiguous_clusters(nb_clusters, s->cluster_size,
&l2_table[l2_index],
QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
assert(keep_clusters <= nb_clusters);
*bytes = MIN(*bytes,
keep_clusters * s->cluster_size
- offset_into_cluster(s, guest_offset));
ret = 1;
} else {
ret = 0;
}
/* Cleanup */
out:
pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
if (pret < 0) {
return pret;
}
/* Only return a host offset if we actually made progress. Otherwise we
* would make requirements for handle_alloc() that it can't fulfill */
if (ret) {
*host_offset = (cluster_offset & L2E_OFFSET_MASK)
+ offset_into_cluster(s, guest_offset);
}
return ret;
}
/*
* Allocates new clusters for the given guest_offset.
*
* At most *nb_clusters are allocated, and on return *nb_clusters is updated to
* contain the number of clusters that have been allocated and are contiguous
* in the image file.
*
* If *host_offset is non-zero, it specifies the offset in the image file at
* which the new clusters must start. *nb_clusters can be 0 on return in this
* case if the cluster at host_offset is already in use. If *host_offset is
* zero, the clusters can be allocated anywhere in the image file.
*
* *host_offset is updated to contain the offset into the image file at which
* the first allocated cluster starts.
*
* Return 0 on success and -errno in error cases. -EAGAIN means that the
* function has been waiting for another request and the allocation must be
* restarted, but the whole request should not be failed.
*/
static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
uint64_t *host_offset, unsigned int *nb_clusters)
{
BDRVQcowState *s = bs->opaque;
trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
*host_offset, *nb_clusters);
/* Allocate new clusters */
trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
if (*host_offset == 0) {
int64_t cluster_offset =
qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
if (cluster_offset < 0) {
return cluster_offset;
}
*host_offset = cluster_offset;
return 0;
} else {
int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
if (ret < 0) {
return ret;
}
*nb_clusters = ret;
return 0;
}
}
/*
* Allocates new clusters for an area that either is yet unallocated or needs a
* copy on write. If *host_offset is non-zero, clusters are only allocated if
* the new allocation can match the specified host offset.
*
* Note that guest_offset may not be cluster aligned. In this case, the
* returned *host_offset points to exact byte referenced by guest_offset and
* therefore isn't cluster aligned as well.
*
* Returns:
* 0: if no clusters could be allocated. *bytes is set to 0,
* *host_offset is left unchanged.
*
* 1: if new clusters were allocated. *bytes may be decreased if the
* new allocation doesn't cover all of the requested area.
* *host_offset is updated to contain the host offset of the first
* newly allocated cluster.
*
* -errno: in error cases
*/
static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
{
BDRVQcowState *s = bs->opaque;
int l2_index;
uint64_t *l2_table;
uint64_t entry;
unsigned int nb_clusters;
int ret;
uint64_t alloc_cluster_offset;
trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
*bytes);
assert(*bytes > 0);
/*
* Calculate the number of clusters to look for. We stop at L2 table
* boundaries to keep things simple.
*/
nb_clusters =
size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
l2_index = offset_to_l2_index(s, guest_offset);
nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
/* Find L2 entry for the first involved cluster */
ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
if (ret < 0) {
return ret;
}
entry = be64_to_cpu(l2_table[l2_index]);
/* For the moment, overwrite compressed clusters one by one */
if (entry & QCOW_OFLAG_COMPRESSED) {
nb_clusters = 1;
} else {
nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
}
/* This function is only called when there were no non-COW clusters, so if
* we can't find any unallocated or COW clusters either, something is
* wrong with our code. */
assert(nb_clusters > 0);
ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
if (ret < 0) {
return ret;
}
/* Allocate, if necessary at a given offset in the image file */
alloc_cluster_offset = start_of_cluster(s, *host_offset);
ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
&nb_clusters);
if (ret < 0) {
goto fail;
}
/* Can't extend contiguous allocation */
if (nb_clusters == 0) {
*bytes = 0;
return 0;
}
/*
* Save info needed for meta data update.
*
* requested_sectors: Number of sectors from the start of the first
* newly allocated cluster to the end of the (possibly shortened
* before) write request.
*
* avail_sectors: Number of sectors from the start of the first
* newly allocated to the end of the last newly allocated cluster.
