Move a few more types to `rustc_type_ir`

This commit is contained in:
LeSeulArtichaut 2020-12-12 15:25:55 +01:00
parent 5e91c4ecc0
commit 0724573448
9 changed files with 426 additions and 265 deletions

View File

@ -4314,6 +4314,7 @@ dependencies = [
"bitflags",
"rustc_data_structures",
"rustc_index",
"rustc_macros",
"rustc_serialize",
]

View File

@ -1,4 +1,4 @@
use crate::ty::{self, FloatVarValue, InferConst, IntVarValue, Ty, TyCtxt};
use crate::ty::{self, InferConst, Ty, TyCtxt};
use rustc_data_structures::snapshot_vec;
use rustc_data_structures::undo_log::UndoLogs;
use rustc_data_structures::unify::{
@ -15,36 +15,6 @@ pub trait ToType {
fn to_type<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>;
}
/// Raw `TyVid` are used as the unification key for `sub_relations`;
/// they carry no values.
impl UnifyKey for ty::TyVid {
type Value = ();
fn index(&self) -> u32 {
self.index
}
fn from_index(i: u32) -> ty::TyVid {
ty::TyVid { index: i }
}
fn tag() -> &'static str {
"TyVid"
}
}
impl UnifyKey for ty::IntVid {
type Value = Option<IntVarValue>;
fn index(&self) -> u32 {
self.index
}
fn from_index(i: u32) -> ty::IntVid {
ty::IntVid { index: i }
}
fn tag() -> &'static str {
"IntVid"
}
}
impl EqUnifyValue for IntVarValue {}
#[derive(PartialEq, Copy, Clone, Debug)]
pub struct RegionVidKey {
/// The minimum region vid in the unification set. This is needed
@ -80,7 +50,7 @@ impl UnifyKey for ty::RegionVid {
}
}
impl ToType for IntVarValue {
impl ToType for ty::IntVarValue {
fn to_type<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
match *self {
ty::IntType(i) => tcx.mk_mach_int(i),
@ -89,24 +59,7 @@ impl ToType for IntVarValue {
}
}
// Floating point type keys
impl UnifyKey for ty::FloatVid {
type Value = Option<FloatVarValue>;
fn index(&self) -> u32 {
self.index
}
fn from_index(i: u32) -> ty::FloatVid {
ty::FloatVid { index: i }
}
fn tag() -> &'static str {
"FloatVid"
}
}
impl EqUnifyValue for FloatVarValue {}
impl ToType for FloatVarValue {
impl ToType for ty::FloatVarValue {
fn to_type<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
tcx.mk_mach_float(self.0)
}

View File

@ -1,8 +1,7 @@
//! Diagnostics related methods for `TyS`.
use crate::ty::sty::InferTy;
use crate::ty::TyKind::*;
use crate::ty::{TyCtxt, TyS};
use crate::ty::{InferTy, TyCtxt, TyS};
use rustc_errors::{Applicability, DiagnosticBuilder};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;

