rust/src/librustc/metadata/loader.rs

390 lines
14 KiB
Rust
Raw Normal View History

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Finds crate binaries and loads their metadata
rustc: Optimize reading metadata by 4x We were previously reading metadata via `ar p`, but as learned from rustdoc awhile back, spawning a process to do something is pretty slow. Turns out LLVM has an Archive class to read archives, but it cannot write archives. This commits adds bindings to the read-only version of the LLVM archive class (with a new type that only has a read() method), and then it uses this class when reading the metadata out of rlibs. When you put this in tandem of not compressing the metadata, reading the metadata is 4x faster than it used to be The timings I got for reading metadata from the respective libraries was: libstd-04ff901e-0.9-pre.dylib => 100ms libstd-04ff901e-0.9-pre.rlib => 23ms librustuv-7945354c-0.9-pre.dylib => 4ms librustuv-7945354c-0.9-pre.rlib => 1ms librustc-5b94a16f-0.9-pre.dylib => 87ms librustc-5b94a16f-0.9-pre.rlib => 35ms libextra-a6ebb16f-0.9-pre.dylib => 63ms libextra-a6ebb16f-0.9-pre.rlib => 15ms libsyntax-2e4c0458-0.9-pre.dylib => 86ms libsyntax-2e4c0458-0.9-pre.rlib => 22ms In order to always take advantage of these faster metadata read-times, I sort the files in filesearch based on whether they have an rlib extension or not (prefer all rlib files first). Overall, this halved the compile time for a `fn main() {}` crate from 0.185s to 0.095s on my system (when preferring dynamic linking). Reading metadata is still the slowest pass of the compiler at 0.035s, but it's getting pretty close to linking at 0.021s! The next best optimization is to just not copy the metadata from LLVM because that's the most expensive part of reading metadata right now.
2013-12-17 05:58:21 +01:00
use back::archive::{ArchiveRO, METADATA_FILENAME};
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
use driver::session::Session;
use lib::llvm::{False, llvm, ObjectFile, mk_section_iter};
rustc: Optimize reading metadata by 4x We were previously reading metadata via `ar p`, but as learned from rustdoc awhile back, spawning a process to do something is pretty slow. Turns out LLVM has an Archive class to read archives, but it cannot write archives. This commits adds bindings to the read-only version of the LLVM archive class (with a new type that only has a read() method), and then it uses this class when reading the metadata out of rlibs. When you put this in tandem of not compressing the metadata, reading the metadata is 4x faster than it used to be The timings I got for reading metadata from the respective libraries was: libstd-04ff901e-0.9-pre.dylib => 100ms libstd-04ff901e-0.9-pre.rlib => 23ms librustuv-7945354c-0.9-pre.dylib => 4ms librustuv-7945354c-0.9-pre.rlib => 1ms librustc-5b94a16f-0.9-pre.dylib => 87ms librustc-5b94a16f-0.9-pre.rlib => 35ms libextra-a6ebb16f-0.9-pre.dylib => 63ms libextra-a6ebb16f-0.9-pre.rlib => 15ms libsyntax-2e4c0458-0.9-pre.dylib => 86ms libsyntax-2e4c0458-0.9-pre.rlib => 22ms In order to always take advantage of these faster metadata read-times, I sort the files in filesearch based on whether they have an rlib extension or not (prefer all rlib files first). Overall, this halved the compile time for a `fn main() {}` crate from 0.185s to 0.095s on my system (when preferring dynamic linking). Reading metadata is still the slowest pass of the compiler at 0.035s, but it's getting pretty close to linking at 0.021s! The next best optimization is to just not copy the metadata from LLVM because that's the most expensive part of reading metadata right now.