*
* nb_sectors: The number of sectors from the start of the first
* newly allocated cluster to the end of the area that the write
* request actually writes to (excluding COW at the end)
*/
int requested_sectors =
(*bytes + offset_into_cluster(s, guest_offset))
>> BDRV_SECTOR_BITS;
int avail_sectors = nb_clusters
<< (s->cluster_bits - BDRV_SECTOR_BITS);
int alloc_n_start = offset_into_cluster(s, guest_offset)
>> BDRV_SECTOR_BITS;
int nb_sectors = MIN(requested_sectors, avail_sectors);
QCowL2Meta *old_m = *m;
*m = g_malloc0(sizeof(**m));
**m = (QCowL2Meta) {
.next = old_m,
.alloc_offset = alloc_cluster_offset,
.offset = start_of_cluster(s, guest_offset),
.nb_clusters = nb_clusters,
.nb_available = nb_sectors,
.cow_start = {
.offset = 0,
.nb_sectors = alloc_n_start,
},
.cow_end = {
.offset = nb_sectors * BDRV_SECTOR_SIZE,
.nb_sectors = avail_sectors - nb_sectors,
},
};
qemu_co_queue_init(&(*m)->dependent_requests);
QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
*host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
*bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
- offset_into_cluster(s, guest_offset));
assert(*bytes != 0);
return 1;
fail:
if (*m && (*m)->nb_clusters > 0) {
QLIST_REMOVE(*m, next_in_flight);
}
return ret;
}
/*
* alloc_cluster_offset
*
* For a given offset on the virtual disk, find the cluster offset in qcow2
* file. If the offset is not found, allocate a new cluster.
*
* If the cluster was already allocated, m->nb_clusters is set to 0 and
* other fields in m are meaningless.
*
* If the cluster is newly allocated, m->nb_clusters is set to the number of
* contiguous clusters that have been allocated. In this case, the other
* fields of m are valid and contain information about the first allocated
* cluster.
*
* If the request conflicts with another write request in flight, the coroutine
* is queued and will be reentered when the dependency has completed.
*
* Return 0 on success and -errno in error cases
*/
int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
int *num, uint64_t *host_offset, QCowL2Meta **m)
{
BDRVQcowState *s = bs->opaque;
uint64_t start, remaining;
uint64_t cluster_offset;
uint64_t cur_bytes;
int ret;
trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *num);
assert((offset & ~BDRV_SECTOR_MASK) == 0);
again:
start = offset;
remaining = *num << BDRV_SECTOR_BITS;
cluster_offset = 0;
*host_offset = 0;
cur_bytes = 0;
*m = NULL;
while (true) {
if (!*host_offset) {
*host_offset = start_of_cluster(s, cluster_offset);
}
assert(remaining >= cur_bytes);
start += cur_bytes;
remaining -= cur_bytes;
cluster_offset += cur_bytes;
if (remaining == 0) {
break;
}
cur_bytes = remaining;
/*
* Now start gathering as many contiguous clusters as possible:
*
* 1. Check for overlaps with in-flight allocations
*
* a) Overlap not in the first cluster -> shorten this request and
* let the caller handle the rest in its next loop iteration.
*
* b) Real overlaps of two requests. Yield and restart the search
* for contiguous clusters (the situation could have changed
* while we were sleeping)
*
* c) TODO: Request starts in the same cluster as the in-flight
* allocation ends. Shorten the COW of the in-fight allocation,
* set cluster_offset to write to the same cluster and set up
* the right synchronisation between the in-flight request and
* the new one.
*/
ret = handle_dependencies(bs, start, &cur_bytes, m);
if (ret == -EAGAIN) {
/* Currently handle_dependencies() doesn't yield if we already had
* an allocation. If it did, we would have to clean up the L2Meta
* structs before starting over. */
assert(*m == NULL);
goto again;
} else if (ret < 0) {
return ret;
} else if (cur_bytes == 0) {
break;
} else {
/* handle_dependencies() may have decreased cur_bytes (shortened
* the allocations below) so that the next dependency is processed
* correctly during the next loop iteration. */
}
/*
* 2. Count contiguous COPIED clusters.