View File

@ -65,7 +65,6 @@ use std::ptr;
use std::str;
pub use self::sty::BoundRegionKind::*;
pub use self::sty::InferTy::*;
pub use self::sty::RegionKind;
pub use self::sty::RegionKind::*;
pub use self::sty::TyKind::*;
@ -74,13 +73,14 @@ pub use self::sty::{BoundRegion, BoundRegionKind, EarlyBoundRegion, FreeRegion,
pub use self::sty::{CanonicalPolyFnSig, FnSig, GenSig, PolyFnSig, PolyGenSig};
pub use self::sty::{ClosureSubsts, GeneratorSubsts, TypeAndMut, UpvarSubsts};
pub use self::sty::{ClosureSubstsParts, GeneratorSubstsParts};
pub use self::sty::{ConstVid, FloatVid, IntVid, RegionVid, TyVid};
pub use self::sty::{ExistentialPredicate, InferTy, ParamConst, ParamTy, ProjectionTy};
pub use self::sty::{ConstVid, RegionVid};
pub use self::sty::{ExistentialPredicate, ParamConst, ParamTy, ProjectionTy};
pub use self::sty::{ExistentialProjection, PolyExistentialProjection};
pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
pub use self::sty::{PolyTraitRef, TraitRef, TyKind};
pub use crate::ty::diagnostics::*;
pub use rustc_type_ir::{DebruijnIndex, TypeFlags, INNERMOST};
pub use rustc_type_ir::InferTy::*;
pub use rustc_type_ir::*;
pub use self::binding::BindingMode;
pub use self::binding::BindingMode::*;
@ -421,14 +421,6 @@ impl Visibility {
}
}
#[derive(Copy, Clone, PartialEq, TyDecodable, TyEncodable, HashStable)]
pub enum Variance {
Covariant, // T<A> <: T<B> iff A <: B -- e.g., function return type
Invariant, // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
Contravariant, // T<A> <: T<B> iff B <: A -- e.g., function param type
Bivariant, // T<A> <: T<B> -- e.g., unused type parameter
}
/// The crate variances map is computed during typeck and contains the
/// variance of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
@ -443,66 +435,6 @@ pub struct CrateVariancesMap<'tcx> {
pub variances: FxHashMap<DefId, &'tcx [ty::Variance]>,
}
impl Variance {
/// `a.xform(b)` combines the variance of a context with the
/// variance of a type with the following meaning. If we are in a
/// context with variance `a`, and we encounter a type argument in
/// a position with variance `b`, then `a.xform(b)` is the new
/// variance with which the argument appears.
///
/// Example 1:
///
/// *mut Vec<i32>
///
/// Here, the "ambient" variance starts as covariant. `*mut T` is
/// invariant with respect to `T`, so the variance in which the
/// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
/// yields `Invariant`. Now, the type `Vec<T>` is covariant with
/// respect to its type argument `T`, and hence the variance of
/// the `i32` here is `Invariant.xform(Covariant)`, which results
/// (again) in `Invariant`.
///
/// Example 2:
///
/// fn(*const Vec<i32>, *mut Vec<i32)
///
/// The ambient variance is covariant. A `fn` type is
/// contravariant with respect to its parameters, so the variance
/// within which both pointer types appear is
/// `Covariant.xform(Contravariant)`, or `Contravariant`. `*const
/// T` is covariant with respect to `T`, so the variance within
/// which the first `Vec<i32>` appears is
/// `Contravariant.xform(Covariant)` or `Contravariant`. The same
/// is true for its `i32` argument. In the `*mut T` case, the
/// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
/// and hence the outermost type is `Invariant` with respect to
/// `Vec<i32>` (and its `i32` argument).
///
/// Source: Figure 1 of "Taming the Wildcards:
/// Combining Definition- and Use-Site Variance" published in PLDI'11.
pub fn xform(self, v: ty::Variance) -> ty::Variance {
match (self, v) {
// Figure 1, column 1.
(ty::Covariant, ty::Covariant) => ty::Covariant,
(ty::Covariant, ty::Contravariant) => ty::Contravariant,
(ty::Covariant, ty::Invariant) => ty::Invariant,
(ty::Covariant, ty::Bivariant) => ty::Bivariant,
// Figure 1, column 2.
(ty::Contravariant, ty::Covariant) => ty::Contravariant,
(ty::Contravariant, ty::Contravariant) => ty::Covariant,
(ty::Contravariant, ty::Invariant) => ty::Invariant,
(ty::Contravariant, ty::Bivariant) => ty::Bivariant,
// Figure 1, column 3.
(ty::Invariant, _) => ty::Invariant,
// Figure 1, column 4.
(ty::Bivariant, _) => ty::Bivariant,
}
}
}
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
@ -804,15 +736,6 @@ pub struct CaptureInfo<'tcx> {
pub type UpvarListMap = FxHashMap<DefId, FxIndexMap<hir::HirId, UpvarId>>;
pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum IntVarValue {
IntType(ast::IntTy),
UintType(ast::UintTy),
}
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct FloatVarValue(pub ast::FloatTy);
impl ty::EarlyBoundRegion {
/// Does this early bound region have a name? Early bound regions normally
/// always have names except when using anonymous lifetimes (`'_`).