2013-12-17 05:58:21 +01:00
use metadata::cstore::{MetadataBlob, MetadataVec, MetadataArchive};
use metadata::decoder;
use metadata::encoder;
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
use metadata::filesearch::{FileMatches, FileDoesntMatch};
use syntax::codemap::Span;
use syntax::diagnostic::SpanHandler;
use syntax::parse::token::IdentInterner;
2013-12-28 18:16:48 +01:00
use syntax::crateid::CrateId;
use syntax::attr;
use syntax::attr::AttrMetaMethods;
use std::c_str::ToCStr;
use std::cast;
2014-02-06 08:34:33 +01:00
use std::cmp;
2013-11-11 07:46:32 +01:00
use std::io;
use std::os::consts::{macos, freebsd, linux, android, win32};
use std::str;
use std::vec;
use flate;
pub enum Os {
OsMacos,
OsWin32,
OsLinux,
OsAndroid,
OsFreebsd
}
pub struct Context {
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
sess: Session,
span: Span,
ident: ~str,
name: ~str,
version: ~str,
hash: ~str,
os: Os,
intr: @IdentInterner
}
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
pub struct Library {
dylib: Option<Path>,
rlib: Option<Path>,
metadata: MetadataBlob,
}
rustc: Optimize reading metadata by 4x We were previously reading metadata via `ar p`, but as learned from rustdoc awhile back, spawning a process to do something is pretty slow. Turns out LLVM has an Archive class to read archives, but it cannot write archives. This commits adds bindings to the read-only version of the LLVM archive class (with a new type that only has a read() method), and then it uses this class when reading the metadata out of rlibs. When you put this in tandem of not compressing the metadata, reading the metadata is 4x faster than it used to be The timings I got for reading metadata from the respective libraries was: libstd-04ff901e-0.9-pre.dylib => 100ms libstd-04ff901e-0.9-pre.rlib => 23ms librustuv-7945354c-0.9-pre.dylib => 4ms librustuv-7945354c-0.9-pre.rlib => 1ms librustc-5b94a16f-0.9-pre.dylib => 87ms librustc-5b94a16f-0.9-pre.rlib => 35ms libextra-a6ebb16f-0.9-pre.dylib => 63ms libextra-a6ebb16f-0.9-pre.rlib => 15ms libsyntax-2e4c0458-0.9-pre.dylib => 86ms libsyntax-2e4c0458-0.9-pre.rlib => 22ms In order to always take advantage of these faster metadata read-times, I sort the files in filesearch based on whether they have an rlib extension or not (prefer all rlib files first). Overall, this halved the compile time for a `fn main() {}` crate from 0.185s to 0.095s on my system (when preferring dynamic linking). Reading metadata is still the slowest pass of the compiler at 0.035s, but it's getting pretty close to linking at 0.021s! The next best optimization is to just not copy the metadata from LLVM because that's the most expensive part of reading metadata right now.
2013-12-17 05:58:21 +01:00
pub struct ArchiveMetadata {
priv archive: ArchiveRO,
// See comments in ArchiveMetadata::new for why this is static
priv data: &'static [u8],
}
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
impl Context {
pub fn load_library_crate(&self, root_ident: Option<~str>) -> Library {
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
match self.find_library_crate() {
Some(t) => t,
None => {
let message = match root_ident {
None => format!("can't find crate for `{}`", self.ident),
Some(c) => format!("can't find crate for `{}` which `{}` depends on",
self.ident,
c)
};
self.sess.span_fatal(self.span, message);
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
}
}
}
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
fn find_library_crate(&self) -> Option<Library> {
let filesearch = self.sess.filesearch;
let crate_name = self.name.clone();
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
let (dyprefix, dysuffix) = self.dylibname();
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
// want: crate_name.dir_part() + prefix + crate_name.file_part + "-"
let dylib_prefix = format!("{}{}-", dyprefix, crate_name);
let rlib_prefix = format!("lib{}-", crate_name);
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
let mut matches = ~[];
filesearch.search(|path| {
