rust/library/core/src/macros/mod.rs

1401 lines
46 KiB
Rust
Raw Normal View History

2020-12-30 23:33:38 +01:00
#[doc = include_str!("panic.md")]
#[macro_export]
#[rustc_builtin_macro = "core_panic"]
#[allow_internal_unstable(edition_panic)]
#[stable(feature = "core", since = "1.6.0")]
#[rustc_diagnostic_item = "core_panic_macro"]
macro_rules! panic {
// Expands to either `$crate::panic::panic_2015` or `$crate::panic::panic_2021`
// depending on the edition of the caller.
($($arg:tt)*) => {
/* compiler built-in */
};
}
/// Asserts that two expressions are equal to each other (using [`PartialEq`]).
///
/// On panic, this macro will print the values of the expressions with their
/// debug representations.
///
/// Like [`assert!`], this macro has a second form, where a custom
/// panic message can be provided.
///
/// # Examples
///
/// ```
/// let a = 3;
/// let b = 1 + 2;
/// assert_eq!(a, b);
///
/// assert_eq!(a, b, "we are testing addition with {} and {}", a, b);
/// ```
std: Recreate a `collections` module As with the previous commit with `librand`, this commit shuffles around some `collections` code. The new state of the world is similar to that of librand: * The libcollections crate now only depends on libcore and liballoc. * The standard library has a new module, `std::collections`. All functionality of libcollections is reexported through this module. I would like to stress that this change is purely cosmetic. There are very few alterations to these primitives. There are a number of notable points about the new organization: * std::{str, slice, string, vec} all moved to libcollections. There is no reason that these primitives shouldn't be necessarily usable in a freestanding context that has allocation. These are all reexported in their usual places in the standard library. * The `hashmap`, and transitively the `lru_cache`, modules no longer reside in `libcollections`, but rather in libstd. The reason for this is because the `HashMap::new` contructor requires access to the OSRng for initially seeding the hash map. Beyond this requirement, there is no reason that the hashmap could not move to libcollections. I do, however, have a plan to move the hash map to the collections module. The `HashMap::new` function could be altered to require that the `H` hasher parameter ascribe to the `Default` trait, allowing the entire `hashmap` module to live in libcollections. The key idea would be that the default hasher would be different in libstd. Something along the lines of: // src/libstd/collections/mod.rs pub type HashMap<K, V, H = RandomizedSipHasher> = core_collections::HashMap<K, V, H>; This is not possible today because you cannot invoke static methods through type aliases. If we modified the compiler, however, to allow invocation of static methods through type aliases, then this type definition would essentially be switching the default hasher from `SipHasher` in libcollections to a libstd-defined `RandomizedSipHasher` type. This type's `Default` implementation would randomly seed the `SipHasher` instance, and otherwise perform the same as `SipHasher`. This future state doesn't seem incredibly far off, but until that time comes, the hashmap module will live in libstd to not compromise on functionality. * In preparation for the hashmap moving to libcollections, the `hash` module has moved from libstd to libcollections. A previously snapshotted commit enables a distinct `Writer` trait to live in the `hash` module which `Hash` implementations are now parameterized over. Due to using a custom trait, the `SipHasher` implementation has lost its specialized methods for writing integers. These can be re-added backwards-compatibly in the future via default methods if necessary, but the FNV hashing should satisfy much of the need for speedier hashing. A list of breaking changes: * HashMap::{get, get_mut} no longer fails with the key formatted into the error message with `{:?}`, instead, a generic message is printed. With backtraces, it should still be not-too-hard to track down errors. * The HashMap, HashSet, and LruCache types are now available through std::collections instead of the collections crate. * Manual implementations of hash should be parameterized over `hash::Writer` instead of just `Writer`. [breaking-change]
2014-05-30 03:50:12 +02:00
#[macro_export]
2015-01-24 06:48:20 +01:00
#[stable(feature = "rust1", since = "1.0.0")]
#[allow_internal_unstable(core_panic)]
macro_rules! assert_eq {
2020-10-25 23:15:37 +01:00
($left:expr, $right:expr $(,)?) => ({
2016-05-18 15:24:33 +02:00
match (&$left, &$right) {
(left_val, right_val) => {
if !(*left_val == *right_val) {
let kind = $crate::panicking::AssertKind::Eq;
// The reborrows below are intentional. Without them, the stack slot for the
// borrow is initialized even before the values are compared, leading to a
// noticeable slow down.
$crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
}
}
}
});
($left:expr, $right:expr, $($arg:tt)+) => ({
match (&$left, &$right) {
(left_val, right_val) => {
if !(*left_val == *right_val) {
let kind = $crate::panicking::AssertKind::Eq;
// The reborrows below are intentional. Without them, the stack slot for the
// borrow is initialized even before the values are compared, leading to a
// noticeable slow down.
$crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
}
}
}
});
}
/// Asserts that two expressions are not equal to each other (using [`PartialEq`]).
///
/// On panic, this macro will print the values of the expressions with their
/// debug representations.
///
/// Like [`assert!`], this macro has a second form, where a custom
/// panic message can be provided.
///
/// # Examples
///
/// ```
/// let a = 3;
/// let b = 2;
/// assert_ne!(a, b);
///
/// assert_ne!(a, b, "we are testing that the values are not equal");
/// ```
#[macro_export]
#[stable(feature = "assert_ne", since = "1.13.0")]
#[allow_internal_unstable(core_panic)]
macro_rules! assert_ne {
2020-10-25 23:15:37 +01:00
($left:expr, $right:expr $(,)?) => ({
match (&$left, &$right) {
(left_val, right_val) => {
if *left_val == *right_val {
let kind = $crate::panicking::AssertKind::Ne;
// The reborrows below are intentional. Without them, the stack slot for the
// borrow is initialized even before the values are compared, leading to a
// noticeable slow down.
$crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
}
}
}
});
($left:expr, $right:expr, $($arg:tt)+) => ({
match (&($left), &($right)) {
(left_val, right_val) => {
if *left_val == *right_val {
let kind = $crate::panicking::AssertKind::Ne;
// The reborrows below are intentional. Without them, the stack slot for the
// borrow is initialized even before the values are compared, leading to a
// noticeable slow down.
$crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
}
}
}
});
}
/// Asserts that a boolean expression is `true` at runtime.
///
2017-03-07 19:13:17 +01:00
/// This will invoke the [`panic!`] macro if the provided expression cannot be
/// evaluated to `true` at runtime.
///
2017-03-07 19:13:17 +01:00
/// Like [`assert!`], this macro also has a second version, where a custom panic
/// message can be provided.
///
/// # Uses
///
2017-03-07 19:13:17 +01:00
/// Unlike [`assert!`], `debug_assert!` statements are only enabled in non
/// optimized builds by default. An optimized build will not execute
/// `debug_assert!` statements unless `-C debug-assertions` is passed to the
/// compiler. This makes `debug_assert!` useful for checks that are too
/// expensive to be present in a release build but may be helpful during
/// development. The result of expanding `debug_assert!` is always type checked.
///
/// An unchecked assertion allows a program in an inconsistent state to keep
/// running, which might have unexpected consequences but does not introduce
/// unsafety as long as this only happens in safe code. The performance cost
2020-06-28 09:06:48 +02:00
/// of assertions, however, is not measurable in general. Replacing [`assert!`]
2016-07-27 21:01:43 +02:00
/// with `debug_assert!` is thus only encouraged after thorough profiling, and
/// more importantly, only in safe code!
///
/// # Examples
///
/// ```
/// // the panic message for these assertions is the stringified value of the
/// // expression given.
/// debug_assert!(true);
///
/// fn some_expensive_computation() -> bool { true } // a very simple function
/// debug_assert!(some_expensive_computation());
///
/// // assert with a custom message
/// let x = true;
/// debug_assert!(x, "x wasn't true!");
///
/// let a = 3; let b = 27;
/// debug_assert!(a + b == 30, "a = {}, b = {}", a, b);
/// ```
#[macro_export]
2015-01-24 06:48:20 +01:00
#[stable(feature = "rust1", since = "1.0.0")]
2020-12-30 14:04:59 +01:00
#[rustc_diagnostic_item = "debug_assert_macro"]
macro_rules! debug_assert {
($($arg:tt)*) => (if $crate::cfg!(debug_assertions) { $crate::assert!($($arg)*); })
}
/// Asserts that two expressions are equal to each other.
///
/// On panic, this macro will print the values of the expressions with their
/// debug representations.
///
/// Unlike [`assert_eq!`], `debug_assert_eq!` statements are only enabled in non
/// optimized builds by default. An optimized build will not execute
/// `debug_assert_eq!` statements unless `-C debug-assertions` is passed to the
/// compiler. This makes `debug_assert_eq!` useful for checks that are too
/// expensive to be present in a release build but may be helpful during
/// development. The result of expanding `debug_assert_eq!` is always type checked.