*/
ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
if (ret < 0) {
return ret;
} else if (ret) {
continue;
} else if (cur_bytes == 0) {
break;
}
/*
* 3. If the request still hasn't completed, allocate new clusters,
* considering any cluster_offset of steps 1c or 2.
*/
ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
if (ret < 0) {
return ret;
} else if (ret) {
continue;
} else {
assert(cur_bytes == 0);
break;
}
}
*num -= remaining >> BDRV_SECTOR_BITS;
assert(*num > 0);
assert(*host_offset != 0);
return 0;
}
static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
const uint8_t *buf, int buf_size)
{
z_stream strm1, *strm = &strm1;
int ret, out_len;
memset(strm, 0, sizeof(*strm));
strm->next_in = (uint8_t *)buf;
strm->avail_in = buf_size;
strm->next_out = out_buf;
strm->avail_out = out_buf_size;
ret = inflateInit2(strm, -12);
if (ret != Z_OK)
return -1;
ret = inflate(strm, Z_FINISH);
out_len = strm->next_out - out_buf;
if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
out_len != out_buf_size) {
inflateEnd(strm);
return -1;
}
inflateEnd(strm);
return 0;
}
int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
{
BDRVQcowState *s = bs->opaque;
int ret, csize, nb_csectors, sector_offset;
uint64_t coffset;
coffset = cluster_offset & s->cluster_offset_mask;
if (s->cluster_cache_offset != coffset) {
nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
sector_offset = coffset & 511;
csize = nb_csectors * 512 - sector_offset;
BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
if (ret < 0) {
return ret;
}
if (decompress_buffer(s->cluster_cache, s->cluster_size,
s->cluster_data + sector_offset, csize) < 0) {
return -EIO;
}
s->cluster_cache_offset = coffset;
}
return 0;
}
/*
* This discards as many clusters of nb_clusters as possible at once (i.e.
* all clusters in the same L2 table) and returns the number of discarded
* clusters.
*/
static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
unsigned int nb_clusters, enum qcow2_discard_type type)
{
BDRVQcowState *s = bs->opaque;
uint64_t *l2_table;
int l2_index;
int ret;
int i;
ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
if (ret < 0) {
return ret;
}
/* Limit nb_clusters to one L2 table */
nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
for (i = 0; i < nb_clusters; i++) {
uint64_t old_l2_entry;
old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
/*
* Make sure that a discarded area reads back as zeroes for v3 images
* (we cannot do it for v2 without actually writing a zero-filled
* buffer). We can skip the operation if the cluster is already marked
* as zero, or if it's unallocated and we don't have a backing file.
*
* TODO We might want to use bdrv_get_block_status(bs) here, but we're
* holding s->lock, so that doesn't work today.
*/
switch (qcow2_get_cluster_type(old_l2_entry)) {
case QCOW2_CLUSTER_UNALLOCATED:
if (!bs->backing_hd) {
continue;
}
break;
case QCOW2_CLUSTER_ZERO:
continue;
case QCOW2_CLUSTER_NORMAL:
case QCOW2_CLUSTER_COMPRESSED:
break;
default:
abort();
}
/* First remove L2 entries */
qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
if (s->qcow_version >= 3) {
l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
} else {
l2_table[l2_index + i] = cpu_to_be64(0);
}
/* Then decrease the refcount */
qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
}
ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
if (ret < 0) {
return ret;
}
return nb_clusters;
}
int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
int nb_sectors, enum qcow2_discard_type type)
{
BDRVQcowState *s = bs->opaque;
uint64_t end_offset;
unsigned int nb_clusters;
int ret;
end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
/* Round start up and end down */
offset = align_offset(offset, s->cluster_size);
end_offset = start_of_cluster(s, end_offset);
if (offset > end_offset) {
return 0;
}
nb_clusters = size_to_clusters(s, end_offset - offset);
s->cache_discards = true;
/* Each L2 table is handled by its own loop iteration */
while (nb_clusters > 0) {
ret = discard_single_l2(bs, offset, nb_clusters, type);
if (ret < 0) {
goto fail;
}
nb_clusters -= ret;
offset += (ret * s->cluster_size);
}
ret = 0;
fail:
s->cache_discards = false;
qcow2_process_discards(bs, ret);
return ret;
}
/*
* This zeroes as many clusters of nb_clusters as possible at once (i.e.
* all clusters in the same L2 table) and returns the number of zeroed
* clusters.