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
match path.filename_str() {
None => FileDoesntMatch,
Some(file) => {
let (candidate, existing) = if file.starts_with(rlib_prefix) &&
file.ends_with(".rlib") {
debug!("{} is an rlib candidate", path.display());
(true, self.add_existing_rlib(matches, path, file))
} else if file.starts_with(dylib_prefix) &&
file.ends_with(dysuffix) {
debug!("{} is a dylib candidate", path.display());
(true, self.add_existing_dylib(matches, path, file))
} else {
(false, false)
};
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
if candidate && existing {
FileMatches
} else if candidate {
rustc: Optimize reading metadata by 4x We were previously reading metadata via `ar p`, but as learned from rustdoc awhile back, spawning a process to do something is pretty slow. Turns out LLVM has an Archive class to read archives, but it cannot write archives. This commits adds bindings to the read-only version of the LLVM archive class (with a new type that only has a read() method), and then it uses this class when reading the metadata out of rlibs. When you put this in tandem of not compressing the metadata, reading the metadata is 4x faster than it used to be The timings I got for reading metadata from the respective libraries was: libstd-04ff901e-0.9-pre.dylib => 100ms libstd-04ff901e-0.9-pre.rlib => 23ms librustuv-7945354c-0.9-pre.dylib => 4ms librustuv-7945354c-0.9-pre.rlib => 1ms librustc-5b94a16f-0.9-pre.dylib => 87ms librustc-5b94a16f-0.9-pre.rlib => 35ms libextra-a6ebb16f-0.9-pre.dylib => 63ms libextra-a6ebb16f-0.9-pre.rlib => 15ms libsyntax-2e4c0458-0.9-pre.dylib => 86ms libsyntax-2e4c0458-0.9-pre.rlib => 22ms In order to always take advantage of these faster metadata read-times, I sort the files in filesearch based on whether they have an rlib extension or not (prefer all rlib files first). Overall, this halved the compile time for a `fn main() {}` crate from 0.185s to 0.095s on my system (when preferring dynamic linking). Reading metadata is still the slowest pass of the compiler at 0.035s, but it's getting pretty close to linking at 0.021s! The next best optimization is to just not copy the metadata from LLVM because that's the most expensive part of reading metadata right now.
2013-12-17 05:58:21 +01:00
match get_metadata_section(self.os, path) {
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
Some(cvec) =>
if crate_matches(cvec.as_slice(),
self.name.clone(),
self.version.clone(),
self.hash.clone()) {
2013-12-28 18:16:48 +01:00
debug!("found {} with matching crate_id",
path.display());
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
let (rlib, dylib) = if file.ends_with(".rlib") {
(Some(path.clone()), None)
} else {
(None, Some(path.clone()))
};
matches.push(Library {
rlib: rlib,
dylib: dylib,
metadata: cvec,
});
FileMatches
} else {
2013-12-28 18:16:48 +01:00
debug!("skipping {}, crate_id doesn't match",
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
path.display());
FileDoesntMatch
},
_ => {
debug!("could not load metadata for {}",
path.display());
FileDoesntMatch
}
}
} else {
FileDoesntMatch
}
}
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
}
2013-11-29 03:03:38 +01:00
});
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
match matches.len() {
0 => None,
1 => Some(matches[0]),
_ => {
self.sess.span_err(self.span,
format!("multiple matching crates for `{}`", crate_name));
self.sess.note("candidates:");
for lib in matches.iter() {
match lib.dylib {
Some(ref p) => {
self.sess.note(format!("path: {}", p.display()));
}
None => {}
}
match lib.rlib {
Some(ref p) => {
self.sess.note(format!("path: {}", p.display()));
}
None => {}
}
let data = lib.metadata.as_slice();
let attrs = decoder::get_crate_attributes(data);
2013-12-28 01:14:01 +01:00
match attr::find_crateid(attrs) {
None => {}
2013-12-28 18:16:48 +01:00
Some(crateid) => {
note_crateid_attr(self.sess.diagnostic(), &crateid);
}
}
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
}
self.sess.abort_if_errors();
None
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
}
}
}