///
/// # Examples
///
/// ```
/// let a = 3;
/// let b = 1 + 2;
/// debug_assert_eq!(a, b);
/// ```
std: Recreate a `collections` module As with the previous commit with `librand`, this commit shuffles around some `collections` code. The new state of the world is similar to that of librand: * The libcollections crate now only depends on libcore and liballoc. * The standard library has a new module, `std::collections`. All functionality of libcollections is reexported through this module. I would like to stress that this change is purely cosmetic. There are very few alterations to these primitives. There are a number of notable points about the new organization: * std::{str, slice, string, vec} all moved to libcollections. There is no reason that these primitives shouldn't be necessarily usable in a freestanding context that has allocation. These are all reexported in their usual places in the standard library. * The `hashmap`, and transitively the `lru_cache`, modules no longer reside in `libcollections`, but rather in libstd. The reason for this is because the `HashMap::new` contructor requires access to the OSRng for initially seeding the hash map. Beyond this requirement, there is no reason that the hashmap could not move to libcollections. I do, however, have a plan to move the hash map to the collections module. The `HashMap::new` function could be altered to require that the `H` hasher parameter ascribe to the `Default` trait, allowing the entire `hashmap` module to live in libcollections. The key idea would be that the default hasher would be different in libstd. Something along the lines of: // src/libstd/collections/mod.rs pub type HashMap<K, V, H = RandomizedSipHasher> = core_collections::HashMap<K, V, H>; This is not possible today because you cannot invoke static methods through type aliases. If we modified the compiler, however, to allow invocation of static methods through type aliases, then this type definition would essentially be switching the default hasher from `SipHasher` in libcollections to a libstd-defined `RandomizedSipHasher` type. This type's `Default` implementation would randomly seed the `SipHasher` instance, and otherwise perform the same as `SipHasher`. This future state doesn't seem incredibly far off, but until that time comes, the hashmap module will live in libstd to not compromise on functionality. * In preparation for the hashmap moving to libcollections, the `hash` module has moved from libstd to libcollections. A previously snapshotted commit enables a distinct `Writer` trait to live in the `hash` module which `Hash` implementations are now parameterized over. Due to using a custom trait, the `SipHasher` implementation has lost its specialized methods for writing integers. These can be re-added backwards-compatibly in the future via default methods if necessary, but the FNV hashing should satisfy much of the need for speedier hashing. A list of breaking changes: * HashMap::{get, get_mut} no longer fails with the key formatted into the error message with `{:?}`, instead, a generic message is printed. With backtraces, it should still be not-too-hard to track down errors. * The HashMap, HashSet, and LruCache types are now available through std::collections instead of the collections crate. * Manual implementations of hash should be parameterized over `hash::Writer` instead of just `Writer`. [breaking-change]
2014-05-30 03:50:12 +02:00
#[macro_export]
std: Stabilize APIs for the 1.6 release This commit is the standard API stabilization commit for the 1.6 release cycle. The list of issues and APIs below have all been through their cycle-long FCP and the libs team decisions are listed below Stabilized APIs * `Read::read_exact` * `ErrorKind::UnexpectedEof` (renamed from `UnexpectedEOF`) * libcore -- this was a bit of a nuanced stabilization, the crate itself is now marked as `#[stable]` and the methods appearing via traits for primitives like `char` and `str` are now also marked as stable. Note that the extension traits themeselves are marked as unstable as they're imported via the prelude. The `try!` macro was also moved from the standard library into libcore to have the same interface. Otherwise the functions all have copied stability from the standard library now. * The `#![no_std]` attribute * `fs::DirBuilder` * `fs::DirBuilder::new` * `fs::DirBuilder::recursive` * `fs::DirBuilder::create` * `os::unix::fs::DirBuilderExt` * `os::unix::fs::DirBuilderExt::mode` * `vec::Drain` * `vec::Vec::drain` * `string::Drain` * `string::String::drain` * `vec_deque::Drain` * `vec_deque::VecDeque::drain` * `collections::hash_map::Drain` * `collections::hash_map::HashMap::drain` * `collections::hash_set::Drain` * `collections::hash_set::HashSet::drain` * `collections::binary_heap::Drain` * `collections::binary_heap::BinaryHeap::drain` * `Vec::extend_from_slice` (renamed from `push_all`) * `Mutex::get_mut` * `Mutex::into_inner` * `RwLock::get_mut` * `RwLock::into_inner` * `Iterator::min_by_key` (renamed from `min_by`) * `Iterator::max_by_key` (renamed from `max_by`) Deprecated APIs * `ErrorKind::UnexpectedEOF` (renamed to `UnexpectedEof`) * `OsString::from_bytes` * `OsStr::to_cstring` * `OsStr::to_bytes` * `fs::walk_dir` and `fs::WalkDir` * `path::Components::peek` * `slice::bytes::MutableByteVector` * `slice::bytes::copy_memory` * `Vec::push_all` (renamed to `extend_from_slice`) * `Duration::span` * `IpAddr` * `SocketAddr::ip` * `Read::tee` * `io::Tee` * `Write::broadcast` * `io::Broadcast` * `Iterator::min_by` (renamed to `min_by_key`) * `Iterator::max_by` (renamed to `max_by_key`) * `net::lookup_addr` New APIs (still unstable) * `<[T]>::sort_by_key` (added to mirror `min_by_key`) Closes #27585 Closes #27704 Closes #27707 Closes #27710 Closes #27711 Closes #27727 Closes #27740 Closes #27744 Closes #27799 Closes #27801 cc #27801 (doesn't close as `Chars` is still unstable) Closes #28968
2015-12-03 02:31:49 +01:00
#[stable(feature = "rust1", since = "1.0.0")]
macro_rules! debug_assert_eq {
($($arg:tt)*) => (if $crate::cfg!(debug_assertions) { $crate::assert_eq!($($arg)*); })
}
std: Recreate a `collections` module As with the previous commit with `librand`, this commit shuffles around some `collections` code. The new state of the world is similar to that of librand: * The libcollections crate now only depends on libcore and liballoc. * The standard library has a new module, `std::collections`. All functionality of libcollections is reexported through this module. I would like to stress that this change is purely cosmetic. There are very few alterations to these primitives. There are a number of notable points about the new organization: * std::{str, slice, string, vec} all moved to libcollections. There is no reason that these primitives shouldn't be necessarily usable in a freestanding context that has allocation. These are all reexported in their usual places in the standard library. * The `hashmap`, and transitively the `lru_cache`, modules no longer reside in `libcollections`, but rather in libstd. The reason for this is because the `HashMap::new` contructor requires access to the OSRng for initially seeding the hash map. Beyond this requirement, there is no reason that the hashmap could not move to libcollections. I do, however, have a plan to move the hash map to the collections module. The `HashMap::new` function could be altered to require that the `H` hasher parameter ascribe to the `Default` trait, allowing the entire `hashmap` module to live in libcollections. The key idea would be that the default hasher would be different in libstd. Something along the lines of: // src/libstd/collections/mod.rs pub type HashMap<K, V, H = RandomizedSipHasher> = core_collections::HashMap<K, V, H>; This is not possible today because you cannot invoke static methods through type aliases. If we modified the compiler, however, to allow invocation of static methods through type aliases, then this type definition would essentially be switching the default hasher from `SipHasher` in libcollections to a libstd-defined `RandomizedSipHasher` type. This type's `Default` implementation would randomly seed the `SipHasher` instance, and otherwise perform the same as `SipHasher`. This future state doesn't seem incredibly far off, but until that time comes, the hashmap module will live in libstd to not compromise on functionality. * In preparation for the hashmap moving to libcollections, the `hash` module has moved from libstd to libcollections. A previously snapshotted commit enables a distinct `Writer` trait to live in the `hash` module which `Hash` implementations are now parameterized over. Due to using a custom trait, the `SipHasher` implementation has lost its specialized methods for writing integers. These can be re-added backwards-compatibly in the future via default methods if necessary, but the FNV hashing should satisfy much of the need for speedier hashing. A list of breaking changes: * HashMap::{get, get_mut} no longer fails with the key formatted into the error message with `{:?}`, instead, a generic message is printed. With backtraces, it should still be not-too-hard to track down errors. * The HashMap, HashSet, and LruCache types are now available through std::collections instead of the collections crate. * Manual implementations of hash should be parameterized over `hash::Writer` instead of just `Writer`. [breaking-change]
2014-05-30 03:50:12 +02:00
/// Asserts that two expressions are not equal to each other.
///
/// On panic, this macro will print the values of the expressions with their
/// debug representations.
///
/// Unlike [`assert_ne!`], `debug_assert_ne!` statements are only enabled in non
/// optimized builds by default. An optimized build will not execute
/// `debug_assert_ne!` statements unless `-C debug-assertions` is passed to the
/// compiler. This makes `debug_assert_ne!` useful for checks that are too
/// expensive to be present in a release build but may be helpful during
/// development. The result of expanding `debug_assert_ne!` is always type checked.
///
/// # Examples
///
/// ```
/// let a = 3;
/// let b = 2;
/// debug_assert_ne!(a, b);
/// ```
#[macro_export]
#[stable(feature = "assert_ne", since = "1.13.0")]
macro_rules! debug_assert_ne {
($($arg:tt)*) => (if $crate::cfg!(debug_assertions) { $crate::assert_ne!($($arg)*); })
2021-03-04 18:12:33 +01:00
}
/// Returns whether the given expression matches any of the given patterns.
///
/// Like in a `match` expression, the pattern can be optionally followed by `if`
/// and a guard expression that has access to names bound by the pattern.
///
/// # Examples
///
/// ```
/// let foo = 'f';
/// assert!(matches!(foo, 'A'..='Z' | 'a'..='z'));
///
/// let bar = Some(4);
/// assert!(matches!(bar, Some(x) if x > 2));
/// ```
#[macro_export]
#[stable(feature = "matches_macro", since = "1.42.0")]
macro_rules! matches {
($expression:expr, $( $pattern:pat )|+ $( if $guard: expr )? $(,)?) => {
match $expression {
$( $pattern )|+ $( if $guard )? => true,
_ => false
}
}
}
/// Unwraps a result or propagates its error.
///
/// The `?` operator was added to replace `try!` and should be used instead.
2018-12-02 01:16:08 +01:00
/// Furthermore, `try` is a reserved word in Rust 2018, so if you must use
2018-12-02 01:24:11 +01:00
/// it, you will need to use the [raw-identifier syntax][ris]: `r#try`.
///
/// [ris]: https://doc.rust-lang.org/nightly/rust-by-example/compatibility/raw_identifiers.html
///
/// `try!` matches the given [`Result`]. In case of the `Ok` variant, the
/// expression has the value of the wrapped value.
///
/// In case of the `Err` variant, it retrieves the inner error. `try!` then
/// performs conversion using `From`. This provides automatic conversion
/// between specialized errors and more general ones. The resulting
/// error is then immediately returned.
///
/// Because of the early return, `try!` can only be used in functions that
/// return [`Result`].
