rust/mk/crates.mk

147 lines
5.5 KiB
Makefile
Raw Normal View History

# Copyright 2014 The Rust Project Developers. See the COPYRIGHT
# file at the top-level directory of this distribution and at
# http://rust-lang.org/COPYRIGHT.
#
# Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
# http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
# <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
# option. This file may not be copied, modified, or distributed
# except according to those terms.
################################################################################
# Rust's standard distribution of crates and tools
#
# The crates outlined below are the standard distribution of libraries provided
# in a rust installation. These rules are meant to abstract over the
# dependencies (both native and rust) of crates and basically generate all the
# necessary makefile rules necessary to build everything.
#
# Here's an explanation of the variables below
#
# TARGET_CRATES
# This list of crates will be built for all targets, including
# cross-compiled targets
#
# HOST_CRATES
# This list of crates will be compiled for only host targets. Note that
# this set is explicitly *not* a subset of TARGET_CRATES, but rather it is
# a disjoint set. Nothing in the TARGET_CRATES set can depend on crates in
# the HOST_CRATES set, but the HOST_CRATES set can depend on target
# crates.
#
# TOOLS
# A list of all tools which will be built as part of the compilation
# process. It is currently assumed that most tools are built through
# src/driver/driver.rs with a particular configuration (there's a
# corresponding library providing the implementation)
#
# DEPS_<crate>
# These lists are the dependencies of the <crate> that is to be built.
# Rust dependencies are listed bare (i.e. std, green) and native
# dependencies have a "native:" prefix (i.e. native:hoedown). All deps
# will be built before the crate itself is built.
#
# TOOL_DEPS_<tool>/TOOL_SOURCE_<tool>
# Similar to the DEPS variable, this is the library crate dependencies
# list for tool as well as the source file for the specified tool
#
# You shouldn't need to modify much other than these variables. Crates are
# automatically generated for all stage/host/target combinations.
################################################################################
2014-02-26 18:58:41 +01:00
TARGET_CRATES := libc std green rustuv native flate arena glob term semver \
uuid serialize sync getopts collections num test time rand \
url log regex graphviz core rbml rlibc alloc debug rustrt \
unicode
2014-07-05 04:41:54 +02:00
HOST_CRATES := syntax rustc rustdoc fourcc hexfloat regex_macros fmt_macros \
rustc_llvm rustc_back
CRATES := $(TARGET_CRATES) $(HOST_CRATES)
TOOLS := compiletest rustdoc rustc
2014-05-01 05:05:14 +02:00
DEPS_core :=
DEPS_rlibc :=
Add libunicode; move unicode functions from core - created new crate, libunicode, below libstd - split Char trait into Char (libcore) and UnicodeChar (libunicode) - Unicode-aware functions now live in libunicode - is_alphabetic, is_XID_start, is_XID_continue, is_lowercase, is_uppercase, is_whitespace, is_alphanumeric, is_control, is_digit, to_uppercase, to_lowercase - added width method in UnicodeChar trait - determines printed width of character in columns, or None if it is a non-NULL control character - takes a boolean argument indicating whether the present context is CJK or not (characters with 'A'mbiguous widths are double-wide in CJK contexts, single-wide otherwise) - split StrSlice into StrSlice (libcore) and UnicodeStrSlice (libunicode) - functionality formerly in StrSlice that relied upon Unicode functionality from Char is now in UnicodeStrSlice - words, is_whitespace, is_alphanumeric, trim, trim_left, trim_right - also moved Words type alias into libunicode because words method is in UnicodeStrSlice - unified Unicode tables from libcollections, libcore, and libregex into libunicode - updated unicode.py in src/etc to generate aforementioned tables - generated new tables based on latest Unicode data - added UnicodeChar and UnicodeStrSlice traits to prelude - libunicode is now the collection point for the std::char module, combining the libunicode functionality with the Char functionality from libcore - thus, moved doc comment for char from core::char to unicode::char - libcollections remains the collection point for std::str The Unicode-aware functions that previously lived in the Char and StrSlice traits are no longer available to programs that only use libcore. To regain use of these methods, include the libunicode crate and use the UnicodeChar and/or UnicodeStrSlice traits: extern crate unicode; use unicode::UnicodeChar; use unicode::UnicodeStrSlice; use unicode::Words; // if you want to use the words() method NOTE: this does *not* impact programs that use libstd, since UnicodeChar and UnicodeStrSlice have been added to the prelude. closes #15224 [breaking-change]
2014-06-30 23:04:10 +02:00
DEPS_unicode := core
DEPS_alloc := core libc native:jemalloc
DEPS_debug := std
std: Extract librustrt out of libstd As part of the libstd facade efforts, this commit extracts the runtime interface out of the standard library into a standalone crate, librustrt. This crate will provide the following services: * Definition of the rtio interface * Definition of the Runtime interface * Implementation of the Task structure * Implementation of task-local-data * Implementation of task failure via unwinding via libunwind * Implementation of runtime initialization and shutdown * Implementation of thread-local-storage for the local rust Task Notably, this crate avoids the following services: * Thread creation and destruction. The crate does not require the knowledge of an OS threading system, and as a result it seemed best to leave out the `rt::thread` module from librustrt. The librustrt module does depend on mutexes, however. * Implementation of backtraces. There is no inherent requirement for the runtime to be able to generate backtraces. As will be discussed later, this functionality continues to live in libstd rather than librustrt. As usual, a number of architectural changes were required to make this crate possible. Users of "stable" functionality will not be impacted by this change, but users of the `std::rt` module will likely note the changes. A list of architectural changes made is: * The stdout/stderr handles no longer live directly inside of the `Task` structure. This is a consequence of librustrt not knowing about `std::io`. These two handles are now stored inside of task-local-data. The handles were originally stored inside of the `Task` for perf reasons, and TLD is not currently as fast as it could be. For comparison, 100k prints goes from 59ms to 68ms (a 15% slowdown). This appeared to me to be an acceptable perf loss for the successful extraction of a librustrt crate. * The `rtio` module was forced to duplicate more functionality