fn add_existing_rlib(&self, libs: &mut [Library],
path: &Path, file: &str) -> bool {
let (prefix, suffix) = self.dylibname();
let file = file.slice_from(3); // chop off 'lib'
let file = file.slice_to(file.len() - 5); // chop off '.rlib'
let file = format!("{}{}{}", prefix, file, suffix);
for lib in libs.mut_iter() {
match lib.dylib {
Some(ref p) if p.filename_str() == Some(file.as_slice()) => {
assert!(lib.rlib.is_none()); // FIXME: legit compiler error
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
lib.rlib = Some(path.clone());
return true;
}
2013-11-29 03:03:38 +01:00
Some(..) | None => {}
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
}
}
return false;
}
fn add_existing_dylib(&self, libs: &mut [Library],
path: &Path, file: &str) -> bool {
let (prefix, suffix) = self.dylibname();
let file = file.slice_from(prefix.len());
let file = file.slice_to(file.len() - suffix.len());
let file = format!("lib{}.rlib", file);
for lib in libs.mut_iter() {
match lib.rlib {
Some(ref p) if p.filename_str() == Some(file.as_slice()) => {
assert!(lib.dylib.is_none()); // FIXME: legit compiler error
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
lib.dylib = Some(path.clone());
return true;
}
2013-11-29 03:03:38 +01:00
Some(..) | None => {}
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
}
}
return false;
}
// Returns the corresponding (prefix, suffix) that files need to have for
// dynamic libraries
fn dylibname(&self) -> (&'static str, &'static str) {
match self.os {
OsWin32 => (win32::DLL_PREFIX, win32::DLL_SUFFIX),
OsMacos => (macos::DLL_PREFIX, macos::DLL_SUFFIX),
OsLinux => (linux::DLL_PREFIX, linux::DLL_SUFFIX),
OsAndroid => (android::DLL_PREFIX, android::DLL_SUFFIX),
OsFreebsd => (freebsd::DLL_PREFIX, freebsd::DLL_SUFFIX),
}
}
}
2013-12-27 22:48:00 +01:00
pub fn note_crateid_attr(diag: @SpanHandler, crateid: &CrateId) {
2013-12-28 18:16:48 +01:00
diag.handler().note(format!("crate_id: {}", crateid.to_str()));
}
fn crate_matches(crate_data: &[u8],
name: ~str,
version: ~str,
hash: ~str) -> bool {
let attrs = decoder::get_crate_attributes(crate_data);
2013-12-28 01:14:01 +01:00
match attr::find_crateid(attrs) {
None => false,
2013-12-28 18:16:48 +01:00
Some(crateid) => {
if !hash.is_empty() {
let chash = decoder::get_crate_hash(crate_data);
if chash != hash { return false; }
}
name == crateid.name &&
(version.is_empty() ||
crateid.version_or_default() == version)
}
}
}
rustc: Optimize reading metadata by 4x We were previously reading metadata via `ar p`, but as learned from rustdoc awhile back, spawning a process to do something is pretty slow. Turns out LLVM has an Archive class to read archives, but it cannot write archives. This commits adds bindings to the read-only version of the LLVM archive class (with a new type that only has a read() method), and then it uses this class when reading the metadata out of rlibs. When you put this in tandem of not compressing the metadata, reading the metadata is 4x faster than it used to be The timings I got for reading metadata from the respective libraries was: libstd-04ff901e-0.9-pre.dylib => 100ms libstd-04ff901e-0.9-pre.rlib => 23ms librustuv-7945354c-0.9-pre.dylib => 4ms librustuv-7945354c-0.9-pre.rlib => 1ms librustc-5b94a16f-0.9-pre.dylib => 87ms librustc-5b94a16f-0.9-pre.rlib => 35ms libextra-a6ebb16f-0.9-pre.dylib => 63ms libextra-a6ebb16f-0.9-pre.rlib => 15ms libsyntax-2e4c0458-0.9-pre.dylib => 86ms libsyntax-2e4c0458-0.9-pre.rlib => 22ms In order to always take advantage of these faster metadata read-times, I sort the files in filesearch based on whether they have an rlib extension or not (prefer all rlib files first). Overall, this halved the compile time for a `fn main() {}` crate from 0.185s to 0.095s on my system (when preferring dynamic linking). Reading metadata is still the slowest pass of the compiler at 0.035s, but it's getting pretty close to linking at 0.021s! The next best optimization is to just not copy the metadata from LLVM because that's the most expensive part of reading metadata right now.