View File

@ -557,14 +557,19 @@ pub trait PrettyPrinter<'tcx>:
}
ty::FnPtr(ref bare_fn) => p!(print(bare_fn)),
ty::Infer(infer_ty) => {
let verbose = self.tcx().sess.verbose();
if let ty::TyVar(ty_vid) = infer_ty {
if let Some(name) = self.infer_ty_name(ty_vid) {
p!(write("{}", name))
} else {
p!(write("{}", infer_ty))
if verbose {
p!(write("{:?}", infer_ty))
} else {
p!(write("{}", infer_ty))
}
}
} else {
p!(write("{}", infer_ty))
if verbose { p!(write("{:?}", infer_ty)) } else { p!(write("{}", infer_ty)) }
}
}
ty::Error(_) => p!("[type error]"),
@ -1246,7 +1251,7 @@ pub struct FmtPrinterData<'a, 'tcx, F> {
pub region_highlight_mode: RegionHighlightMode,
pub name_resolver: Option<Box<&'a dyn Fn(ty::sty::TyVid) -> Option<String>>>,
pub name_resolver: Option<Box<&'a dyn Fn(ty::TyVid) -> Option<String>>>,
}
impl<F> Deref for FmtPrinter<'a, 'tcx, F> {
@ -2007,21 +2012,6 @@ define_print_and_forward_display! {
p!("fn", pretty_fn_sig(self.inputs(), self.c_variadic, self.output()));
}
ty::InferTy {
if cx.tcx().sess.verbose() {
p!(write("{:?}", self));
return Ok(cx);
}
match *self {
ty::TyVar(_) => p!("_"),
ty::IntVar(_) => p!(write("{}", "{integer}")),
ty::FloatVar(_) => p!(write("{}", "{float}")),
ty::FreshTy(v) => p!(write("FreshTy({})", v)),
ty::FreshIntTy(v) => p!(write("FreshIntTy({})", v)),
ty::FreshFloatTy(v) => p!(write("FreshFloatTy({})", v))
}
}
ty::TraitRef<'tcx> {
p!(write("<{} as {}>", self.self_ty(), self.print_only_trait_path()))
}

View File

@ -111,81 +111,24 @@ impl fmt::Debug for ty::FreeRegion {
}
}
impl fmt::Debug for ty::Variance {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match *self {
ty::Covariant => "+",
ty::Contravariant => "-",
ty::Invariant => "o",
ty::Bivariant => "*",
})
}
}
impl fmt::Debug for ty::FnSig<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "({:?}; c_variadic: {})->{:?}", self.inputs(), self.c_variadic, self.output())
}
}
impl fmt::Debug for ty::TyVid {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "_#{}t", self.index)
}
}
impl<'tcx> fmt::Debug for ty::ConstVid<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "_#{}c", self.index)
}
}
impl fmt::Debug for ty::IntVid {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "_#{}i", self.index)
}
}
impl fmt::Debug for ty::FloatVid {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "_#{}f", self.index)
}
}
impl fmt::Debug for ty::RegionVid {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "'_#{}r", self.index())
}
}
impl fmt::Debug for ty::InferTy {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
ty::TyVar(ref v) => v.fmt(f),
ty::IntVar(ref v) => v.fmt(f),
ty::FloatVar(ref v) => v.fmt(f),
ty::FreshTy(v) => write!(f, "FreshTy({:?})", v),
ty::FreshIntTy(v) => write!(f, "FreshIntTy({:?})", v),
ty::FreshFloatTy(v) => write!(f, "FreshFloatTy({:?})", v),
}
}
}
impl fmt::Debug for ty::IntVarValue {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
ty::IntType(ref v) => v.fmt(f),
ty::UintType(ref v) => v.fmt(f),
}
}
}
impl fmt::Debug for ty::FloatVarValue {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
impl fmt::Debug for ty::TraitRef<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
with_no_trimmed_paths(|| fmt::Display::fmt(self, f))
@ -274,7 +217,7 @@ TrivialTypeFoldableAndLiftImpls! {
u64,
String,
crate::middle::region::Scope,
::rustc_ast::FloatTy,
crate::ty::FloatTy,
::rustc_ast::InlineAsmOptions,
::rustc_ast::InlineAsmTemplatePiece,
::rustc_ast::NodeId,