of `std::io`. As the module no longer depends on `std::io`, `rtio` now defines structures such as socket addresses, addrinfo fiddly bits, etc. The primary change made was that `rtio` now defines its own `IoError` type. This type is distinct from `std::io::IoError` in that it does not have an enum for what error occurred, but rather a platform-specific error code. The native and green libraries will be updated in later commits for this change, and the bulk of this effort was put behind updating the two libraries for this change (with `rtio`). * Printing a message on task failure (along with the backtrace) continues to live in libstd, not in librustrt. This is a consequence of the above decision to move the stdout/stderr handles to TLD rather than inside the `Task` itself. The unwinding API now supports registration of global callback functions which will be invoked when a task fails, allowing for libstd to register a function to print a message and a backtrace. The API for registering a callback is experimental and unsafe, as the ramifications of running code on unwinding is pretty hairy. * The `std::unstable::mutex` module has moved to `std::rt::mutex`. * The `std::unstable::sync` module has been moved to `std::rt::exclusive` and the type has been rewritten to not internally have an Arc and to have an RAII guard structure when locking. Old code should stop using `Exclusive` in favor of the primitives in `libsync`, but if necessary, old code should port to `Arc<Exclusive<T>>`. * The local heap has been stripped down to have fewer debugging options. None of these were tested, and none of these have been used in a very long time. [breaking-change]
2014-06-04 04:11:49 +02:00
DEPS_rustrt := alloc core libc collections native:rustrt_native
Add libunicode; move unicode functions from core - created new crate, libunicode, below libstd - split Char trait into Char (libcore) and UnicodeChar (libunicode) - Unicode-aware functions now live in libunicode - is_alphabetic, is_XID_start, is_XID_continue, is_lowercase, is_uppercase, is_whitespace, is_alphanumeric, is_control, is_digit, to_uppercase, to_lowercase - added width method in UnicodeChar trait - determines printed width of character in columns, or None if it is a non-NULL control character - takes a boolean argument indicating whether the present context is CJK or not (characters with 'A'mbiguous widths are double-wide in CJK contexts, single-wide otherwise) - split StrSlice into StrSlice (libcore) and UnicodeStrSlice (libunicode) - functionality formerly in StrSlice that relied upon Unicode functionality from Char is now in UnicodeStrSlice - words, is_whitespace, is_alphanumeric, trim, trim_left, trim_right - also moved Words type alias into libunicode because words method is in UnicodeStrSlice - unified Unicode tables from libcollections, libcore, and libregex into libunicode - updated unicode.py in src/etc to generate aforementioned tables - generated new tables based on latest Unicode data - added UnicodeChar and UnicodeStrSlice traits to prelude - libunicode is now the collection point for the std::char module, combining the libunicode functionality with the Char functionality from libcore - thus, moved doc comment for char from core::char to unicode::char - libcollections remains the collection point for std::str The Unicode-aware functions that previously lived in the Char and StrSlice traits are no longer available to programs that only use libcore. To regain use of these methods, include the libunicode crate and use the UnicodeChar and/or UnicodeStrSlice traits: extern crate unicode; use unicode::UnicodeChar; use unicode::UnicodeStrSlice; use unicode::Words; // if you want to use the words() method NOTE: this does *not* impact programs that use libstd, since UnicodeChar and UnicodeStrSlice have been added to the prelude. closes #15224 [breaking-change]
2014-06-30 23:04:10 +02:00
DEPS_std := core libc rand alloc collections rustrt sync unicode \
std: Extract librustrt out of libstd As part of the libstd facade efforts, this commit extracts the runtime interface out of the standard library into a standalone crate, librustrt. This crate will provide the following services: * Definition of the rtio interface * Definition of the Runtime interface * Implementation of the Task structure * Implementation of task-local-data * Implementation of task failure via unwinding via libunwind * Implementation of runtime initialization and shutdown * Implementation of thread-local-storage for the local rust Task Notably, this crate avoids the following services: * Thread creation and destruction. The crate does not require the knowledge of an OS threading system, and as a result it seemed best to leave out the `rt::thread` module from librustrt. The librustrt module does depend on mutexes, however. * Implementation of backtraces. There is no inherent requirement for the runtime to be able to generate backtraces. As will be discussed later, this functionality continues to live in libstd rather than librustrt. As usual, a number of architectural changes were required to make this crate possible. Users of "stable" functionality will not be impacted by this change, but users of the `std::rt` module will likely note the changes. A list of architectural changes made is: * The stdout/stderr handles no longer live directly inside of the `Task` structure. This is a consequence of librustrt not knowing about `std::io`. These two handles are now stored inside of task-local-data. The handles were originally stored inside of the `Task` for perf reasons, and TLD is not currently as fast as it could be. For comparison, 100k prints goes from 59ms to 68ms (a 15% slowdown). This appeared to me to be an acceptable perf loss for the successful extraction of a librustrt crate. * The `rtio` module was forced to duplicate more functionality of `std::io`. As the module no longer depends on `std::io`, `rtio` now defines structures such as socket addresses, addrinfo fiddly bits, etc. The primary change made was that `rtio` now defines its own `IoError` type. This type is distinct from `std::io::IoError` in that it does not have an enum for what error occurred, but rather a platform-specific error code. The native and green libraries will be updated in later commits for this change, and the bulk of this effort was put behind updating the two libraries for this change (with `rtio`). * Printing a message on task failure (along with the backtrace) continues to live in libstd, not in librustrt. This is a consequence of the above decision to move the stdout/stderr handles to TLD rather than inside the `Task` itself. The unwinding API now supports registration of global callback functions which will be invoked when a task fails, allowing for libstd to register a function to print a message and a backtrace. The API for registering a callback is experimental and unsafe, as the ramifications of running code on unwinding is pretty hairy. * The `std::unstable::mutex` module has moved to `std::rt::mutex`. * The `std::unstable::sync` module has been moved to `std::rt::exclusive` and the type has been rewritten to not internally have an Arc and to have an RAII guard structure when locking. Old code should stop using `Exclusive` in favor of the primitives in `libsync`, but if necessary, old code should port to `Arc<Exclusive<T>>`. * The local heap has been stripped down to have fewer debugging options. None of these were tested, and none of these have been used in a very long time. [breaking-change]