///
std: Stabilize APIs for the 1.6 release This commit is the standard API stabilization commit for the 1.6 release cycle. The list of issues and APIs below have all been through their cycle-long FCP and the libs team decisions are listed below Stabilized APIs * `Read::read_exact` * `ErrorKind::UnexpectedEof` (renamed from `UnexpectedEOF`) * libcore -- this was a bit of a nuanced stabilization, the crate itself is now marked as `#[stable]` and the methods appearing via traits for primitives like `char` and `str` are now also marked as stable. Note that the extension traits themeselves are marked as unstable as they're imported via the prelude. The `try!` macro was also moved from the standard library into libcore to have the same interface. Otherwise the functions all have copied stability from the standard library now. * The `#![no_std]` attribute * `fs::DirBuilder` * `fs::DirBuilder::new` * `fs::DirBuilder::recursive` * `fs::DirBuilder::create` * `os::unix::fs::DirBuilderExt` * `os::unix::fs::DirBuilderExt::mode` * `vec::Drain` * `vec::Vec::drain` * `string::Drain` * `string::String::drain` * `vec_deque::Drain` * `vec_deque::VecDeque::drain` * `collections::hash_map::Drain` * `collections::hash_map::HashMap::drain` * `collections::hash_set::Drain` * `collections::hash_set::HashSet::drain` * `collections::binary_heap::Drain` * `collections::binary_heap::BinaryHeap::drain` * `Vec::extend_from_slice` (renamed from `push_all`) * `Mutex::get_mut` * `Mutex::into_inner` * `RwLock::get_mut` * `RwLock::into_inner` * `Iterator::min_by_key` (renamed from `min_by`) * `Iterator::max_by_key` (renamed from `max_by`) Deprecated APIs * `ErrorKind::UnexpectedEOF` (renamed to `UnexpectedEof`) * `OsString::from_bytes` * `OsStr::to_cstring` * `OsStr::to_bytes` * `fs::walk_dir` and `fs::WalkDir` * `path::Components::peek` * `slice::bytes::MutableByteVector` * `slice::bytes::copy_memory` * `Vec::push_all` (renamed to `extend_from_slice`) * `Duration::span` * `IpAddr` * `SocketAddr::ip` * `Read::tee` * `io::Tee` * `Write::broadcast` * `io::Broadcast` * `Iterator::min_by` (renamed to `min_by_key`) * `Iterator::max_by` (renamed to `max_by_key`) * `net::lookup_addr` New APIs (still unstable) * `<[T]>::sort_by_key` (added to mirror `min_by_key`) Closes #27585 Closes #27704 Closes #27707 Closes #27710 Closes #27711 Closes #27727 Closes #27740 Closes #27744 Closes #27799 Closes #27801 cc #27801 (doesn't close as `Chars` is still unstable) Closes #28968
2015-12-03 02:31:49 +01:00
/// # Examples
///
std: Stabilize APIs for the 1.6 release This commit is the standard API stabilization commit for the 1.6 release cycle. The list of issues and APIs below have all been through their cycle-long FCP and the libs team decisions are listed below Stabilized APIs * `Read::read_exact` * `ErrorKind::UnexpectedEof` (renamed from `UnexpectedEOF`) * libcore -- this was a bit of a nuanced stabilization, the crate itself is now marked as `#[stable]` and the methods appearing via traits for primitives like `char` and `str` are now also marked as stable. Note that the extension traits themeselves are marked as unstable as they're imported via the prelude. The `try!` macro was also moved from the standard library into libcore to have the same interface. Otherwise the functions all have copied stability from the standard library now. * The `#![no_std]` attribute * `fs::DirBuilder` * `fs::DirBuilder::new` * `fs::DirBuilder::recursive` * `fs::DirBuilder::create` * `os::unix::fs::DirBuilderExt` * `os::unix::fs::DirBuilderExt::mode` * `vec::Drain` * `vec::Vec::drain` * `string::Drain` * `string::String::drain` * `vec_deque::Drain` * `vec_deque::VecDeque::drain` * `collections::hash_map::Drain` * `collections::hash_map::HashMap::drain` * `collections::hash_set::Drain` * `collections::hash_set::HashSet::drain` * `collections::binary_heap::Drain` * `collections::binary_heap::BinaryHeap::drain` * `Vec::extend_from_slice` (renamed from `push_all`) * `Mutex::get_mut` * `Mutex::into_inner` * `RwLock::get_mut` * `RwLock::into_inner` * `Iterator::min_by_key` (renamed from `min_by`) * `Iterator::max_by_key` (renamed from `max_by`) Deprecated APIs * `ErrorKind::UnexpectedEOF` (renamed to `UnexpectedEof`) * `OsString::from_bytes` * `OsStr::to_cstring` * `OsStr::to_bytes` * `fs::walk_dir` and `fs::WalkDir` * `path::Components::peek` * `slice::bytes::MutableByteVector` * `slice::bytes::copy_memory` * `Vec::push_all` (renamed to `extend_from_slice`) * `Duration::span` * `IpAddr` * `SocketAddr::ip` * `Read::tee` * `io::Tee` * `Write::broadcast` * `io::Broadcast` * `Iterator::min_by` (renamed to `min_by_key`) * `Iterator::max_by` (renamed to `max_by_key`) * `net::lookup_addr` New APIs (still unstable) * `<[T]>::sort_by_key` (added to mirror `min_by_key`) Closes #27585 Closes #27704 Closes #27707 Closes #27710 Closes #27711 Closes #27727 Closes #27740 Closes #27744 Closes #27799 Closes #27801 cc #27801 (doesn't close as `Chars` is still unstable) Closes #28968
2015-12-03 02:31:49 +01:00
/// ```
/// use std::io;
/// use std::fs::File;
/// use std::io::prelude::*;
///
/// enum MyError {
/// FileWriteError
/// }
///
/// impl From<io::Error> for MyError {
/// fn from(e: io::Error) -> MyError {
/// MyError::FileWriteError
/// }
/// }
///
/// // The preferred method of quick returning Errors
/// fn write_to_file_question() -> Result<(), MyError> {
/// let mut file = File::create("my_best_friends.txt")?;
/// file.write_all(b"This is a list of my best friends.")?;
/// Ok(())
/// }
///
/// // The previous method of quick returning Errors
/// fn write_to_file_using_try() -> Result<(), MyError> {
2018-12-01 22:48:55 +01:00
/// let mut file = r#try!(File::create("my_best_friends.txt"));
/// r#try!(file.write_all(b"This is a list of my best friends."));
std: Stabilize APIs for the 1.6 release This commit is the standard API stabilization commit for the 1.6 release cycle. The list of issues and APIs below have all been through their cycle-long FCP and the libs team decisions are listed below Stabilized APIs * `Read::read_exact` * `ErrorKind::UnexpectedEof` (renamed from `UnexpectedEOF`) * libcore -- this was a bit of a nuanced stabilization, the crate itself is now marked as `#[stable]` and the methods appearing via traits for primitives like `char` and `str` are now also marked as stable. Note that the extension traits themeselves are marked as unstable as they're imported via the prelude. The `try!` macro was also moved from the standard library into libcore to have the same interface. Otherwise the functions all have copied stability from the standard library now. * The `#![no_std]` attribute * `fs::DirBuilder` * `fs::DirBuilder::new` * `fs::DirBuilder::recursive` * `fs::DirBuilder::create` * `os::unix::fs::DirBuilderExt` * `os::unix::fs::DirBuilderExt::mode` * `vec::Drain` * `vec::Vec::drain` * `string::Drain` * `string::String::drain` * `vec_deque::Drain` * `vec_deque::VecDeque::drain` * `collections::hash_map::Drain` * `collections::hash_map::HashMap::drain` * `collections::hash_set::Drain` * `collections::hash_set::HashSet::drain` * `collections::binary_heap::Drain` * `collections::binary_heap::BinaryHeap::drain` * `Vec::extend_from_slice` (renamed from `push_all`) * `Mutex::get_mut` * `Mutex::into_inner` * `RwLock::get_mut` * `RwLock::into_inner` * `Iterator::min_by_key` (renamed from `min_by`) * `Iterator::max_by_key` (renamed from `max_by`) Deprecated APIs * `ErrorKind::UnexpectedEOF` (renamed to `UnexpectedEof`) * `OsString::from_bytes` * `OsStr::to_cstring` * `OsStr::to_bytes` * `fs::walk_dir` and `fs::WalkDir` * `path::Components::peek` * `slice::bytes::MutableByteVector` * `slice::bytes::copy_memory` * `Vec::push_all` (renamed to `extend_from_slice`) * `Duration::span` * `IpAddr` * `SocketAddr::ip` * `Read::tee` * `io::Tee` * `Write::broadcast` * `io::Broadcast` * `Iterator::min_by` (renamed to `min_by_key`) * `Iterator::max_by` (renamed to `max_by_key`) * `net::lookup_addr` New APIs (still unstable) * `<[T]>::sort_by_key` (added to mirror `min_by_key`) Closes #27585 Closes #27704 Closes #27707 Closes #27710 Closes #27711 Closes #27727 Closes #27740 Closes #27744 Closes #27799 Closes #27801 cc #27801 (doesn't close as `Chars` is still unstable) Closes #28968
2015-12-03 02:31:49 +01:00
/// Ok(())
/// }
///