2013-12-17 05:58:21 +01:00
impl ArchiveMetadata {
fn new(ar: ArchiveRO) -> Option<ArchiveMetadata> {
let data: &'static [u8] = {
let data = match ar.read(METADATA_FILENAME) {
Some(data) => data,
None => {
debug!("didn't find '{}' in the archive", METADATA_FILENAME);
return None;
}
};
// This data is actually a pointer inside of the archive itself, but
// we essentially want to cache it because the lookup inside the
// archive is a fairly expensive operation (and it's queried for
// *very* frequently). For this reason, we transmute it to the
// static lifetime to put into the struct. Note that the buffer is
// never actually handed out with a static lifetime, but rather the
// buffer is loaned with the lifetime of this containing object.
// Hence, we're guaranteed that the buffer will never be used after
// this object is dead, so this is a safe operation to transmute and
// store the data as a static buffer.
unsafe { cast::transmute(data) }
};
Some(ArchiveMetadata {
archive: ar,
data: data,
})
}
pub fn as_slice<'a>(&'a self) -> &'a [u8] { self.data }
}
// Just a small wrapper to time how long reading metadata takes.
fn get_metadata_section(os: Os, filename: &Path) -> Option<MetadataBlob> {
use extra::time;
let start = time::precise_time_ns();
let ret = get_metadata_section_imp(os, filename);
info!("reading {} => {}ms", filename.filename_display(),
(time::precise_time_ns() - start) / 1000000);
return ret;
}
fn get_metadata_section_imp(os: Os, filename: &Path) -> Option<MetadataBlob> {
Store metadata separately in rlib files Right now whenever an rlib file is linked against, all of the metadata from the rlib is pulled in to the final staticlib or binary. The reason for this is that the metadata is currently stored in a section of the object file. Note that this is intentional for dynamic libraries in order to distribute metadata bundled with static libraries. This commit alters the situation for rlib libraries to instead store the metadata in a separate file in the archive. In doing so, when the archive is passed to the linker, none of the metadata will get pulled into the result executable. Furthermore, the metadata file is skipped when assembling rlibs into an archive. The snag in this implementation comes with multiple output formats. When generating a dylib, the metadata needs to be in the object file, but when generating an rlib this needs to be separate. In order to accomplish this, the metadata variable is inserted into an entirely separate LLVM Module which is then codegen'd into a different location (foo.metadata.o). This is then linked into dynamic libraries and silently ignored for rlib files. While changing how metadata is inserted into archives, I have also stopped compressing metadata when inserted into rlib files. We have wanted to stop compressing metadata, but the sections it creates in object file sections are apparently too large. Thankfully if it's just an arbitrary file it doesn't matter how large it is. I have seen massive reductions in executable sizes, as well as staticlib output sizes (to confirm that this is all working).
2013-12-04 02:41:01 +01:00
if filename.filename_str().unwrap().ends_with(".rlib") {
rustc: Optimize reading metadata by 4x We were previously reading metadata via `ar p`, but as learned from rustdoc awhile back, spawning a process to do something is pretty slow. Turns out LLVM has an Archive class to read archives, but it cannot write archives. This commits adds bindings to the read-only version of the LLVM archive class (with a new type that only has a read() method), and then it uses this class when reading the metadata out of rlibs. When you put this in tandem of not compressing the metadata, reading the metadata is 4x faster than it used to be The timings I got for reading metadata from the respective libraries was: libstd-04ff901e-0.9-pre.dylib => 100ms libstd-04ff901e-0.9-pre.rlib => 23ms librustuv-7945354c-0.9-pre.dylib => 4ms librustuv-7945354c-0.9-pre.rlib => 1ms librustc-5b94a16f-0.9-pre.dylib => 87ms librustc-5b94a16f-0.9-pre.rlib => 35ms libextra-a6ebb16f-0.9-pre.dylib => 63ms libextra-a6ebb16f-0.9-pre.rlib => 15ms libsyntax-2e4c0458-0.9-pre.dylib => 86ms libsyntax-2e4c0458-0.9-pre.rlib => 22ms In order to always take advantage of these faster metadata read-times, I sort the files in filesearch based on whether they have an rlib extension or not (prefer all rlib files first). Overall, this halved the compile time for a `fn main() {}` crate from 0.185s to 0.095s on my system (when preferring dynamic linking). Reading metadata is still the slowest pass of the compiler at 0.035s, but it's getting pretty close to linking at 0.021s! The next best optimization is to just not copy the metadata from LLVM because that's the most expensive part of reading metadata right now.