2014-06-04 04:11:49 +02:00
native:rust_builtin native:backtrace
DEPS_graphviz := std
std: Recreate a `rand` module This commit shuffles around some of the `rand` code, along with some reorganization. The new state of the world is as follows: * The librand crate now only depends on libcore. This interface is experimental. * The standard library has a new module, `std::rand`. This interface will eventually become stable. Unfortunately, this entailed more of a breaking change than just shuffling some names around. The following breaking changes were made to the rand library: * Rng::gen_vec() was removed. This has been replaced with Rng::gen_iter() which will return an infinite stream of random values. Previous behavior can be regained with `rng.gen_iter().take(n).collect()` * Rng::gen_ascii_str() was removed. This has been replaced with Rng::gen_ascii_chars() which will return an infinite stream of random ascii characters. Similarly to gen_iter(), previous behavior can be emulated with `rng.gen_ascii_chars().take(n).collect()` * {IsaacRng, Isaac64Rng, XorShiftRng}::new() have all been removed. These all relied on being able to use an OSRng for seeding, but this is no longer available in librand (where these types are defined). To retain the same functionality, these types now implement the `Rand` trait so they can be generated with a random seed from another random number generator. This allows the stdlib to use an OSRng to create seeded instances of these RNGs. * Rand implementations for `Box<T>` and `@T` were removed. These seemed to be pretty rare in the codebase, and it allows for librand to not depend on liballoc. Additionally, other pointer types like Rc<T> and Arc<T> were not supported. If this is undesirable, librand can depend on liballoc and regain these implementations. * The WeightedChoice structure is no longer built with a `Vec<Weighted<T>>`, but rather a `&mut [Weighted<T>]`. This means that the WeightedChoice structure now has a lifetime associated with it. * The `sample` method on `Rng` has been moved to a top-level function in the `rand` module due to its dependence on `Vec`. cc #13851 [breaking-change]
2014-05-25 10:39:37 +02:00
DEPS_green := std native:context_switch
DEPS_rustuv := std native:uv native:uv_support
DEPS_native := std
std: Recreate a `collections` module As with the previous commit with `librand`, this commit shuffles around some `collections` code. The new state of the world is similar to that of librand: * The libcollections crate now only depends on libcore and liballoc. * The standard library has a new module, `std::collections`. All functionality of libcollections is reexported through this module. I would like to stress that this change is purely cosmetic. There are very few alterations to these primitives. There are a number of notable points about the new organization: * std::{str, slice, string, vec} all moved to libcollections. There is no reason that these primitives shouldn't be necessarily usable in a freestanding context that has allocation. These are all reexported in their usual places in the standard library. * The `hashmap`, and transitively the `lru_cache`, modules no longer reside in `libcollections`, but rather in libstd. The reason for this is because the `HashMap::new` contructor requires access to the OSRng for initially seeding the hash map. Beyond this requirement, there is no reason that the hashmap could not move to libcollections. I do, however, have a plan to move the hash map to the collections module. The `HashMap::new` function could be altered to require that the `H` hasher parameter ascribe to the `Default` trait, allowing the entire `hashmap` module to live in libcollections. The key idea would be that the default hasher would be different in libstd. Something along the lines of: // src/libstd/collections/mod.rs pub type HashMap<K, V, H = RandomizedSipHasher> = core_collections::HashMap<K, V, H>; This is not possible today because you cannot invoke static methods through type aliases. If we modified the compiler, however, to allow invocation of static methods through type aliases, then this type definition would essentially be switching the default hasher from `SipHasher` in libcollections to a libstd-defined `RandomizedSipHasher` type. This type's `Default` implementation would randomly seed the `SipHasher` instance, and otherwise perform the same as `SipHasher`. This future state doesn't seem incredibly far off, but until that time comes, the hashmap module will live in libstd to not compromise on functionality. * In preparation for the hashmap moving to libcollections, the `hash` module has moved from libstd to libcollections. A previously snapshotted commit enables a distinct `Writer` trait to live in the `hash` module which `Hash` implementations are now parameterized over. Due to using a custom trait, the `SipHasher` implementation has lost its specialized methods for writing integers. These can be re-added backwards-compatibly in the future via default methods if necessary, but the FNV hashing should satisfy much of the need for speedier hashing. A list of breaking changes: * HashMap::{get, get_mut} no longer fails with the key formatted into the error message with `{:?}`, instead, a generic message is printed. With backtraces, it should still be not-too-hard to track down errors. * The HashMap, HashSet, and LruCache types are now available through std::collections instead of the collections crate. * Manual implementations of hash should be parameterized over `hash::Writer` instead of just `Writer`. [breaking-change]
2014-05-30 03:50:12 +02:00
DEPS_syntax := std term serialize log fmt_macros debug
DEPS_rustc := syntax flate arena serialize getopts rbml \
2014-07-05 04:41:54 +02:00
time log graphviz debug rustc_llvm rustc_back
2014-07-05 22:24:57 +02:00
DEPS_rustc_llvm := native:rustllvm libc std
2014-07-05 04:41:54 +02:00
DEPS_rustc_back := std syntax rustc_llvm flate log libc
DEPS_rustdoc := rustc native:hoedown serialize getopts \
test time debug
DEPS_flate := std native:miniz