*/
static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
unsigned int nb_clusters)
{
BDRVQcowState *s = bs->opaque;
uint64_t *l2_table;
int l2_index;
int ret;
int i;
ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
if (ret < 0) {
return ret;
}
/* Limit nb_clusters to one L2 table */
nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
for (i = 0; i < nb_clusters; i++) {
uint64_t old_offset;
old_offset = be64_to_cpu(l2_table[l2_index + i]);
/* Update L2 entries */
qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
if (old_offset & QCOW_OFLAG_COMPRESSED) {
l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
} else {
l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
}
}
ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
if (ret < 0) {
return ret;
}
return nb_clusters;
}
int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
{
BDRVQcowState *s = bs->opaque;
unsigned int nb_clusters;
int ret;
/* The zero flag is only supported by version 3 and newer */
if (s->qcow_version < 3) {
return -ENOTSUP;
}
/* Each L2 table is handled by its own loop iteration */
nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
s->cache_discards = true;
while (nb_clusters > 0) {
ret = zero_single_l2(bs, offset, nb_clusters);
if (ret < 0) {
goto fail;
}
nb_clusters -= ret;
offset += (ret * s->cluster_size);
}
ret = 0;
fail:
s->cache_discards = false;
qcow2_process_discards(bs, ret);
return ret;
}
/*
* Expands all zero clusters in a specific L1 table (or deallocates them, for
* non-backed non-pre-allocated zero clusters).
*
* expanded_clusters is a bitmap where every bit corresponds to one cluster in
* the image file; a bit gets set if the corresponding cluster has been used for
* zero expansion (i.e., has been filled with zeroes and is referenced from an
* L2 table). nb_clusters contains the total cluster count of the image file,
* i.e., the number of bits in expanded_clusters.
*/
static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
int l1_size, uint8_t **expanded_clusters,
uint64_t *nb_clusters)
{
BDRVQcowState *s = bs->opaque;
bool is_active_l1 = (l1_table == s->l1_table);
uint64_t *l2_table = NULL;
int ret;
int i, j;
if (!is_active_l1) {
/* inactive L2 tables require a buffer to be stored in when loading
* them from disk */
l2_table = qemu_blockalign(bs, s->cluster_size);
}
for (i = 0; i < l1_size; i++) {
uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
bool l2_dirty = false;
if (!l2_offset) {
/* unallocated */
continue;
}
if (is_active_l1) {
/* get active L2 tables from cache */
ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
(void **)&l2_table);
} else {
/* load inactive L2 tables from disk */
ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
(void *)l2_table, s->cluster_sectors);
}
if (ret < 0) {
goto fail;
}
for (j = 0; j < s->l2_size; j++) {
uint64_t l2_entry = be64_to_cpu(l2_table[j]);
int64_t offset = l2_entry & L2E_OFFSET_MASK, cluster_index;
int cluster_type = qcow2_get_cluster_type(l2_entry);
bool preallocated = offset != 0;
if (cluster_type == QCOW2_CLUSTER_NORMAL) {
cluster_index = offset >> s->cluster_bits;
assert((cluster_index >= 0) && (cluster_index < *nb_clusters));
if ((*expanded_clusters)[cluster_index / 8] &
(1 << (cluster_index % 8))) {
/* Probably a shared L2 table; this cluster was a zero
* cluster which has been expanded, its refcount
* therefore most likely requires an update. */
ret = qcow2_update_cluster_refcount(bs, cluster_index, 1,
QCOW2_DISCARD_NEVER);
if (ret < 0) {
goto fail;
}
/* Since we just increased the refcount, the COPIED flag may
* no longer be set. */
l2_table[j] = cpu_to_be64(l2_entry & ~QCOW_OFLAG_COPIED);
l2_dirty = true;
}
continue;
}
else if (qcow2_get_cluster_type(l2_entry) != QCOW2_CLUSTER_ZERO) {
continue;
}
if (!preallocated) {
if (!bs->backing_hd) {
/* not backed; therefore we can simply deallocate the
* cluster */
l2_table[j] = 0;
l2_dirty = true;
continue;
}
offset = qcow2_alloc_clusters(bs, s->cluster_size);