View File

@ -2,11 +2,11 @@
#![allow(rustc::usage_of_ty_tykind)]
use self::InferTy::*;
use self::TyKind::*;
use crate::infer::canonical::Canonical;
use crate::ty::subst::{GenericArg, InternalSubsts, Subst, SubstsRef};
use crate::ty::InferTy::{self, *};
use crate::ty::{
self, AdtDef, DefIdTree, Discr, Ty, TyCtxt, TypeFlags, TypeFoldable, WithConstness,
};
@ -1426,12 +1426,6 @@ pub struct EarlyBoundRegion {
pub name: Symbol,
}
/// A **ty**pe **v**ariable **ID**.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
pub struct TyVid {
pub index: u32,
}
/// A **`const`** **v**ariable **ID**.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
pub struct ConstVid<'tcx> {
@ -1439,18 +1433,6 @@ pub struct ConstVid<'tcx> {
pub phantom: PhantomData<&'tcx ()>,
}
/// An **int**egral (`u32`, `i32`, `usize`, etc.) type **v**ariable **ID**.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
pub struct IntVid {
pub index: u32,
}
/// An **float**ing-point (`f32` or `f64`) type **v**ariable **ID**.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
pub struct FloatVid {
pub index: u32,
}
rustc_index::newtype_index! {
/// A **region** (lifetime) **v**ariable **ID**.
pub struct RegionVid {
@ -1464,43 +1446,6 @@ impl Atom for RegionVid {
}
}
/// A placeholder for a type that hasn't been inferred yet.
///
/// E.g., if we have an empty array (`[]`), then we create a fresh
/// type variable for the element type since we won't know until it's
/// used what the element type is supposed to be.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable)]
pub enum InferTy {
/// A type variable.
TyVar(TyVid),
/// An integral type variable (`{integer}`).
///
/// These are created when the compiler sees an integer literal like
/// `1` that could be several different types (`u8`, `i32`, `u32`, etc.).
/// We don't know until it's used what type it's supposed to be, so
/// we create a fresh type variable.
IntVar(IntVid),
/// A floating-point type variable (`{float}`).
///
/// These are created when the compiler sees an float literal like
/// `1.0` that could be either an `f32` or an `f64`.
/// We don't know until it's used what type it's supposed to be, so
/// we create a fresh type variable.
FloatVar(FloatVid),
/// A [`FreshTy`][Self::FreshTy] is one that is generated as a replacement
/// for an unbound type variable. This is convenient for caching etc. See
/// `rustc_infer::infer::freshen` for more details.
///
/// Compare with [`TyVar`][Self::TyVar].
FreshTy(u32),
/// Like [`FreshTy`][Self::FreshTy], but as a replacement for [`IntVar`][Self::IntVar].
FreshIntTy(u32),
/// Like [`FreshTy`][Self::FreshTy], but as a replacement for [`FloatVar`][Self::FloatVar].
FreshFloatTy(u32),
}
rustc_index::newtype_index! {
pub struct BoundVar { .. }
}