std: Stabilize APIs for the 1.6 release This commit is the standard API stabilization commit for the 1.6 release cycle. The list of issues and APIs below have all been through their cycle-long FCP and the libs team decisions are listed below Stabilized APIs * `Read::read_exact` * `ErrorKind::UnexpectedEof` (renamed from `UnexpectedEOF`) * libcore -- this was a bit of a nuanced stabilization, the crate itself is now marked as `#[stable]` and the methods appearing via traits for primitives like `char` and `str` are now also marked as stable. Note that the extension traits themeselves are marked as unstable as they're imported via the prelude. The `try!` macro was also moved from the standard library into libcore to have the same interface. Otherwise the functions all have copied stability from the standard library now. * The `#![no_std]` attribute * `fs::DirBuilder` * `fs::DirBuilder::new` * `fs::DirBuilder::recursive` * `fs::DirBuilder::create` * `os::unix::fs::DirBuilderExt` * `os::unix::fs::DirBuilderExt::mode` * `vec::Drain` * `vec::Vec::drain` * `string::Drain` * `string::String::drain` * `vec_deque::Drain` * `vec_deque::VecDeque::drain` * `collections::hash_map::Drain` * `collections::hash_map::HashMap::drain` * `collections::hash_set::Drain` * `collections::hash_set::HashSet::drain` * `collections::binary_heap::Drain` * `collections::binary_heap::BinaryHeap::drain` * `Vec::extend_from_slice` (renamed from `push_all`) * `Mutex::get_mut` * `Mutex::into_inner` * `RwLock::get_mut` * `RwLock::into_inner` * `Iterator::min_by_key` (renamed from `min_by`) * `Iterator::max_by_key` (renamed from `max_by`) Deprecated APIs * `ErrorKind::UnexpectedEOF` (renamed to `UnexpectedEof`) * `OsString::from_bytes` * `OsStr::to_cstring` * `OsStr::to_bytes` * `fs::walk_dir` and `fs::WalkDir` * `path::Components::peek` * `slice::bytes::MutableByteVector` * `slice::bytes::copy_memory` * `Vec::push_all` (renamed to `extend_from_slice`) * `Duration::span` * `IpAddr` * `SocketAddr::ip` * `Read::tee` * `io::Tee` * `Write::broadcast` * `io::Broadcast` * `Iterator::min_by` (renamed to `min_by_key`) * `Iterator::max_by` (renamed to `max_by_key`) * `net::lookup_addr` New APIs (still unstable) * `<[T]>::sort_by_key` (added to mirror `min_by_key`) Closes #27585 Closes #27704 Closes #27707 Closes #27710 Closes #27711 Closes #27727 Closes #27740 Closes #27744 Closes #27799 Closes #27801 cc #27801 (doesn't close as `Chars` is still unstable) Closes #28968
2015-12-03 02:31:49 +01:00
/// // This is equivalent to:
/// fn write_to_file_using_match() -> Result<(), MyError> {
2018-12-01 22:48:55 +01:00
/// let mut file = r#try!(File::create("my_best_friends.txt"));
std: Stabilize APIs for the 1.6 release This commit is the standard API stabilization commit for the 1.6 release cycle. The list of issues and APIs below have all been through their cycle-long FCP and the libs team decisions are listed below Stabilized APIs * `Read::read_exact` * `ErrorKind::UnexpectedEof` (renamed from `UnexpectedEOF`) * libcore -- this was a bit of a nuanced stabilization, the crate itself is now marked as `#[stable]` and the methods appearing via traits for primitives like `char` and `str` are now also marked as stable. Note that the extension traits themeselves are marked as unstable as they're imported via the prelude. The `try!` macro was also moved from the standard library into libcore to have the same interface. Otherwise the functions all have copied stability from the standard library now. * The `#![no_std]` attribute * `fs::DirBuilder` * `fs::DirBuilder::new` * `fs::DirBuilder::recursive` * `fs::DirBuilder::create` * `os::unix::fs::DirBuilderExt` * `os::unix::fs::DirBuilderExt::mode` * `vec::Drain` * `vec::Vec::drain` * `string::Drain` * `string::String::drain` * `vec_deque::Drain` * `vec_deque::VecDeque::drain` * `collections::hash_map::Drain` * `collections::hash_map::HashMap::drain` * `collections::hash_set::Drain` * `collections::hash_set::HashSet::drain` * `collections::binary_heap::Drain` * `collections::binary_heap::BinaryHeap::drain` * `Vec::extend_from_slice` (renamed from `push_all`) * `Mutex::get_mut` * `Mutex::into_inner` * `RwLock::get_mut` * `RwLock::into_inner` * `Iterator::min_by_key` (renamed from `min_by`) * `Iterator::max_by_key` (renamed from `max_by`) Deprecated APIs * `ErrorKind::UnexpectedEOF` (renamed to `UnexpectedEof`) * `OsString::from_bytes` * `OsStr::to_cstring` * `OsStr::to_bytes` * `fs::walk_dir` and `fs::WalkDir` * `path::Components::peek` * `slice::bytes::MutableByteVector` * `slice::bytes::copy_memory` * `Vec::push_all` (renamed to `extend_from_slice`) * `Duration::span` * `IpAddr` * `SocketAddr::ip` * `Read::tee` * `io::Tee` * `Write::broadcast` * `io::Broadcast` * `Iterator::min_by` (renamed to `min_by_key`) * `Iterator::max_by` (renamed to `max_by_key`) * `net::lookup_addr` New APIs (still unstable) * `<[T]>::sort_by_key` (added to mirror `min_by_key`) Closes #27585 Closes #27704 Closes #27707 Closes #27710 Closes #27711 Closes #27727 Closes #27740 Closes #27744 Closes #27799 Closes #27801 cc #27801 (doesn't close as `Chars` is still unstable) Closes #28968
2015-12-03 02:31:49 +01:00
/// match file.write_all(b"This is a list of my best friends.") {
/// Ok(v) => v,
/// Err(e) => return Err(From::from(e)),
std: Stabilize APIs for the 1.6 release This commit is the standard API stabilization commit for the 1.6 release cycle. The list of issues and APIs below have all been through their cycle-long FCP and the libs team decisions are listed below Stabilized APIs * `Read::read_exact` * `ErrorKind::UnexpectedEof` (renamed from `UnexpectedEOF`) * libcore -- this was a bit of a nuanced stabilization, the crate itself is now marked as `#[stable]` and the methods appearing via traits for primitives like `char` and `str` are now also marked as stable. Note that the extension traits themeselves are marked as unstable as they're imported via the prelude. The `try!` macro was also moved from the standard library into libcore to have the same interface. Otherwise the functions all have copied stability from the standard library now. * The `#![no_std]` attribute * `fs::DirBuilder` * `fs::DirBuilder::new` * `fs::DirBuilder::recursive` * `fs::DirBuilder::create` * `os::unix::fs::DirBuilderExt` * `os::unix::fs::DirBuilderExt::mode` * `vec::Drain` * `vec::Vec::drain` * `string::Drain` * `string::String::drain` * `vec_deque::Drain` * `vec_deque::VecDeque::drain` * `collections::hash_map::Drain` * `collections::hash_map::HashMap::drain` * `collections::hash_set::Drain` * `collections::hash_set::HashSet::drain` * `collections::binary_heap::Drain` * `collections::binary_heap::BinaryHeap::drain` * `Vec::extend_from_slice` (renamed from `push_all`) * `Mutex::get_mut` * `Mutex::into_inner` * `RwLock::get_mut` * `RwLock::into_inner` * `Iterator::min_by_key` (renamed from `min_by`) * `Iterator::max_by_key` (renamed from `max_by`) Deprecated APIs * `ErrorKind::UnexpectedEOF` (renamed to `UnexpectedEof`) * `OsString::from_bytes` * `OsStr::to_cstring` * `OsStr::to_bytes` * `fs::walk_dir` and `fs::WalkDir` * `path::Components::peek` * `slice::bytes::MutableByteVector` * `slice::bytes::copy_memory` * `Vec::push_all` (renamed to `extend_from_slice`) * `Duration::span` * `IpAddr` * `SocketAddr::ip` * `Read::tee` * `io::Tee` * `Write::broadcast` * `io::Broadcast` * `Iterator::min_by` (renamed to `min_by_key`) * `Iterator::max_by` (renamed to `max_by_key`) * `net::lookup_addr` New APIs (still unstable) * `<[T]>::sort_by_key` (added to mirror `min_by_key`) Closes #27585 Closes #27704 Closes #27707 Closes #27710 Closes #27711 Closes #27727 Closes #27740 Closes #27744 Closes #27799 Closes #27801 cc #27801 (doesn't close as `Chars` is still unstable) Closes #28968
2015-12-03 02:31:49 +01:00
/// }
/// Ok(())
/// }
/// ```
#[macro_export]
std: Stabilize APIs for the 1.6 release This commit is the standard API stabilization commit for the 1.6 release cycle. The list of issues and APIs below have all been through their cycle-long FCP and the libs team decisions are listed below Stabilized APIs * `Read::read_exact` * `ErrorKind::UnexpectedEof` (renamed from `UnexpectedEOF`) * libcore -- this was a bit of a nuanced stabilization, the crate itself is now marked as `#[stable]` and the methods appearing via traits for primitives like `char` and `str` are now also marked as stable. Note that the extension traits themeselves are marked as unstable as they're imported via the prelude. The `try!` macro was also moved from the standard library into libcore to have the same interface. Otherwise the functions all have copied stability from the standard library now. * The `#![no_std]` attribute * `fs::DirBuilder` * `fs::DirBuilder::new` * `fs::DirBuilder::recursive` * `fs::DirBuilder::create` * `os::unix::fs::DirBuilderExt` * `os::unix::fs::DirBuilderExt::mode` * `vec::Drain` * `vec::Vec::drain` * `string::Drain` * `string::String::drain` * `vec_deque::Drain` * `vec_deque::VecDeque::drain` * `collections::hash_map::Drain` * `collections::hash_map::HashMap::drain` * `collections::hash_set::Drain` * `collections::hash_set::HashSet::drain` * `collections::binary_heap::Drain` * `collections::binary_heap::BinaryHeap::drain` * `Vec::extend_from_slice` (renamed from `push_all`) * `Mutex::get_mut` * `Mutex::into_inner` * `RwLock::get_mut` * `RwLock::into_inner` * `Iterator::min_by_key` (renamed from `min_by`) * `Iterator::max_by_key` (renamed from `max_by`) Deprecated APIs * `ErrorKind::UnexpectedEOF` (renamed to `UnexpectedEof`) * `OsString::from_bytes` * `OsStr::to_cstring` * `OsStr::to_bytes` * `fs::walk_dir` and `fs::WalkDir` * `path::Components::peek` * `slice::bytes::MutableByteVector` * `slice::bytes::copy_memory` * `Vec::push_all` (renamed to `extend_from_slice`) * `Duration::span` * `IpAddr` * `SocketAddr::ip` * `Read::tee` * `io::Tee` * `Write::broadcast` * `io::Broadcast` * `Iterator::min_by` (renamed to `min_by_key`) * `Iterator::max_by` (renamed to `max_by_key`) * `net::lookup_addr` New APIs (still unstable) * `<[T]>::sort_by_key` (added to mirror `min_by_key`) Closes #27585 Closes #27704 Closes #27707 Closes #27710 Closes #27711 Closes #27727 Closes #27740 Closes #27744 Closes #27799 Closes #27801 cc #27801 (doesn't close as `Chars` is still unstable) Closes #28968
2015-12-03 02:31:49 +01:00
#[stable(feature = "rust1", since = "1.0.0")]
2019-07-15 19:42:08 +02:00
#[rustc_deprecated(since = "1.39.0", reason = "use the `?` operator instead")]
2018-04-19 19:56:10 +02:00
#[doc(alias = "?")]
