rustc: Typecheck "alt" expressions and patterns

This commit is contained in:
Patrick Walton 2010-12-12 20:02:49 -08:00
parent 7d0734bb96
commit 04e15bf8f8

View File

@ -759,6 +759,15 @@ fn block_ty(&ast.block b) -> @ty {
}
}
fn pat_ty(@ast.pat pat) -> @ty {
alt (pat.node) {
case (ast.pat_wild(?ann)) { ret ann_to_type(ann); }
case (ast.pat_bind(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.pat_tag(_, _, _, ?ann)) { ret ann_to_type(ann); }
}
fail; // not reached
}
fn expr_ty(@ast.expr expr) -> @ty {
alt (expr.node) {
case (ast.expr_vec(_, ?ann)) { ret ann_to_type(ann); }
@ -772,6 +781,7 @@ fn expr_ty(@ast.expr expr) -> @ty {
case (ast.expr_if(_, _, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_while(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_do_while(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_alt(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_block(_, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_assign(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_assign_op(_, _, _, ?ann))
@ -847,6 +857,20 @@ fn unify(&fn_ctxt fcx, @ty expected, @ty actual) -> unify_result {
case (ty_char) { ret struct_cmp(expected, actual); }
case (ty_str) { ret struct_cmp(expected, actual); }
case (ty_tag(?expected_id)) {
alt (actual.struct) {
case (ty_tag(?actual_id)) {
if (expected_id._0 == actual_id._0 &&
expected_id._1 == actual_id._1) {
ret ures_ok(expected);
}
}
case (_) { /* fall through */ }
}
ret ures_err(terr_mismatch, expected, actual);
}
case (ty_box(?expected_sub)) {
alt (actual.struct) {
case (ty_box(?actual_sub)) {
@ -1147,6 +1171,64 @@ fn are_compatible(&fn_ctxt fcx, @ty expected, @ty actual) -> bool {
}
}
// Type unification over typed patterns. Note that the pattern that you pass
// to this function must have been passed to check_pat() first.
//
// TODO: enforce this via a predicate.
fn demand_pat(&fn_ctxt fcx, @ty expected, @ast.pat pat) -> @ast.pat {
auto p_1 = ast.pat_wild(ast.ann_none); // FIXME: typestate botch
alt (pat.node) {
case (ast.pat_wild(?ann)) {
auto t = demand(fcx, pat.span, expected, ann_to_type(ann));
p_1 = ast.pat_wild(ast.ann_type(t));
}
case (ast.pat_bind(?id, ?did, ?ann)) {
auto t = demand(fcx, pat.span, expected, ann_to_type(ann));
p_1 = ast.pat_bind(id, did, ast.ann_type(t));
}
case (ast.pat_tag(?id, ?subpats, ?vdef_opt, ?ann)) {
auto t = demand(fcx, pat.span, expected, ann_to_type(ann));
// The type of the tag isn't enough; we also have to get the type
// of the variant, which is either a tag type in the case of
// nullary variants or a function type in the case of n-ary
// variants.
//
// TODO: When we have type-parametric tags, this will get a little
// trickier. Basically, we have to instantiate the variant type we
// acquire here with the type parameters provided to us by
// "expected".
auto vdef = option.get[ast.variant_def](vdef_opt);
auto variant_ty = fcx.ccx.item_types.get(vdef._1);
auto subpats_len = _vec.len[@ast.pat](subpats);
alt (variant_ty.struct) {
case (ty_tag(_)) {
// Nullary tag variant.
check (subpats_len == 0u);
p_1 = ast.pat_tag(id, subpats, vdef_opt, ast.ann_type(t));
}
case (ty_fn(?args, ?tag_ty)) {
let vec[@ast.pat] new_subpats = vec();
auto i = 0u;
for (arg a in args) {