std: Recreate a `collections` module As with the previous commit with `librand`, this commit shuffles around some `collections` code. The new state of the world is similar to that of librand: * The libcollections crate now only depends on libcore and liballoc. * The standard library has a new module, `std::collections`. All functionality of libcollections is reexported through this module. I would like to stress that this change is purely cosmetic. There are very few alterations to these primitives. There are a number of notable points about the new organization: * std::{str, slice, string, vec} all moved to libcollections. There is no reason that these primitives shouldn't be necessarily usable in a freestanding context that has allocation. These are all reexported in their usual places in the standard library. * The `hashmap`, and transitively the `lru_cache`, modules no longer reside in `libcollections`, but rather in libstd. The reason for this is because the `HashMap::new` contructor requires access to the OSRng for initially seeding the hash map. Beyond this requirement, there is no reason that the hashmap could not move to libcollections. I do, however, have a plan to move the hash map to the collections module. The `HashMap::new` function could be altered to require that the `H` hasher parameter ascribe to the `Default` trait, allowing the entire `hashmap` module to live in libcollections. The key idea would be that the default hasher would be different in libstd. Something along the lines of: // src/libstd/collections/mod.rs pub type HashMap<K, V, H = RandomizedSipHasher> = core_collections::HashMap<K, V, H>; This is not possible today because you cannot invoke static methods through type aliases. If we modified the compiler, however, to allow invocation of static methods through type aliases, then this type definition would essentially be switching the default hasher from `SipHasher` in libcollections to a libstd-defined `RandomizedSipHasher` type. This type's `Default` implementation would randomly seed the `SipHasher` instance, and otherwise perform the same as `SipHasher`. This future state doesn't seem incredibly far off, but until that time comes, the hashmap module will live in libstd to not compromise on functionality. * In preparation for the hashmap moving to libcollections, the `hash` module has moved from libstd to libcollections. A previously snapshotted commit enables a distinct `Writer` trait to live in the `hash` module which `Hash` implementations are now parameterized over. Due to using a custom trait, the `SipHasher` implementation has lost its specialized methods for writing integers. These can be re-added backwards-compatibly in the future via default methods if necessary, but the FNV hashing should satisfy much of the need for speedier hashing. A list of breaking changes: * HashMap::{get, get_mut} no longer fails with the key formatted into the error message with `{:?}`, instead, a generic message is printed. With backtraces, it should still be not-too-hard to track down errors. * The HashMap, HashSet, and LruCache types are now available through std::collections instead of the collections crate. * Manual implementations of hash should be parameterized over `hash::Writer` instead of just `Writer`. [breaking-change]
2014-05-30 03:50:12 +02:00
DEPS_arena := std
DEPS_graphviz := std
DEPS_glob := std
std: Recreate a `collections` module As with the previous commit with `librand`, this commit shuffles around some `collections` code. The new state of the world is similar to that of librand: * The libcollections crate now only depends on libcore and liballoc. * The standard library has a new module, `std::collections`. All functionality of libcollections is reexported through this module. I would like to stress that this change is purely cosmetic. There are very few alterations to these primitives. There are a number of notable points about the new organization: * std::{str, slice, string, vec} all moved to libcollections. There is no reason that these primitives shouldn't be necessarily usable in a freestanding context that has allocation. These are all reexported in their usual places in the standard library. * The `hashmap`, and transitively the `lru_cache`, modules no longer reside in `libcollections`, but rather in libstd. The reason for this is because the `HashMap::new` contructor requires access to the OSRng for initially seeding the hash map. Beyond this requirement, there is no reason that the hashmap could not move to libcollections. I do, however, have a plan to move the hash map to the collections module. The `HashMap::new` function could be altered to require that the `H` hasher parameter ascribe to the `Default` trait, allowing the entire `hashmap` module to live in libcollections. The key idea would be that the default hasher would be different in libstd. Something along the lines of: // src/libstd/collections/mod.rs pub type HashMap<K, V, H = RandomizedSipHasher> = core_collections::HashMap<K, V, H>; This is not possible today because you cannot invoke static methods through type aliases. If we modified the compiler, however, to allow invocation of static methods through type aliases, then this type definition would essentially be switching the default hasher from `SipHasher` in libcollections to a libstd-defined `RandomizedSipHasher` type. This type's `Default` implementation would randomly seed the `SipHasher` instance, and otherwise perform the same as `SipHasher`. This future state doesn't seem incredibly far off, but until that time comes, the hashmap module will live in libstd to not compromise on functionality. * In preparation for the hashmap moving to libcollections, the `hash` module has moved from libstd to libcollections. A previously snapshotted commit enables a distinct `Writer` trait to live in the `hash` module which `Hash` implementations are now parameterized over. Due to using a custom trait, the `SipHasher` implementation has lost its specialized methods for writing integers. These can be re-added backwards-compatibly in the future via default methods if necessary, but the FNV hashing should satisfy much of the need for speedier hashing. A list of breaking changes: * HashMap::{get, get_mut} no longer fails with the key formatted into the error message with `{:?}`, instead, a generic message is printed. With backtraces, it should still be not-too-hard to track down errors. * The HashMap, HashSet, and LruCache types are now available through std::collections instead of the collections crate. * Manual implementations of hash should be parameterized over `hash::Writer` instead of just `Writer`. [breaking-change]
2014-05-30 03:50:12 +02:00
DEPS_serialize := std log
DEPS_rbml := std log serialize