2018-12-01 22:48:55 +01:00
macro_rules! r#try {
2020-10-25 23:15:37 +01:00
($expr:expr $(,)?) => {
match $expr {
$crate::result::Result::Ok(val) => val,
$crate::result::Result::Err(err) => {
return $crate::result::Result::Err($crate::convert::From::from(err));
}
}
};
}
/// Writes formatted data into a buffer.
///
2020-11-09 16:52:33 +01:00
/// This macro accepts a 'writer', a format string, and a list of arguments. Arguments will be
/// formatted according to the specified format string and the result will be passed to the writer.
/// The writer may be any value with a `write_fmt` method; generally this comes from an
/// implementation of either the [`fmt::Write`] or the [`io::Write`] trait. The macro
/// returns whatever the `write_fmt` method returns; commonly a [`fmt::Result`], or an
/// [`io::Result`].
///
/// See [`std::fmt`] for more information on the format string syntax.
///
/// [`std::fmt`]: ../std/fmt/index.html
/// [`fmt::Write`]: crate::fmt::Write
/// [`io::Write`]: ../std/io/trait.Write.html
/// [`fmt::Result`]: crate::fmt::Result
/// [`io::Result`]: ../std/io/type.Result.html
///
/// # Examples
///
/// ```
/// use std::io::Write;
///
2019-06-20 14:36:53 +02:00
/// fn main() -> std::io::Result<()> {
/// let mut w = Vec::new();
/// write!(&mut w, "test")?;
/// write!(&mut w, "formatted {}", "arguments")?;
///
2019-06-20 14:36:53 +02:00
/// assert_eq!(w, b"testformatted arguments");
/// Ok(())
/// }
/// ```
///
/// A module can import both `std::fmt::Write` and `std::io::Write` and call `write!` on objects
/// implementing either, as objects do not typically implement both. However, the module must
/// import the traits qualified so their names do not conflict:
///
/// ```
/// use std::fmt::Write as FmtWrite;
/// use std::io::Write as IoWrite;
///
2019-07-13 19:27:22 +02:00
/// fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let mut s = String::new();
/// let mut v = Vec::new();
///
/// write!(&mut s, "{} {}", "abc", 123)?; // uses fmt::Write::write_fmt
/// write!(&mut v, "s = {:?}", s)?; // uses io::Write::write_fmt
/// assert_eq!(v, b"s = \"abc 123\"");
/// Ok(())
/// }
/// ```
2018-08-13 04:17:30 +02:00
///
2018-11-10 05:12:46 +01:00
/// Note: This macro can be used in `no_std` setups as well.
/// In a `no_std` setup you are responsible for the implementation details of the components.
2018-08-13 04:17:30 +02:00
///
/// ```no_run
2018-09-05 15:09:50 +02:00
/// # extern crate core;
/// use core::fmt::Write;
2018-08-13 04:17:30 +02:00
///
2018-09-05 15:09:50 +02:00
/// struct Example;
2018-08-13 04:17:30 +02:00
///
2018-09-05 15:09:50 +02:00
/// impl Write for Example {
/// fn write_str(&mut self, _s: &str) -> core::fmt::Result {
/// unimplemented!();
/// }
/// }
2018-08-13 04:17:30 +02:00
///
2018-09-05 15:09:50 +02:00
/// let mut m = Example{};
/// write!(&mut m, "Hello World").expect("Not written");
/// ```
#[macro_export]
#[stable(feature = "rust1", since = "1.0.0")]
macro_rules! write {
($dst:expr, $($arg:tt)*) => ($dst.write_fmt($crate::format_args!($($arg)*)))
}
/// Write formatted data into a buffer, with a newline appended.
///
2016-08-04 03:33:50 +02:00
/// On all platforms, the newline is the LINE FEED character (`\n`/`U+000A`) alone
/// (no additional CARRIAGE RETURN (`\r`/`U+000D`).
///
/// For more information, see [`write!`]. For information on the format string syntax, see
/// [`std::fmt`].
2016-08-04 03:33:50 +02:00
///
/// [`std::fmt`]: ../std/fmt/index.html
///
/// # Examples
///
/// ```
2019-07-13 19:27:22 +02:00
/// use std::io::{Write, Result};
///
2019-07-13 19:27:22 +02:00
/// fn main() -> Result<()> {
/// let mut w = Vec::new();
/// writeln!(&mut w)?;
/// writeln!(&mut w, "test")?;
/// writeln!(&mut w, "formatted {}", "arguments")?;
///
2019-07-13 19:27:22 +02:00
/// assert_eq!(&w[..], "\ntest\nformatted arguments\n".as_bytes());
/// Ok(())
/// }
/// ```
///
/// A module can import both `std::fmt::Write` and `std::io::Write` and call `write!` on objects
/// implementing either, as objects do not typically implement both. However, the module must
/// import the traits qualified so their names do not conflict:
///
/// ```
/// use std::fmt::Write as FmtWrite;
/// use std::io::Write as IoWrite;
///
2019-07-13 19:27:22 +02:00
/// fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let mut s = String::new();
/// let mut v = Vec::new();
///
/// writeln!(&mut s, "{} {}", "abc", 123)?; // uses fmt::Write::write_fmt
/// writeln!(&mut v, "s = {:?}", s)?; // uses io::Write::write_fmt
/// assert_eq!(v, b"s = \"abc 123\\n\"\n");
/// Ok(())
/// }
/// ```
std: Extract librustrt out of libstd As part of the libstd facade efforts, this commit extracts the runtime interface out of the standard library into a standalone crate, librustrt. This crate will provide the following services: * Definition of the rtio interface * Definition of the Runtime interface * Implementation of the Task structure * Implementation of task-local-data * Implementation of task failure via unwinding via libunwind * Implementation of runtime initialization and shutdown * Implementation of thread-local-storage for the local rust Task Notably, this crate avoids the following services: * Thread creation and destruction. The crate does not require the knowledge of an OS threading system, and as a result it seemed best to leave out the `rt::thread` module from librustrt. The librustrt module does depend on mutexes, however. * Implementation of backtraces. There is no inherent requirement for the runtime to be able to generate backtraces. As will be discussed later, this functionality continues to live in libstd rather than librustrt. As usual, a number of architectural changes were required to make this crate possible. Users of "stable" functionality will not be impacted by this change, but users of the `std::rt` module will likely note the changes. A list of architectural changes made is: * The stdout/stderr handles no longer live directly inside of the `Task` structure. This is a consequence of librustrt not knowing about `std::io`. These two handles are now stored inside of task-local-data. The handles were originally stored inside of the `Task` for perf reasons, and TLD is not currently as fast as it could be. For comparison, 100k prints goes from 59ms to 68ms (a 15% slowdown). This appeared to me to be an acceptable perf loss for the successful extraction of a librustrt crate. * The `rtio` module was forced to duplicate more functionality of `std::io`. As the module no longer depends on `std::io`, `rtio` now defines structures such as socket addresses, addrinfo fiddly bits, etc. The primary change made was that `rtio` now defines its own `IoError` type. This type is distinct from `std::io::IoError` in that it does not have an enum for what error occurred, but rather a platform-specific error code. The native and green libraries will be updated in later commits for this change, and the bulk of this effort was put behind updating the two libraries for this change (with `rtio`). * Printing a message on task failure (along with the backtrace) continues to live in libstd, not in librustrt. This is a consequence of the above decision to move the stdout/stderr handles to TLD rather than inside the `Task` itself. The unwinding API now supports registration of global callback functions which will be invoked when a task fails, allowing for libstd to register a function to print a message and a backtrace. The API for registering a callback is experimental and unsafe, as the ramifications of running code on unwinding is pretty hairy. * The `std::unstable::mutex` module has moved to `std::rt::mutex`. * The `std::unstable::sync` module has been moved to `std::rt::exclusive` and the type has been rewritten to not internally have an Arc and to have an RAII guard structure when locking. Old code should stop using `Exclusive` in favor of the primitives in `libsync`, but if necessary, old code should port to `Arc<Exclusive<T>>`. * The local heap has been stripped down to have fewer debugging options. None of these were tested, and none of these have been used in a very long time. [breaking-change]
2014-06-04 04:11:49 +02:00
#[macro_export]
2015-01-24 06:48:20 +01:00
#[stable(feature = "rust1", since = "1.0.0")]
#[allow_internal_unstable(format_args_nl)]
macro_rules! writeln {
2020-10-25 23:15:37 +01:00
($dst:expr $(,)?) => (
$crate::write!($dst, "\n")
);
($dst:expr, $($arg:tt)*) => (
$dst.write_fmt($crate::format_args_nl!($($arg)*))
2015-01-07 00:46:37 +01:00
);
}
std: Extract librustrt out of libstd As part of the libstd facade efforts, this commit extracts the runtime interface out of the standard library into a standalone crate, librustrt. This crate will provide the following services: * Definition of the rtio interface * Definition of the Runtime interface * Implementation of the Task structure * Implementation of task-local-data * Implementation of task failure via unwinding via libunwind * Implementation of runtime initialization and shutdown * Implementation of thread-local-storage for the local rust Task Notably, this crate avoids the following services: * Thread creation and destruction. The crate does not require the knowledge of an OS threading system, and as a result it seemed best to leave out the `rt::thread` module from librustrt. The librustrt module does depend on mutexes, however. * Implementation of backtraces. There is no inherent requirement for the runtime to be able to generate backtraces. As will be discussed later, this functionality continues to live in libstd rather than librustrt. As usual, a number of architectural changes were required to make this crate possible. Users of "stable" functionality will not be impacted by this change, but users of the `std::rt` module will likely note the changes. A list of architectural changes made is: * The stdout/stderr handles no longer live directly inside of the `Task` structure. This is a consequence of librustrt not knowing about `std::io`. These two handles are now stored inside of task-local-data. The handles were originally stored inside of the `Task` for perf reasons, and TLD is not currently as fast as it could be. For comparison, 100k prints goes from 59ms to 68ms (a 15% slowdown). This appeared to me to be an acceptable perf loss for the successful extraction of a librustrt crate. * The `rtio` module was forced to duplicate more functionality of `std::io`. As the module no longer depends on `std::io`, `rtio` now defines structures such as socket addresses, addrinfo fiddly bits, etc. The primary change made was that `rtio` now defines its own `IoError` type. This type is distinct from `std::io::IoError` in that it does not have an enum for what error occurred, but rather a platform-specific error code. The native and green libraries will be updated in later commits for this change, and the bulk of this effort was put behind updating the two libraries for this change (with `rtio`). * Printing a message on task failure (along with the backtrace) continues to live in libstd, not in librustrt. This is a consequence of the above decision to move the stdout/stderr handles to TLD rather than inside the `Task` itself. The unwinding API now supports registration of global callback functions which will be invoked when a task fails, allowing for libstd to register a function to print a message and a backtrace. The API for registering a callback is experimental and unsafe, as the ramifications of running code on unwinding is pretty hairy. * The `std::unstable::mutex` module has moved to `std::rt::mutex`. * The `std::unstable::sync` module has been moved to `std::rt::exclusive` and the type has been rewritten to not internally have an Arc and to have an RAII guard structure when locking. Old code should stop using `Exclusive` in favor of the primitives in `libsync`, but if necessary, old code should port to `Arc<Exclusive<T>>`. * The local heap has been stripped down to have fewer debugging options. None of these were tested, and none of these have been used in a very long time. [breaking-change]
2014-06-04 04:11:49 +02:00
/// Indicates unreachable code.