2013-12-17 05:58:21 +01:00
// Use ArchiveRO for speed here, it's backed by LLVM and uses mmap
// internally to read the file. We also avoid even using a memcpy by
// just keeping the archive along while the metadata is in use.
let archive = match ArchiveRO::open(filename) {
Some(ar) => ar,
None => {
debug!("llvm didn't like `{}`", filename.display());
return None;
}
};
return ArchiveMetadata::new(archive).map(|ar| MetadataArchive(ar));
Store metadata separately in rlib files Right now whenever an rlib file is linked against, all of the metadata from the rlib is pulled in to the final staticlib or binary. The reason for this is that the metadata is currently stored in a section of the object file. Note that this is intentional for dynamic libraries in order to distribute metadata bundled with static libraries. This commit alters the situation for rlib libraries to instead store the metadata in a separate file in the archive. In doing so, when the archive is passed to the linker, none of the metadata will get pulled into the result executable. Furthermore, the metadata file is skipped when assembling rlibs into an archive. The snag in this implementation comes with multiple output formats. When generating a dylib, the metadata needs to be in the object file, but when generating an rlib this needs to be separate. In order to accomplish this, the metadata variable is inserted into an entirely separate LLVM Module which is then codegen'd into a different location (foo.metadata.o). This is then linked into dynamic libraries and silently ignored for rlib files. While changing how metadata is inserted into archives, I have also stopped compressing metadata when inserted into rlib files. We have wanted to stop compressing metadata, but the sections it creates in object file sections are apparently too large. Thankfully if it's just an arbitrary file it doesn't matter how large it is. I have seen massive reductions in executable sizes, as well as staticlib output sizes (to confirm that this is all working).
2013-12-04 02:41:01 +01:00
}
unsafe {
Store metadata separately in rlib files Right now whenever an rlib file is linked against, all of the metadata from the rlib is pulled in to the final staticlib or binary. The reason for this is that the metadata is currently stored in a section of the object file. Note that this is intentional for dynamic libraries in order to distribute metadata bundled with static libraries. This commit alters the situation for rlib libraries to instead store the metadata in a separate file in the archive. In doing so, when the archive is passed to the linker, none of the metadata will get pulled into the result executable. Furthermore, the metadata file is skipped when assembling rlibs into an archive. The snag in this implementation comes with multiple output formats. When generating a dylib, the metadata needs to be in the object file, but when generating an rlib this needs to be separate. In order to accomplish this, the metadata variable is inserted into an entirely separate LLVM Module which is then codegen'd into a different location (foo.metadata.o). This is then linked into dynamic libraries and silently ignored for rlib files. While changing how metadata is inserted into archives, I have also stopped compressing metadata when inserted into rlib files. We have wanted to stop compressing metadata, but the sections it creates in object file sections are apparently too large. Thankfully if it's just an arbitrary file it doesn't matter how large it is. I have seen massive reductions in executable sizes, as well as staticlib output sizes (to confirm that this is all working).