std: Recreate a `collections` module As with the previous commit with `librand`, this commit shuffles around some `collections` code. The new state of the world is similar to that of librand: * The libcollections crate now only depends on libcore and liballoc. * The standard library has a new module, `std::collections`. All functionality of libcollections is reexported through this module. I would like to stress that this change is purely cosmetic. There are very few alterations to these primitives. There are a number of notable points about the new organization: * std::{str, slice, string, vec} all moved to libcollections. There is no reason that these primitives shouldn't be necessarily usable in a freestanding context that has allocation. These are all reexported in their usual places in the standard library. * The `hashmap`, and transitively the `lru_cache`, modules no longer reside in `libcollections`, but rather in libstd. The reason for this is because the `HashMap::new` contructor requires access to the OSRng for initially seeding the hash map. Beyond this requirement, there is no reason that the hashmap could not move to libcollections. I do, however, have a plan to move the hash map to the collections module. The `HashMap::new` function could be altered to require that the `H` hasher parameter ascribe to the `Default` trait, allowing the entire `hashmap` module to live in libcollections. The key idea would be that the default hasher would be different in libstd. Something along the lines of: // src/libstd/collections/mod.rs pub type HashMap<K, V, H = RandomizedSipHasher> = core_collections::HashMap<K, V, H>; This is not possible today because you cannot invoke static methods through type aliases. If we modified the compiler, however, to allow invocation of static methods through type aliases, then this type definition would essentially be switching the default hasher from `SipHasher` in libcollections to a libstd-defined `RandomizedSipHasher` type. This type's `Default` implementation would randomly seed the `SipHasher` instance, and otherwise perform the same as `SipHasher`. This future state doesn't seem incredibly far off, but until that time comes, the hashmap module will live in libstd to not compromise on functionality. * In preparation for the hashmap moving to libcollections, the `hash` module has moved from libstd to libcollections. A previously snapshotted commit enables a distinct `Writer` trait to live in the `hash` module which `Hash` implementations are now parameterized over. Due to using a custom trait, the `SipHasher` implementation has lost its specialized methods for writing integers. These can be re-added backwards-compatibly in the future via default methods if necessary, but the FNV hashing should satisfy much of the need for speedier hashing. A list of breaking changes: * HashMap::{get, get_mut} no longer fails with the key formatted into the error message with `{:?}`, instead, a generic message is printed. With backtraces, it should still be not-too-hard to track down errors. * The HashMap, HashSet, and LruCache types are now available through std::collections instead of the collections crate. * Manual implementations of hash should be parameterized over `hash::Writer` instead of just `Writer`. [breaking-change]
2014-05-30 03:50:12 +02:00
DEPS_term := std log
DEPS_semver := std
std: Recreate a `rand` module This commit shuffles around some of the `rand` code, along with some reorganization. The new state of the world is as follows: * The librand crate now only depends on libcore. This interface is experimental. * The standard library has a new module, `std::rand`. This interface will eventually become stable. Unfortunately, this entailed more of a breaking change than just shuffling some names around. The following breaking changes were made to the rand library: * Rng::gen_vec() was removed. This has been replaced with Rng::gen_iter() which will return an infinite stream of random values. Previous behavior can be regained with `rng.gen_iter().take(n).collect()` * Rng::gen_ascii_str() was removed. This has been replaced with Rng::gen_ascii_chars() which will return an infinite stream of random ascii characters. Similarly to gen_iter(), previous behavior can be emulated with `rng.gen_ascii_chars().take(n).collect()` * {IsaacRng, Isaac64Rng, XorShiftRng}::new() have all been removed. These all relied on being able to use an OSRng for seeding, but this is no longer available in librand (where these types are defined). To retain the same functionality, these types now implement the `Rand` trait so they can be generated with a random seed from another random number generator. This allows the stdlib to use an OSRng to create seeded instances of these RNGs. * Rand implementations for `Box<T>` and `@T` were removed. These seemed to be pretty rare in the codebase, and it allows for librand to not depend on liballoc. Additionally, other pointer types like Rc<T> and Arc<T> were not supported. If this is undesirable, librand can depend on liballoc and regain these implementations. * The WeightedChoice structure is no longer built with a `Vec<Weighted<T>>`, but rather a `&mut [Weighted<T>]`. This means that the WeightedChoice structure now has a lifetime associated with it. * The `sample` method on `Rng` has been moved to a top-level function in the `rand` module due to its dependence on `Vec`. cc #13851 [breaking-change]
2014-05-25 10:39:37 +02:00
DEPS_uuid := std serialize
DEPS_sync := core alloc rustrt collections
2014-02-03 00:20:32 +01:00
DEPS_getopts := std
Add libunicode; move unicode functions from core - created new crate, libunicode, below libstd - split Char trait into Char (libcore) and UnicodeChar (libunicode) - Unicode-aware functions now live in libunicode - is_alphabetic, is_XID_start, is_XID_continue, is_lowercase, is_uppercase, is_whitespace, is_alphanumeric, is_control, is_digit, to_uppercase, to_lowercase - added width method in UnicodeChar trait - determines printed width of character in columns, or None if it is a non-NULL control character - takes a boolean argument indicating whether the present context is CJK or not (characters with 'A'mbiguous widths are double-wide in CJK contexts, single-wide otherwise) - split StrSlice into StrSlice (libcore) and UnicodeStrSlice (libunicode) - functionality formerly in StrSlice that relied upon Unicode functionality from Char is now in UnicodeStrSlice - words, is_whitespace, is_alphanumeric, trim, trim_left, trim_right - also moved Words type alias into libunicode because words method is in UnicodeStrSlice - unified Unicode tables from libcollections, libcore, and libregex into libunicode - updated unicode.py in src/etc to generate aforementioned tables - generated new tables based on latest Unicode data - added UnicodeChar and UnicodeStrSlice traits to prelude - libunicode is now the collection point for the std::char module, combining the libunicode functionality with the Char functionality from libcore - thus, moved doc comment for char from core::char to unicode::char - libcollections remains the collection point for std::str The Unicode-aware functions that previously lived in the Char and StrSlice traits are no longer available to programs that only use libcore. To regain use of these methods, include the libunicode crate and use the UnicodeChar and/or UnicodeStrSlice traits: extern crate unicode; use unicode::UnicodeChar; use unicode::UnicodeStrSlice; use unicode::Words; // if you want to use the words() method NOTE: this does *not* impact programs that use libstd, since UnicodeChar and UnicodeStrSlice have been added to the prelude. closes #15224 [breaking-change]