///
/// This is useful any time that the compiler can't determine that some code is unreachable. For
/// example:
///
/// * Match arms with guard conditions.
/// * Loops that dynamically terminate.
/// * Iterators that dynamically terminate.
///
/// If the determination that the code is unreachable proves incorrect, the
2019-05-23 17:04:01 +02:00
/// program immediately terminates with a [`panic!`].
///
/// The unsafe counterpart of this macro is the [`unreachable_unchecked`] function, which
2019-05-24 01:34:10 +02:00
/// will cause undefined behavior if the code is reached.
///
/// [`unreachable_unchecked`]: crate::hint::unreachable_unchecked
///
/// # Panics
///
/// This will always [`panic!`].
///
/// # Examples
///
/// Match arms:
///
/// ```
2015-11-03 16:27:03 +01:00
/// # #[allow(dead_code)]
/// fn foo(x: Option<i32>) {
/// match x {
/// Some(n) if n >= 0 => println!("Some(Non-negative)"),
/// Some(n) if n < 0 => println!("Some(Negative)"),
/// Some(_) => unreachable!(), // compile error if commented out
/// None => println!("None")
/// }
/// }
/// ```
///
/// Iterators:
///
/// ```
2015-11-03 16:27:03 +01:00
/// # #[allow(dead_code)]
/// fn divide_by_three(x: u32) -> u32 { // one of the poorest implementations of x/3
/// for i in 0.. {
/// if 3*i < i { panic!("u32 overflow"); }
/// if x < 3*i { return i-1; }
/// }
/// unreachable!();
/// }
/// ```
#[macro_export]
#[stable(feature = "rust1", since = "1.0.0")]
macro_rules! unreachable {
() => ({
$crate::panic!("internal error: entered unreachable code")
});
2020-10-25 23:15:37 +01:00
($msg:expr $(,)?) => ({
$crate::unreachable!("{}", $msg)
});
($fmt:expr, $($arg:tt)*) => ({
$crate::panic!($crate::concat!("internal error: entered unreachable code: ", $fmt), $($arg)*)
});
}
2019-12-20 07:46:29 +01:00
/// Indicates unimplemented code by panicking with a message of "not implemented".
///
/// This allows your code to type-check, which is useful if you are prototyping or
/// implementing a trait that requires multiple methods which you don't plan of using all of.
///
/// The difference between `unimplemented!` and [`todo!`] is that while `todo!`
2019-12-20 07:46:29 +01:00
/// conveys an intent of implementing the functionality later and the message is "not yet
/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
/// Also some IDEs will mark `todo!`s.
2019-06-16 01:24:37 +02:00
///
2017-08-31 04:26:54 +02:00
/// # Panics
///
/// This will always [`panic!`] because `unimplemented!` is just a shorthand for `panic!` with a
/// fixed, specific message.
///
/// Like `panic!`, this macro has a second form for displaying custom values.
2017-08-31 04:26:54 +02:00
///
/// # Examples
///
2019-12-20 07:46:29 +01:00
/// Say we have a trait `Foo`:
///
/// ```
/// trait Foo {
/// fn bar(&self) -> u8;
/// fn baz(&self);
/// fn qux(&self) -> Result<u64, ()>;
/// }
/// ```
///
2019-12-20 07:46:29 +01:00
/// We want to implement `Foo` for 'MyStruct', but for some reason it only makes sense
/// to implement the `bar()` function. `baz()` and `qux()` will still need to be defined
/// in our implementation of `Foo`, but we can use `unimplemented!` in their definitions
/// to allow our code to compile.
///
2019-12-20 07:46:29 +01:00
/// We still want to have our program stop running if the unimplemented methods are
/// reached.
///
/// ```
/// # trait Foo {
/// # fn bar(&self) -> u8;
2015-11-11 16:47:42 +01:00
/// # fn baz(&self);
/// # fn qux(&self) -> Result<u64, ()>;
/// # }
/// struct MyStruct;
///
/// impl Foo for MyStruct {
/// fn bar(&self) -> u8 {
/// 1 + 1
/// }
///
2015-11-11 16:47:42 +01:00
/// fn baz(&self) {
2019-12-20 07:46:29 +01:00
/// // It makes no sense to `baz` a `MyStruct`, so we have no logic here
/// // at all.
/// // This will display "thread 'main' panicked at 'not implemented'".
/// unimplemented!();
/// }
///
/// fn qux(&self) -> Result<u64, ()> {
/// // We have some logic here,
2019-12-20 07:46:29 +01:00
/// // We can add a message to unimplemented! to display our omission.
/// // This will display:
2019-12-20 07:46:29 +01:00
/// // "thread 'main' panicked at 'not implemented: MyStruct isn't quxable'".
/// unimplemented!("MyStruct isn't quxable");
/// }
/// }
///
/// fn main() {
/// let s = MyStruct;
2015-11-11 16:47:42 +01:00
/// s.bar();
/// }
/// ```
#[macro_export]
#[stable(feature = "rust1", since = "1.0.0")]
macro_rules! unimplemented {
() => ($crate::panic!("not implemented"));
($($arg:tt)+) => ($crate::panic!("not implemented: {}", $crate::format_args!($($arg)+)));
}
/// Indicates unfinished code.
///
/// This can be useful if you are prototyping and are just looking to have your
2019-06-16 01:24:37 +02:00
/// code typecheck.
///
2019-12-20 07:46:29 +01:00
/// The difference between [`unimplemented!`] and `todo!` is that while `todo!` conveys
/// an intent of implementing the functionality later and the message is "not yet
/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
/// Also some IDEs will mark `todo!`s.
///
/// # Panics
///
/// This will always [`panic!`].
///
/// # Examples
///
/// Here's an example of some in-progress code. We have a trait `Foo`:
///
/// ```
/// trait Foo {
/// fn bar(&self);
/// fn baz(&self);
/// }
/// ```
///
/// We want to implement `Foo` on one of our types, but we also want to work on
/// just `bar()` first. In order for our code to compile, we need to implement
/// `baz()`, so we can use `todo!`:
///
/// ```
/// # trait Foo {
/// # fn bar(&self);
/// # fn baz(&self);
/// # }
/// struct MyStruct;
///
/// impl Foo for MyStruct {
/// fn bar(&self) {
/// // implementation goes here
/// }
///
/// fn baz(&self) {
/// // let's not worry about implementing baz() for now
/// todo!();
/// }
/// }
///
/// fn main() {
/// let s = MyStruct;
/// s.bar();
///
2019-12-20 07:46:29 +01:00
/// // we aren't even using baz(), so this is fine.
/// }
/// ```
#[macro_export]
#[stable(feature = "todo_macro", since = "1.40.0")]
macro_rules! todo {
() => ($crate::panic!("not yet implemented"));
($($arg:tt)+) => ($crate::panic!("not yet implemented: {}", $crate::format_args!($($arg)+)));
}
/// Definitions of built-in macros.
///
/// Most of the macro properties (stability, visibility, etc.) are taken from the source code here,
/// with exception of expansion functions transforming macro inputs into outputs,
/// those functions are provided by the compiler.
pub(crate) mod builtin {
2017-05-07 05:26:45 +02:00
/// Causes compilation to fail with the given error message when encountered.
2017-05-07 05:26:45 +02:00
///
/// This macro should be used when a crate uses a conditional compilation strategy to provide
/// better error messages for erroneous conditions. It's the compiler-level form of [`panic!`],
/// but emits an error during *compilation* rather than at *runtime*.
///
/// # Examples
///
/// Two such examples are macros and `#[cfg]` environments.
///
/// Emit better compiler error if a macro is passed invalid values. Without the final branch,
/// the compiler would still emit an error, but the error's message would not mention the two
/// valid values.
///
/// ```compile_fail
/// macro_rules! give_me_foo_or_bar {
/// (foo) => {};
/// (bar) => {};
/// ($x:ident) => {
/// compile_error!("This macro only accepts `foo` or `bar`");
/// }
/// }
2017-05-07 05:26:45 +02:00
///
/// give_me_foo_or_bar!(neither);
/// // ^ will fail at compile time with message "This macro only accepts `foo` or `bar`"
/// ```
///
/// Emit compiler error if one of a number of features isn't available.