auto new_subpat = demand_pat(fcx, a.ty, subpats.(i));
new_subpats += vec(new_subpat);
i += 1u;
}
p_1 = ast.pat_tag(id, new_subpats, vdef_opt,
ast.ann_type(tag_ty));
}
}
}
}
ret @fold.respan[ast.pat_](pat.span, p_1);
}
// Type unification over typed expressions. Note that the expression that you
// pass to this function must have been passed to check_expr() first.
//
@ -1351,6 +1433,68 @@ fn check_lit(@ast.lit lit) -> @ty {
ret plain_ty(sty);
}
fn check_pat(&fn_ctxt fcx, @ast.pat pat) -> @ast.pat {
auto new_pat;
alt (pat.node) {
case (ast.pat_wild(_)) {
new_pat = ast.pat_wild(ast.ann_type(next_ty_var(fcx)));
}
case (ast.pat_bind(?id, ?def_id, _)) {
auto ann = ast.ann_type(next_ty_var(fcx));
new_pat = ast.pat_bind(id, def_id, ann);
}
case (ast.pat_tag(?id, ?subpats, ?vdef_opt, _)) {
auto vdef = option.get[ast.variant_def](vdef_opt);
auto t = fcx.ccx.item_types.get(vdef._1);
alt (t.struct) {
// N-ary variants have function types.
case (ty_fn(?args, ?tag_ty)) {
auto arg_len = _vec.len[arg](args);
auto subpats_len = _vec.len[@ast.pat](subpats);
if (arg_len != subpats_len) {
// TODO: pluralize properly
auto err_msg = "tag type " + id + " has " +
_uint.to_str(subpats_len, 10u) +
" fields, but this pattern has " +
_uint.to_str(arg_len, 10u) + " fields";
fcx.ccx.sess.span_err(pat.span, err_msg);
fail; // TODO: recover
}
let vec[@ast.pat] new_subpats = vec();
for (@ast.pat subpat in subpats) {
new_subpats += vec(check_pat(fcx, subpat));
}
auto ann = ast.ann_type(tag_ty);
new_pat = ast.pat_tag(id, new_subpats, vdef_opt, ann);
}
// Nullary variants have tag types.
case (ty_tag(?tid)) {
auto subpats_len = _vec.len[@ast.pat](subpats);
if (subpats_len > 0u) {
// TODO: pluralize properly
auto err_msg = "tag type " + id + " has no fields," +
" but this pattern has " +
_uint.to_str(subpats_len, 10u) +
" fields";
fcx.ccx.sess.span_err(pat.span, err_msg);
fail; // TODO: recover
}
auto ann = ast.ann_type(plain_ty(ty_tag(tid)));
new_pat = ast.pat_tag(id, subpats, vdef_opt, ann);
}
}
}
}
ret @fold.respan[ast.pat_](pat.span, new_pat);
}
fn check_expr(&fn_ctxt fcx, @ast.expr expr) -> @ast.expr {
alt (expr.node) {
case (ast.expr_lit(?lit, _)) {
@ -1528,6 +1672,37 @@ fn check_expr(&fn_ctxt fcx, @ast.expr expr) -> @ast.expr {
ann));
}
case (ast.expr_alt(?expr, ?arms, _)) {
auto expr_0 = check_expr(fcx, expr);
auto pattern_ty = expr_ty(expr_0);
auto result_ty = next_ty_var(fcx);
let vec[ast.arm] arms_0 = vec();
for (ast.arm arm in arms) {
auto pat_0 = check_pat(fcx, arm.pat);
pattern_ty = demand(fcx, pat_0.span, pattern_ty,
pat_ty(pat_0));
auto block_0 = check_block(fcx, arm.block);
result_ty = demand(fcx, block_0.span, result_ty,
block_ty(block_0));
arms_0 += vec(rec(pat=pat_0, block=block_0, index=arm.index));
}
auto expr_1 = demand_expr(fcx, pattern_ty, expr);
let vec[ast.arm] arms_1 = vec();
for (ast.arm arm_0 in arms_0) {
auto pat_1 = demand_pat(fcx, pattern_ty, arm_0.pat);
auto block_1 = demand_block(fcx, result_ty, arm_0.block);
auto arm_1 = rec(pat=pat_1, block=block_1, index=arm_0.index);
arms_1 += vec(arm_1);
}
auto ann = ast.ann_type(result_ty);
ret @fold.respan[ast.expr_](expr.span,
ast.expr_alt(expr_1, arms_1, ann));
}
case (ast.expr_call(?f, ?args, _)) {
// Check the function.
auto f_0 = check_expr(fcx, f);