2014-06-30 23:04:10 +02:00
DEPS_collections := core alloc unicode
2014-05-31 02:55:42 +02:00
DEPS_fourcc := rustc syntax std
DEPS_hexfloat := rustc syntax std
std: Recreate a `rand` module This commit shuffles around some of the `rand` code, along with some reorganization. The new state of the world is as follows: * The librand crate now only depends on libcore. This interface is experimental. * The standard library has a new module, `std::rand`. This interface will eventually become stable. Unfortunately, this entailed more of a breaking change than just shuffling some names around. The following breaking changes were made to the rand library: * Rng::gen_vec() was removed. This has been replaced with Rng::gen_iter() which will return an infinite stream of random values. Previous behavior can be regained with `rng.gen_iter().take(n).collect()` * Rng::gen_ascii_str() was removed. This has been replaced with Rng::gen_ascii_chars() which will return an infinite stream of random ascii characters. Similarly to gen_iter(), previous behavior can be emulated with `rng.gen_ascii_chars().take(n).collect()` * {IsaacRng, Isaac64Rng, XorShiftRng}::new() have all been removed. These all relied on being able to use an OSRng for seeding, but this is no longer available in librand (where these types are defined). To retain the same functionality, these types now implement the `Rand` trait so they can be generated with a random seed from another random number generator. This allows the stdlib to use an OSRng to create seeded instances of these RNGs. * Rand implementations for `Box<T>` and `@T` were removed. These seemed to be pretty rare in the codebase, and it allows for librand to not depend on liballoc. Additionally, other pointer types like Rc<T> and Arc<T> were not supported. If this is undesirable, librand can depend on liballoc and regain these implementations. * The WeightedChoice structure is no longer built with a `Vec<Weighted<T>>`, but rather a `&mut [Weighted<T>]`. This means that the WeightedChoice structure now has a lifetime associated with it. * The `sample` method on `Rng` has been moved to a top-level function in the `rand` module due to its dependence on `Vec`. cc #13851 [breaking-change]
2014-05-25 10:39:37 +02:00
DEPS_num := std
DEPS_test := std getopts serialize rbml term time regex native:rust_test_helpers
DEPS_time := std serialize
std: Recreate a `rand` module This commit shuffles around some of the `rand` code, along with some reorganization. The new state of the world is as follows: * The librand crate now only depends on libcore. This interface is experimental. * The standard library has a new module, `std::rand`. This interface will eventually become stable. Unfortunately, this entailed more of a breaking change than just shuffling some names around. The following breaking changes were made to the rand library: * Rng::gen_vec() was removed. This has been replaced with Rng::gen_iter() which will return an infinite stream of random values. Previous behavior can be regained with `rng.gen_iter().take(n).collect()` * Rng::gen_ascii_str() was removed. This has been replaced with Rng::gen_ascii_chars() which will return an infinite stream of random ascii characters. Similarly to gen_iter(), previous behavior can be emulated with `rng.gen_ascii_chars().take(n).collect()` * {IsaacRng, Isaac64Rng, XorShiftRng}::new() have all been removed. These all relied on being able to use an OSRng for seeding, but this is no longer available in librand (where these types are defined). To retain the same functionality, these types now implement the `Rand` trait so they can be generated with a random seed from another random number generator. This allows the stdlib to use an OSRng to create seeded instances of these RNGs. * Rand implementations for `Box<T>` and `@T` were removed. These seemed to be pretty rare in the codebase, and it allows for librand to not depend on liballoc. Additionally, other pointer types like Rc<T> and Arc<T> were not supported. If this is undesirable, librand can depend on liballoc and regain these implementations. * The WeightedChoice structure is no longer built with a `Vec<Weighted<T>>`, but rather a `&mut [Weighted<T>]`. This means that the WeightedChoice structure now has a lifetime associated with it. * The `sample` method on `Rng` has been moved to a top-level function in the `rand` module due to its dependence on `Vec`. cc #13851 [breaking-change]
2014-05-25 10:39:37 +02:00
DEPS_rand := core
std: Recreate a `collections` module As with the previous commit with `librand`, this commit shuffles around some `collections` code. The new state of the world is similar to that of librand: * The libcollections crate now only depends on libcore and liballoc. * The standard library has a new module, `std::collections`. All functionality of libcollections is reexported through this module. I would like to stress that this change is purely cosmetic. There are very few alterations to these primitives. There are a number of notable points about the new organization: * std::{str, slice, string, vec} all moved to libcollections. There is no reason that these primitives shouldn't be necessarily usable in a freestanding context that has allocation. These are all reexported in their usual places in the standard library. * The `hashmap`, and transitively the `lru_cache`, modules no longer reside in `libcollections`, but rather in libstd. The reason for this is because the `HashMap::new` contructor requires access to the OSRng for initially seeding the hash map. Beyond this requirement, there is no reason that the hashmap could not move to libcollections. I do, however, have a plan to move the hash map to the collections module. The `HashMap::new` function could be altered to require that the `H` hasher parameter ascribe to the `Default` trait, allowing the entire `hashmap` module to live in libcollections. The key idea would be that the default hasher would be different in libstd. Something along the lines of: // src/libstd/collections/mod.rs pub type HashMap<K, V, H = RandomizedSipHasher> = core_collections::HashMap<K, V, H>; This is not possible today because you cannot invoke static methods through type aliases. If we modified the compiler, however, to allow invocation of static methods through type aliases, then this type definition would essentially be switching the default hasher from `SipHasher` in libcollections to a libstd-defined `RandomizedSipHasher` type. This type's `Default` implementation would randomly seed the `SipHasher` instance, and otherwise perform the same as `SipHasher`. This future state doesn't seem incredibly far off, but until that time comes, the hashmap module will live in libstd to not compromise on functionality. * In preparation for the hashmap moving to libcollections, the `hash` module has moved from libstd to libcollections. A previously snapshotted commit enables a distinct `Writer` trait to live in the `hash` module which `Hash` implementations are now parameterized over. Due to using a custom trait, the `SipHasher` implementation has lost its specialized methods for writing integers. These can be re-added backwards-compatibly in the future via default methods if necessary, but the FNV hashing should satisfy much of the need for speedier hashing. A list of breaking changes: * HashMap::{get, get_mut} no longer fails with the key formatted into the error message with `{:?