if (offset < 0) {
ret = offset;
goto fail;
}
}
ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
if (ret < 0) {
if (!preallocated) {
qcow2_free_clusters(bs, offset, s->cluster_size,
QCOW2_DISCARD_ALWAYS);
}
goto fail;
}
ret = bdrv_write_zeroes(bs->file, offset / BDRV_SECTOR_SIZE,
s->cluster_sectors, 0);
if (ret < 0) {
if (!preallocated) {
qcow2_free_clusters(bs, offset, s->cluster_size,
QCOW2_DISCARD_ALWAYS);
}
goto fail;
}
l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
l2_dirty = true;
cluster_index = offset >> s->cluster_bits;
if (cluster_index >= *nb_clusters) {
uint64_t old_bitmap_size = (*nb_clusters + 7) / 8;
uint64_t new_bitmap_size;
/* The offset may lie beyond the old end of the underlying image
* file for growable files only */
assert(bs->file->growable);
*nb_clusters = size_to_clusters(s, bs->file->total_sectors *
BDRV_SECTOR_SIZE);
new_bitmap_size = (*nb_clusters + 7) / 8;
*expanded_clusters = g_realloc(*expanded_clusters,
new_bitmap_size);
/* clear the newly allocated space */
memset(&(*expanded_clusters)[old_bitmap_size], 0,
new_bitmap_size - old_bitmap_size);
}
assert((cluster_index >= 0) && (cluster_index < *nb_clusters));
(*expanded_clusters)[cluster_index / 8] |= 1 << (cluster_index % 8);
}
if (is_active_l1) {
if (l2_dirty) {
qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
qcow2_cache_depends_on_flush(s->l2_table_cache);
}
ret = qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
if (ret < 0) {
l2_table = NULL;
goto fail;
}
} else {
if (l2_dirty) {
ret = qcow2_pre_write_overlap_check(bs,
QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
s->cluster_size);
if (ret < 0) {
goto fail;
}
ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
(void *)l2_table, s->cluster_sectors);
if (ret < 0) {
goto fail;
}
}
}
}
ret = 0;
fail:
if (l2_table) {
if (!is_active_l1) {
qemu_vfree(l2_table);
} else {
if (ret < 0) {
qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
} else {
ret = qcow2_cache_put(bs, s->l2_table_cache,
(void **)&l2_table);
}
}
}
return ret;
}
/*
* For backed images, expands all zero clusters on the image. For non-backed
* images, deallocates all non-pre-allocated zero clusters (and claims the
* allocation for pre-allocated ones). This is important for downgrading to a
* qcow2 version which doesn't yet support metadata zero clusters.
*/
int qcow2_expand_zero_clusters(BlockDriverState *bs)
{
BDRVQcowState *s = bs->opaque;
uint64_t *l1_table = NULL;
uint64_t nb_clusters;
uint8_t *expanded_clusters;
int ret;
int i, j;
nb_clusters = size_to_clusters(s, bs->file->total_sectors *
BDRV_SECTOR_SIZE);
expanded_clusters = g_malloc0((nb_clusters + 7) / 8);
ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
&expanded_clusters, &nb_clusters);
if (ret < 0) {
goto fail;
}
/* Inactive L1 tables may point to active L2 tables - therefore it is
* necessary to flush the L2 table cache before trying to access the L2
* tables pointed to by inactive L1 entries (else we might try to expand
* zero clusters that have already been expanded); furthermore, it is also
* necessary to empty the L2 table cache, since it may contain tables which
* are now going to be modified directly on disk, bypassing the cache.
* qcow2_cache_empty() does both for us. */
ret = qcow2_cache_empty(bs, s->l2_table_cache);
if (ret < 0) {
goto fail;
}
for (i = 0; i < s->nb_snapshots; i++) {
int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) +
BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE;
l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
ret = bdrv_read(bs->file, s->snapshots[i].l1_table_offset /
BDRV_SECTOR_SIZE, (void *)l1_table, l1_sectors);
if (ret < 0) {
goto fail;
}
for (j = 0; j < s->snapshots[i].l1_size; j++) {
be64_to_cpus(&l1_table[j]);
}
ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
&expanded_clusters, &nb_clusters);
if (ret < 0) {
goto fail;
}
}
ret = 0;
fail:
g_free(expanded_clusters);
g_free(l1_table);
return ret;
}