///
/// ```compile_fail
/// #[cfg(not(any(feature = "foo", feature = "bar")))]
/// compile_error!("Either feature \"foo\" or \"bar\" must be enabled for this crate.");
/// ```
#[stable(feature = "compile_error_macro", since = "1.20.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! compile_error {
2020-10-25 23:15:37 +01:00
($msg:expr $(,)?) => {{ /* compiler built-in */ }};
2018-02-07 16:24:34 +01:00
}
2017-05-07 05:26:45 +02:00
/// Constructs parameters for the other string-formatting macros.
///
/// This macro functions by taking a formatting string literal containing
/// `{}` for each additional argument passed. `format_args!` prepares the
/// additional parameters to ensure the output can be interpreted as a string
/// and canonicalizes the arguments into a single type. Any value that implements
/// the [`Display`] trait can be passed to `format_args!`, as can any
/// [`Debug`] implementation be passed to a `{:?}` within the formatting string.
///
/// This macro produces a value of type [`fmt::Arguments`]. This value can be
/// passed to the macros within [`std::fmt`] for performing useful redirection.
/// All other formatting macros ([`format!`], [`write!`], [`println!`], etc) are
/// proxied through this one. `format_args!`, unlike its derived macros, avoids
/// heap allocations.
///
/// You can use the [`fmt::Arguments`] value that `format_args!` returns
/// in `Debug` and `Display` contexts as seen below. The example also shows
/// that `Debug` and `Display` format to the same thing: the interpolated
/// format string in `format_args!`.
///
/// ```rust
/// let debug = format!("{:?}", format_args!("{} foo {:?}", 1, 2));
/// let display = format!("{}", format_args!("{} foo {:?}", 1, 2));
/// assert_eq!("1 foo 2", display);
/// assert_eq!(display, debug);
/// ```
///
/// For more information, see the documentation in [`std::fmt`].
///
/// [`Display`]: crate::fmt::Display
/// [`Debug`]: crate::fmt::Debug
/// [`fmt::Arguments`]: crate::fmt::Arguments
/// [`std::fmt`]: ../std/fmt/index.html
/// [`format!`]: ../std/macro.format.html
/// [`println!`]: ../std/macro.println.html
///
/// # Examples
///
/// ```
/// use std::fmt;
///
/// let s = fmt::format(format_args!("hello {}", "world"));
/// assert_eq!(s, format!("hello {}", "world"));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[allow_internal_unstable(fmt_internals)]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! format_args {
($fmt:expr) => {{ /* compiler built-in */ }};
($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
}
/// Same as `format_args`, but adds a newline in the end.
#[unstable(
feature = "format_args_nl",
issue = "none",
reason = "`format_args_nl` is only for internal \
language use and is subject to change"
)]
#[allow_internal_unstable(fmt_internals)]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! format_args_nl {
($fmt:expr) => {{ /* compiler built-in */ }};
($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
2017-11-27 01:59:21 +01:00
}
/// Inspects an environment variable at compile time.
///
/// This macro will expand to the value of the named environment variable at
/// compile time, yielding an expression of type `&'static str`.
///
/// If the environment variable is not defined, then a compilation error
/// will be emitted. To not emit a compile error, use the [`option_env!`]
/// macro instead.
///
/// # Examples
///
/// ```
/// let path: &'static str = env!("PATH");
/// println!("the $PATH variable at the time of compiling was: {}", path);
/// ```
///
/// You can customize the error message by passing a string as the second
/// parameter:
///
/// ```compile_fail
/// let doc: &'static str = env!("documentation", "what's that?!");
/// ```
///
/// If the `documentation` environment variable is not defined, you'll get
/// the following error:
///
/// ```text
/// error: what's that?!
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! env {
2020-10-25 23:15:37 +01:00
($name:expr $(,)?) => {{ /* compiler built-in */ }};
($name:expr, $error_msg:expr $(,)?) => {{ /* compiler built-in */ }};
2017-11-27 01:59:21 +01:00
}
/// Optionally inspects an environment variable at compile time.
///
/// If the named environment variable is present at compile time, this will
/// expand into an expression of type `Option<&'static str>` whose value is
/// `Some` of the value of the environment variable. If the environment
/// variable is not present, then this will expand to `None`. See
/// [`Option<T>`][Option] for more information on this type.
///
/// A compile time error is never emitted when using this macro regardless
/// of whether the environment variable is present or not.
///
/// # Examples
///
/// ```
/// let key: Option<&'static str> = option_env!("SECRET_KEY");
/// println!("the secret key might be: {:?}", key);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! option_env {
2020-10-25 23:15:37 +01:00
($name:expr $(,)?) => {{ /* compiler built-in */ }};
2018-02-07 16:24:34 +01:00
}
/// Concatenates identifiers into one identifier.
///
/// This macro takes any number of comma-separated identifiers, and
/// concatenates them all into one, yielding an expression which is a new
/// identifier. Note that hygiene makes it such that this macro cannot
/// capture local variables. Also, as a general rule, macros are only
/// allowed in item, statement or expression position. That means while
/// you may use this macro for referring to existing variables, functions or
/// modules etc, you cannot define a new one with it.
///
/// # Examples
///
/// ```
/// #![feature(concat_idents)]
///
/// # fn main() {
/// fn foobar() -> u32 { 23 }
///
/// let f = concat_idents!(foo, bar);
/// println!("{}", f());
///
/// // fn concat_idents!(new, fun, name) { } // not usable in this way!
/// # }
/// ```
#[unstable(
feature = "concat_idents",
issue = "29599",
reason = "`concat_idents` is not stable enough for use and is subject to change"
)]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! concat_idents {
2020-10-25 23:15:37 +01:00
($($e:ident),+ $(,)?) => {{ /* compiler built-in */ }};
}
/// Concatenates literals into a static string slice.
///
/// This macro takes any number of comma-separated literals, yielding an
/// expression of type `&'static str` which represents all of the literals
/// concatenated left-to-right.
///
/// Integer and floating point literals are stringified in order to be
/// concatenated.
///
/// # Examples
///
/// ```
/// let s = concat!("test", 10, 'b', true);
/// assert_eq!(s, "test10btrue");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! concat {
2020-10-25 23:15:37 +01:00
($($e:expr),* $(,)?) => {{ /* compiler built-in */ }};
2017-11-27 01:59:21 +01:00
}
/// Expands to the line number on which it was invoked.
///
/// With [`column!`] and [`file!`], these macros provide debugging information for
/// developers about the location within the source.
///
/// The expanded expression has type `u32` and is 1-based, so the first line
/// in each file evaluates to 1, the second to 2, etc. This is consistent
/// with error messages by common compilers or popular editors.
/// The returned line is *not necessarily* the line of the `line!` invocation itself,
/// but rather the first macro invocation leading up to the invocation
/// of the `line!` macro.
///
/// # Examples
///
/// ```
/// let current_line = line!();
/// println!("defined on line: {}", current_line);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! line {
() => {
/* compiler built-in */
};
}
/// Expands to the column number at which it was invoked.
///
/// With [`line!`] and [`file!`], these macros provide debugging information for
/// developers about the location within the source.
///
/// The expanded expression has type `u32` and is 1-based, so the first column
/// in each line evaluates to 1, the second to 2, etc. This is consistent
/// with error messages by common compilers or popular editors.
/// The returned column is *not necessarily* the line of the `column!` invocation itself,
/// but rather the first macro invocation leading up to the invocation
/// of the `column!` macro.
///
/// # Examples
///
/// ```
/// let current_col = column!();
/// println!("defined on column: {}", current_col);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! column {
() => {
/* compiler built-in */
};
}
/// Expands to the file name in which it was invoked.
///
/// With [`line!`] and [`column!`], these macros provide debugging information for
/// developers about the location within the source.
///
/// The expanded expression has type `&'static str`, and the returned file
/// is not the invocation of the `file!` macro itself, but rather the
/// first macro invocation leading up to the invocation of the `file!`
/// macro.
///
/// # Examples
///
/// ```
/// let this_file = file!();
/// println!("defined in file: {}", this_file);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! file {
() => {
/* compiler built-in */
};
}
/// Stringifies its arguments.
///
/// This macro will yield an expression of type `&'static str` which is the
/// stringification of all the tokens passed to the macro. No restrictions
/// are placed on the syntax of the macro invocation itself.
///
/// Note that the expanded results of the input tokens may change in the
/// future. You should be careful if you rely on the output.
///
/// # Examples
///
/// ```
/// let one_plus_one = stringify!(1 + 1);
/// assert_eq!(one_plus_one, "1 + 1");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! stringify {
($($t:tt)*) => {
/* compiler built-in */
};
}
2020-07-08 02:48:15 +02:00
/// Includes a UTF-8 encoded file as a string.
///
/// The file is located relative to the current file (similarly to how
/// modules are found). The provided path is interpreted in a platform-specific
/// way at compile time. So, for instance, an invocation with a Windows path
/// containing backslashes `\` would not compile correctly on Unix.
///
/// This macro will yield an expression of type `&'static str` which is the
/// contents of the file.
///
/// # Examples
///
/// Assume there are two files in the same directory with the following
/// contents:
///
/// File 'spanish.in':
///
/// ```text
/// adiós
/// ```
///
/// File 'main.rs':
///
/// ```ignore (cannot-doctest-external-file-dependency)
/// fn main() {
/// let my_str = include_str!("spanish.in");
/// assert_eq!(my_str, "adiós\n");
/// print!("{}", my_str);
/// }
/// ```
///
/// Compiling 'main.rs' and running the resulting binary will print "adiós".
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! include_str {
2020-10-25 23:15:37 +01:00
($file:expr $(,)?) => {{ /* compiler built-in */ }};
2018-02-07 16:24:34 +01:00
}
/// Includes a file as a reference to a byte array.
///
/// The file is located relative to the current file (similarly to how
/// modules are found). The provided path is interpreted in a platform-specific
/// way at compile time. So, for instance, an invocation with a Windows path
/// containing backslashes `\` would not compile correctly on Unix.
///
/// This macro will yield an expression of type `&'static [u8; N]` which is
/// the contents of the file.