}`, instead, a generic message is printed. With backtraces, it should still be not-too-hard to track down errors. * The HashMap, HashSet, and LruCache types are now available through std::collections instead of the collections crate. * Manual implementations of hash should be parameterized over `hash::Writer` instead of just `Writer`. [breaking-change]
2014-05-30 03:50:12 +02:00
DEPS_url := std
DEPS_log := std
std: Recreate a `collections` module As with the previous commit with `librand`, this commit shuffles around some `collections` code. The new state of the world is similar to that of librand: * The libcollections crate now only depends on libcore and liballoc. * The standard library has a new module, `std::collections`. All functionality of libcollections is reexported through this module. I would like to stress that this change is purely cosmetic. There are very few alterations to these primitives. There are a number of notable points about the new organization: * std::{str, slice, string, vec} all moved to libcollections. There is no reason that these primitives shouldn't be necessarily usable in a freestanding context that has allocation. These are all reexported in their usual places in the standard library. * The `hashmap`, and transitively the `lru_cache`, modules no longer reside in `libcollections`, but rather in libstd. The reason for this is because the `HashMap::new` contructor requires access to the OSRng for initially seeding the hash map. Beyond this requirement, there is no reason that the hashmap could not move to libcollections. I do, however, have a plan to move the hash map to the collections module. The `HashMap::new` function could be altered to require that the `H` hasher parameter ascribe to the `Default` trait, allowing the entire `hashmap` module to live in libcollections. The key idea would be that the default hasher would be different in libstd. Something along the lines of: // src/libstd/collections/mod.rs pub type HashMap<K, V, H = RandomizedSipHasher> = core_collections::HashMap<K, V, H>; This is not possible today because you cannot invoke static methods through type aliases. If we modified the compiler, however, to allow invocation of static methods through type aliases, then this type definition would essentially be switching the default hasher from `SipHasher` in libcollections to a libstd-defined `RandomizedSipHasher` type. This type's `Default` implementation would randomly seed the `SipHasher` instance, and otherwise perform the same as `SipHasher`. This future state doesn't seem incredibly far off, but until that time comes, the hashmap module will live in libstd to not compromise on functionality. * In preparation for the hashmap moving to libcollections, the `hash` module has moved from libstd to libcollections. A previously snapshotted commit enables a distinct `Writer` trait to live in the `hash` module which `Hash` implementations are now parameterized over. Due to using a custom trait, the `SipHasher` implementation has lost its specialized methods for writing integers. These can be re-added backwards-compatibly in the future via default methods if necessary, but the FNV hashing should satisfy much of the need for speedier hashing. A list of breaking changes: * HashMap::{get, get_mut} no longer fails with the key formatted into the error message with `{:?}`, instead, a generic message is printed. With backtraces, it should still be not-too-hard to track down errors. * The HashMap, HashSet, and LruCache types are now available through std::collections instead of the collections crate. * Manual implementations of hash should be parameterized over `hash::Writer` instead of just `Writer`. [breaking-change]
2014-05-30 03:50:12 +02:00
DEPS_regex := std
2014-05-31 02:55:42 +02:00
DEPS_regex_macros = rustc syntax std regex
DEPS_fmt_macros = std
2014-02-14 02:49:11 +01:00
TOOL_DEPS_compiletest := test green rustuv getopts
TOOL_DEPS_rustdoc := rustdoc native
TOOL_DEPS_rustc := rustc native
TOOL_SOURCE_compiletest := $(S)src/compiletest/compiletest.rs
TOOL_SOURCE_rustdoc := $(S)src/driver/driver.rs
TOOL_SOURCE_rustc := $(S)src/driver/driver.rs
2014-05-01 05:05:14 +02:00
ONLY_RLIB_core := 1
ONLY_RLIB_libc := 1
ONLY_RLIB_rlibc := 1
ONLY_RLIB_alloc := 1
std: Recreate a `rand` module This commit shuffles around some of the `rand` code, along with some reorganization. The new state of the world is as follows: * The librand crate now only depends on libcore. This interface is experimental. * The standard library has a new module, `std::rand`. This interface will eventually become stable. Unfortunately, this entailed more of a breaking change than just shuffling some names around. The following breaking changes were made to the rand library: * Rng::gen_vec() was removed. This has been replaced with Rng::gen_iter() which will return an infinite stream of random values. Previous behavior can be regained with `rng.gen_iter().take(n).collect()` * Rng::gen_ascii_str() was removed. This has been replaced with Rng::gen_ascii_chars() which will return an infinite stream of random ascii characters. Similarly to gen_iter(), previous behavior can be emulated with `rng.gen_ascii_chars().take(n).collect()` * {IsaacRng, Isaac64Rng, XorShiftRng}::new() have all been removed. These all relied on being able to use an OSRng for seeding, but this is no longer available in librand (where these types are defined). To retain the same functionality, these types now implement the `Rand` trait so they can be generated with a random seed from another random number generator. This allows the stdlib to use an OSRng to create seeded instances of these RNGs. * Rand implementations for `Box<T>` and `@T` were removed. These seemed to be pretty rare in the codebase, and it allows for librand to not depend on liballoc. Additionally, other pointer types like Rc<T> and Arc<T> were not supported. If this is undesirable, librand can depend on liballoc and regain these implementations. * The WeightedChoice structure is no longer built with a `Vec<Weighted<T>>`, but rather a `&mut [Weighted<T>]`. This means that the WeightedChoice structure now has a lifetime associated with it. * The `sample` method on `Rng` has been moved to a top-level function in the `rand` module due to its dependence on `Vec`. cc #13851 [breaking-change]