2013-12-04 02:41:01 +01:00
let mb = filename.with_c_str(|buf| {
llvm::LLVMRustCreateMemoryBufferWithContentsOfFile(buf)
});
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 23:03:29 +01:00
if mb as int == 0 { return None }
let of = match ObjectFile::new(mb) {
Some(of) => of,
_ => return None
};
let si = mk_section_iter(of.llof);
while llvm::LLVMIsSectionIteratorAtEnd(of.llof, si.llsi) == False {
let name_buf = llvm::LLVMGetSectionName(si.llsi);
2013-06-20 07:52:02 +02:00
let name = str::raw::from_c_str(name_buf);
debug!("get_metadata_section: name {}", name);
if read_meta_section_name(os) == name {
let cbuf = llvm::LLVMGetSectionContents(si.llsi);
let csz = llvm::LLVMGetSectionSize(si.llsi) as uint;
let mut found = None;
2013-06-20 07:52:02 +02:00
let cvbuf: *u8 = cast::transmute(cbuf);
let vlen = encoder::metadata_encoding_version.len();
debug!("checking {} bytes of metadata-version stamp",
2013-06-20 07:52:02 +02:00
vlen);
2014-02-06 08:34:33 +01:00
let minsz = cmp::min(vlen, csz);
2013-06-20 07:52:02 +02:00
let mut version_ok = false;
vec::raw::buf_as_slice(cvbuf, minsz, |buf0| {
2013-06-20 07:52:02 +02:00
version_ok = (buf0 ==
encoder::metadata_encoding_version);
});
2013-06-20 07:52:02 +02:00
if !version_ok { return None; }
let cvbuf1 = cvbuf.offset(vlen as int);
debug!("inflating {} bytes of compressed metadata",
csz - vlen);
vec::raw::buf_as_slice(cvbuf1, csz-vlen, |bytes| {
let inflated = flate::inflate_bytes(bytes);
found = Some(MetadataVec(inflated));
});
if found.is_some() {
return found;
}
}
llvm::LLVMMoveToNextSection(si.llsi);
}
return None;
}
}
pub fn meta_section_name(os: Os) -> &'static str {
2012-08-06 21:34:08 +02:00
match os {
OsMacos => "__DATA,__note.rustc",
OsWin32 => ".note.rustc",
OsLinux => ".note.rustc",
OsAndroid => ".note.rustc",
OsFreebsd => ".note.rustc"
}
}
pub fn read_meta_section_name(os: Os) -> &'static str {
2013-03-13 09:22:01 +01:00
match os {
OsMacos => "__note.rustc",
OsWin32 => ".note.rustc",
OsLinux => ".note.rustc",
OsAndroid => ".note.rustc",
OsFreebsd => ".note.rustc"
2013-03-13 09:22:01 +01:00
}
}
// A diagnostic function for dumping crate metadata to an output stream
pub fn list_file_metadata(os: Os, path: &Path,
2014-01-30 03:42:19 +01:00
out: &mut io::Writer) -> io::IoResult<()> {
rustc: Optimize reading metadata by 4x We were previously reading metadata via `ar p`, but as learned from rustdoc awhile back, spawning a process to do something is pretty slow. Turns out LLVM has an Archive class to read archives, but it cannot write archives. This commits adds bindings to the read-only version of the LLVM archive class (with a new type that only has a read() method), and then it uses this class when reading the metadata out of rlibs. When you put this in tandem of not compressing the metadata, reading the metadata is 4x faster than it used to be The timings I got for reading metadata from the respective libraries was: libstd-04ff901e-0.9-pre.dylib => 100ms libstd-04ff901e-0.9-pre.rlib => 23ms librustuv-7945354c-0.9-pre.dylib => 4ms librustuv-7945354c-0.9-pre.rlib => 1ms librustc-5b94a16f-0.9-pre.dylib => 87ms librustc-5b94a16f-0.9-pre.rlib => 35ms libextra-a6ebb16f-0.9-pre.dylib => 63ms libextra-a6ebb16f-0.9-pre.rlib => 15ms libsyntax-2e4c0458-0.9-pre.dylib => 86ms libsyntax-2e4c0458-0.9-pre.rlib => 22ms In order to always take advantage of these faster metadata read-times, I sort the files in filesearch based on whether they have an rlib extension or not (prefer all rlib files first). Overall, this halved the compile time for a `fn main() {}` crate from 0.185s to 0.095s on my system (when preferring dynamic linking). Reading metadata is still the slowest pass of the compiler at 0.035s, but it's getting pretty close to linking at 0.021s! The next best optimization is to just not copy the metadata from LLVM because that's the most expensive part of reading metadata right now.
2013-12-17 05:58:21 +01:00
match get_metadata_section(os, path) {
Some(bytes) => decoder::list_crate_metadata(bytes.as_slice(), out),
None => write!(out, "could not find metadata in {}.\n", path.display())
}
}