///
/// # Examples
///
/// Assume there are two files in the same directory with the following
/// contents:
///
/// File 'spanish.in':
///
/// ```text
/// adiós
/// ```
///
/// File 'main.rs':
///
/// ```ignore (cannot-doctest-external-file-dependency)
/// fn main() {
/// let bytes = include_bytes!("spanish.in");
/// assert_eq!(bytes, b"adi\xc3\xb3s\n");
/// print!("{}", String::from_utf8_lossy(bytes));
/// }
/// ```
///
/// Compiling 'main.rs' and running the resulting binary will print "adiós".
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! include_bytes {
2020-10-25 23:15:37 +01:00
($file:expr $(,)?) => {{ /* compiler built-in */ }};
2018-02-07 16:24:34 +01:00
}
/// Expands to a string that represents the current module path.
///
/// The current module path can be thought of as the hierarchy of modules
/// leading back up to the crate root. The first component of the path
/// returned is the name of the crate currently being compiled.
///
/// # Examples
///
/// ```
/// mod test {
/// pub fn foo() {
/// assert!(module_path!().ends_with("test"));
/// }
/// }
///
/// test::foo();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! module_path {
() => {
/* compiler built-in */
};
}
/// Evaluates boolean combinations of configuration flags at compile-time.
///
/// In addition to the `#[cfg]` attribute, this macro is provided to allow
/// boolean expression evaluation of configuration flags. This frequently
/// leads to less duplicated code.
///
/// The syntax given to this macro is the same syntax as the [`cfg`]
/// attribute.
///
/// `cfg!`, unlike `#[cfg]`, does not remove any code and only evaluates to true or false. For
/// example, all blocks in an if/else expression need to be valid when `cfg!` is used for
/// the condition, regardless of what `cfg!` is evaluating.
///
/// [`cfg`]: ../reference/conditional-compilation.html#the-cfg-attribute
///
/// # Examples
///
/// ```
/// let my_directory = if cfg!(windows) {
/// "windows-specific-directory"
/// } else {
/// "unix-directory"
/// };
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! cfg {
($($cfg:tt)*) => {
/* compiler built-in */
};
}
/// Parses a file as an expression or an item according to the context.
///
/// The file is located relative to the current file (similarly to how
/// modules are found). The provided path is interpreted in a platform-specific
/// way at compile time. So, for instance, an invocation with a Windows path
/// containing backslashes `\` would not compile correctly on Unix.
///
/// Using this macro is often a bad idea, because if the file is
/// parsed as an expression, it is going to be placed in the
/// surrounding code unhygienically. This could result in variables
/// or functions being different from what the file expected if
/// there are variables or functions that have the same name in
/// the current file.
///
/// # Examples
///
/// Assume there are two files in the same directory with the following
/// contents:
///
/// File 'monkeys.in':
///
/// ```ignore (only-for-syntax-highlight)
/// ['🙈', '🙊', '🙉']
/// .iter()
/// .cycle()
/// .take(6)
/// .collect::<String>()
/// ```
///
/// File 'main.rs':
///
/// ```ignore (cannot-doctest-external-file-dependency)
/// fn main() {
/// let my_string = include!("monkeys.in");
/// assert_eq!("🙈🙊🙉🙈🙊🙉", my_string);
/// println!("{}", my_string);
/// }
/// ```
///
/// Compiling 'main.rs' and running the resulting binary will print
/// "🙈🙊🙉🙈🙊🙉".
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! include {
2020-10-25 23:15:37 +01:00
($file:expr $(,)?) => {{ /* compiler built-in */ }};
2018-02-07 16:24:34 +01:00
}
/// Asserts that a boolean expression is `true` at runtime.
///
/// This will invoke the [`panic!`] macro if the provided expression cannot be
/// evaluated to `true` at runtime.
///
/// # Uses
///
/// Assertions are always checked in both debug and release builds, and cannot
/// be disabled. See [`debug_assert!`] for assertions that are not enabled in
/// release builds by default.
///
2020-05-19 12:19:09 +02:00
/// Unsafe code may rely on `assert!` to enforce run-time invariants that, if
/// violated could lead to unsafety.
///
/// Other use-cases of `assert!` include testing and enforcing run-time
/// invariants in safe code (whose violation cannot result in unsafety).
///
/// # Custom Messages
///
/// This macro has a second form, where a custom panic message can
/// be provided with or without arguments for formatting. See [`std::fmt`]
/// for syntax for this form. Expressions used as format arguments will only
/// be evaluated if the assertion fails.
///
/// [`std::fmt`]: ../std/fmt/index.html
///
/// # Examples
///
/// ```
/// // the panic message for these assertions is the stringified value of the
/// // expression given.
/// assert!(true);
///
/// fn some_computation() -> bool { true } // a very simple function
///
/// assert!(some_computation());
///
/// // assert with a custom message
/// let x = true;
/// assert!(x, "x wasn't true!");
///
/// let a = 3; let b = 27;
/// assert!(a + b == 30, "a = {}, b = {}", a, b);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
2020-12-30 14:04:59 +01:00
#[rustc_diagnostic_item = "assert_macro"]
#[allow_internal_unstable(core_panic, edition_panic)]
macro_rules! assert {
2020-10-25 23:15:37 +01:00
($cond:expr $(,)?) => {{ /* compiler built-in */ }};
($cond:expr, $($arg:tt)+) => {{ /* compiler built-in */ }};
}
/// Inline assembly.
///
/// Read the [unstable book] for the usage.
///
/// [unstable book]: ../unstable-book/library-features/asm.html
#[unstable(
feature = "asm",
2020-05-08 16:36:34 +02:00
issue = "72016",
reason = "inline assembly is not stable enough for use and is subject to change"
)]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! asm {
2020-05-08 16:36:34 +02:00
("assembly template",
$(operands,)*
$(options($(option),*))?
) => {
/* compiler built-in */
};
}
2020-05-08 16:36:34 +02:00
/// LLVM-style inline assembly.
///
/// Read the [unstable book] for the usage.
///
/// [unstable book]: ../unstable-book/library-features/llvm-asm.html
#[unstable(
feature = "llvm_asm",
issue = "70173",
reason = "prefer using the new asm! syntax instead"
)]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! llvm_asm {
("assembly template"
: $("output"(operand),)*
: $("input"(operand),)*
: $("clobbers",)*
: $("options",)*) => {
/* compiler built-in */
};
}
/// Module-level inline assembly.
#[unstable(
feature = "global_asm",
issue = "35119",
reason = "`global_asm!` is not stable enough for use and is subject to change"
)]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! global_asm {
("assembly") => {
/* compiler built-in */
};
}
/// Prints passed tokens into the standard output.
#[unstable(
feature = "log_syntax",
issue = "29598",
reason = "`log_syntax!` is not stable enough for use and is subject to change"
)]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! log_syntax {
($($arg:tt)*) => {
/* compiler built-in */
};
}
/// Enables or disables tracing functionality used for debugging other macros.
#[unstable(
feature = "trace_macros",
issue = "29598",
reason = "`trace_macros` is not stable enough for use and is subject to change"
)]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! trace_macros {
(true) => {{ /* compiler built-in */ }};
(false) => {{ /* compiler built-in */ }};
}
/// Attribute macro used to apply derive macros.
#[cfg(not(bootstrap))]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
pub macro derive($item:item) {
/* compiler built-in */
}
/// Attribute macro applied to a function to turn it into a unit test.
#[stable(feature = "rust1", since = "1.0.0")]
#[allow_internal_unstable(test, rustc_attrs)]
#[rustc_builtin_macro]
pub macro test($item:item) {
/* compiler built-in */
}
/// Attribute macro applied to a function to turn it into a benchmark test.
#[unstable(
feature = "test",
issue = "50297",
soft,
reason = "`bench` is a part of custom test frameworks which are unstable"
)]
#[allow_internal_unstable(test, rustc_attrs)]
#[rustc_builtin_macro]
pub macro bench($item:item) {
/* compiler built-in */
}
/// An implementation detail of the `#[test]` and `#[bench]` macros.
#[unstable(
feature = "custom_test_frameworks",
issue = "50297",
reason = "custom test frameworks are an unstable feature"
)]
#[allow_internal_unstable(test, rustc_attrs)]
#[rustc_builtin_macro]
pub macro test_case($item:item) {
/* compiler built-in */
}
/// Attribute macro applied to a static to register it as a global allocator.
///
/// See also [`std::alloc::GlobalAlloc`](../std/alloc/trait.GlobalAlloc.html).
#[stable(feature = "global_allocator", since = "1.28.0")]
#[allow_internal_unstable(rustc_attrs)]
#[rustc_builtin_macro]
pub macro global_allocator($item:item) {
/* compiler built-in */
}
/// Keeps the item it's applied to if the passed path is accessible, and removes it otherwise.
#[unstable(
feature = "cfg_accessible",
issue = "64797",
reason = "`cfg_accessible` is not fully implemented"
)]
#[rustc_builtin_macro]
pub macro cfg_accessible($item:item) {
/* compiler built-in */
}
/// Expands all `#[cfg]` and `#[cfg_attr]` attributes in the code fragment it's applied to.
#[cfg(not(bootstrap))]
#[unstable(
feature = "cfg_eval",
issue = "82679",
reason = "`cfg_eval` is a recently implemented feature"
)]
#[rustc_builtin_macro]
pub macro cfg_eval($($tt:tt)*) {
/* compiler built-in */
}
/// Unstable implementation detail of the `rustc` compiler, do not use.
#[rustc_builtin_macro]
#[stable(feature = "rust1", since = "1.0.0")]
#[allow_internal_unstable(core_intrinsics, libstd_sys_internals)]
#[rustc_deprecated(
since = "1.52.0",
reason = "rustc-serialize is deprecated and no longer supported"
)]
pub macro RustcDecodable($item:item) {
/* compiler built-in */
}
/// Unstable implementation detail of the `rustc` compiler, do not use.
#[rustc_builtin_macro]
#[stable(feature = "rust1", since = "1.0.0")]
#[allow_internal_unstable(core_intrinsics)]
#[rustc_deprecated(
since = "1.52.0",
reason = "rustc-serialize is deprecated and no longer supported"
)]
pub macro RustcEncodable($item:item) {
/* compiler built-in */
}
2018-08-13 04:17:30 +02:00
}