2014-05-25 10:39:37 +02:00
ONLY_RLIB_rand := 1
std: Recreate a `collections` module As with the previous commit with `librand`, this commit shuffles around some `collections` code. The new state of the world is similar to that of librand: * The libcollections crate now only depends on libcore and liballoc. * The standard library has a new module, `std::collections`. All functionality of libcollections is reexported through this module. I would like to stress that this change is purely cosmetic. There are very few alterations to these primitives. There are a number of notable points about the new organization: * std::{str, slice, string, vec} all moved to libcollections. There is no reason that these primitives shouldn't be necessarily usable in a freestanding context that has allocation. These are all reexported in their usual places in the standard library. * The `hashmap`, and transitively the `lru_cache`, modules no longer reside in `libcollections`, but rather in libstd. The reason for this is because the `HashMap::new` contructor requires access to the OSRng for initially seeding the hash map. Beyond this requirement, there is no reason that the hashmap could not move to libcollections. I do, however, have a plan to move the hash map to the collections module. The `HashMap::new` function could be altered to require that the `H` hasher parameter ascribe to the `Default` trait, allowing the entire `hashmap` module to live in libcollections. The key idea would be that the default hasher would be different in libstd. Something along the lines of: // src/libstd/collections/mod.rs pub type HashMap<K, V, H = RandomizedSipHasher> = core_collections::HashMap<K, V, H>; This is not possible today because you cannot invoke static methods through type aliases. If we modified the compiler, however, to allow invocation of static methods through type aliases, then this type definition would essentially be switching the default hasher from `SipHasher` in libcollections to a libstd-defined `RandomizedSipHasher` type. This type's `Default` implementation would randomly seed the `SipHasher` instance, and otherwise perform the same as `SipHasher`. This future state doesn't seem incredibly far off, but until that time comes, the hashmap module will live in libstd to not compromise on functionality. * In preparation for the hashmap moving to libcollections, the `hash` module has moved from libstd to libcollections. A previously snapshotted commit enables a distinct `Writer` trait to live in the `hash` module which `Hash` implementations are now parameterized over. Due to using a custom trait, the `SipHasher` implementation has lost its specialized methods for writing integers. These can be re-added backwards-compatibly in the future via default methods if necessary, but the FNV hashing should satisfy much of the need for speedier hashing. A list of breaking changes: * HashMap::{get, get_mut} no longer fails with the key formatted into the error message with `{:?}`, instead, a generic message is printed. With backtraces, it should still be not-too-hard to track down errors. * The HashMap, HashSet, and LruCache types are now available through std::collections instead of the collections crate. * Manual implementations of hash should be parameterized over `hash::Writer` instead of just `Writer`. [breaking-change]
2014-05-30 03:50:12 +02:00
ONLY_RLIB_collections := 1
Add libunicode; move unicode functions from core - created new crate, libunicode, below libstd - split Char trait into Char (libcore) and UnicodeChar (libunicode) - Unicode-aware functions now live in libunicode - is_alphabetic, is_XID_start, is_XID_continue, is_lowercase, is_uppercase, is_whitespace, is_alphanumeric, is_control, is_digit, to_uppercase, to_lowercase - added width method in UnicodeChar trait - determines printed width of character in columns, or None if it is a non-NULL control character - takes a boolean argument indicating whether the present context is CJK or not (characters with 'A'mbiguous widths are double-wide in CJK contexts, single-wide otherwise) - split StrSlice into StrSlice (libcore) and UnicodeStrSlice (libunicode) - functionality formerly in StrSlice that relied upon Unicode functionality from Char is now in UnicodeStrSlice - words, is_whitespace, is_alphanumeric, trim, trim_left, trim_right - also moved Words type alias into libunicode because words method is in UnicodeStrSlice - unified Unicode tables from libcollections, libcore, and libregex into libunicode - updated unicode.py in src/etc to generate aforementioned tables - generated new tables based on latest Unicode data - added UnicodeChar and UnicodeStrSlice traits to prelude - libunicode is now the collection point for the std::char module, combining the libunicode functionality with the Char functionality from libcore - thus, moved doc comment for char from core::char to unicode::char - libcollections remains the collection point for std::str The Unicode-aware functions that previously lived in the Char and StrSlice traits are no longer available to programs that only use libcore. To regain use of these methods, include the libunicode crate and use the UnicodeChar and/or UnicodeStrSlice traits: extern crate unicode; use unicode::UnicodeChar; use unicode::UnicodeStrSlice; use unicode::Words; // if you want to use the words() method NOTE: this does *not* impact programs that use libstd, since UnicodeChar and UnicodeStrSlice have been added to the prelude. closes #15224 [breaking-change]
2014-06-30 23:04:10 +02:00
ONLY_RLIB_unicode := 1
2014-05-01 05:05:14 +02:00
################################################################################
# You should not need to edit below this line
################################################################################
DOC_CRATES := $(filter-out rustc, $(filter-out syntax, $(CRATES)))
COMPILER_DOC_CRATES := rustc syntax
# This macro creates some simple definitions for each crate being built, just
# some munging of all of the parameters above.
#
# $(1) is the crate to generate variables for
define RUST_CRATE
CRATEFILE_$(1) := $$(S)src/lib$(1)/lib.rs
RSINPUTS_$(1) := $$(call rwildcard,$(S)src/lib$(1)/,*.rs)
RUST_DEPS_$(1) := $$(filter-out native:%,$$(DEPS_$(1)))
NATIVE_DEPS_$(1) := $$(patsubst native:%,%,$$(filter native:%,$$(DEPS_$(1))))
endef
$(foreach crate,$(CRATES),$(eval $(call RUST_CRATE,$(crate))))
# Similar to the macro above for crates, this macro is for tools
#
# $(1) is the crate to generate variables for
define RUST_TOOL
TOOL_INPUTS_$(1) := $$(call rwildcard,$$(dir $$(TOOL_SOURCE_$(1))),*.rs)
endef
$(foreach crate,$(TOOLS),$(eval $(call RUST_TOOL,$(crate))))