View File

@ -12,3 +12,4 @@ bitflags = "1.2.1"
rustc_index = { path = "../rustc_index" }
rustc_serialize = { path = "../rustc_serialize" }
rustc_data_structures = { path = "../rustc_data_structures" }
rustc_macros = { path = "../rustc_macros" }

View File

@ -4,8 +4,13 @@
#[macro_use]
extern crate bitflags;
#[macro_use]
extern crate rustc_macros;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::unify::{EqUnifyValue, UnifyKey};
use std::fmt;
use std::mem::discriminant;
bitflags! {
/// Flags that we track on types. These flags are propagated upwards
@ -197,8 +202,409 @@ impl DebruijnIndex {
}
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[derive(Encodable, Decodable)]
pub enum IntTy {
Isize,
I8,
I16,
I32,
I64,
I128,
}
impl IntTy {
pub fn name_str(&self) -> &'static str {
match *self {
IntTy::Isize => "isize",
IntTy::I8 => "i8",
IntTy::I16 => "i16",
IntTy::I32 => "i32",
IntTy::I64 => "i64",
IntTy::I128 => "i128",
}
}
pub fn bit_width(&self) -> Option<u64> {
Some(match *self {
IntTy::Isize => return None,
IntTy::I8 => 8,
IntTy::I16 => 16,
IntTy::I32 => 32,
IntTy::I64 => 64,
IntTy::I128 => 128,
})
}
pub fn normalize(&self, target_width: u32) -> Self {
match self {
IntTy::Isize => match target_width {
16 => IntTy::I16,
32 => IntTy::I32,
64 => IntTy::I64,
_ => unreachable!(),
},
_ => *self,
}
}
}
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Copy, Debug)]
#[derive(Encodable, Decodable)]
pub enum UintTy {
Usize,
U8,
U16,
U32,
U64,
U128,
}
impl UintTy {
pub fn name_str(&self) -> &'static str {
match *self {
UintTy::Usize => "usize",
UintTy::U8 => "u8",
UintTy::U16 => "u16",
UintTy::U32 => "u32",
UintTy::U64 => "u64",
UintTy::U128 => "u128",
}
}
pub fn bit_width(&self) -> Option<u64> {
Some(match *self {
UintTy::Usize => return None,
UintTy::U8 => 8,
UintTy::U16 => 16,
UintTy::U32 => 32,
UintTy::U64 => 64,
UintTy::U128 => 128,
})
}
pub fn normalize(&self, target_width: u32) -> Self {
match self {
UintTy::Usize => match target_width {
16 => UintTy::U16,
32 => UintTy::U32,
64 => UintTy::U64,
_ => unreachable!(),
},
_ => *self,
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[derive(Encodable, Decodable)]
pub enum FloatTy {
F32,
F64,
}
impl FloatTy {
pub fn name_str(self) -> &'static str {
match self {
FloatTy::F32 => "f32",
FloatTy::F64 => "f64",
}
}
pub fn bit_width(self) -> u64 {
match self {
FloatTy::F32 => 32,
FloatTy::F64 => 64,
}
}
}
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum IntVarValue {
IntType(IntTy),
UintType(UintTy),
}
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct FloatVarValue(pub FloatTy);
/// A **ty**pe **v**ariable **ID**.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable)]
pub struct TyVid {
pub index: u32,
}
/// An **int**egral (`u32`, `i32`, `usize`, etc.) type **v**ariable **ID**.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable)]
pub struct IntVid {
pub index: u32,
}
/// An **float**ing-point (`f32` or `f64`) type **v**ariable **ID**.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable)]
pub struct FloatVid {
pub index: u32,
}
/// A placeholder for a type that hasn't been inferred yet.
///
/// E.g., if we have an empty array (`[]`), then we create a fresh
/// type variable for the element type since we won't know until it's
/// used what the element type is supposed to be.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable)]
pub enum InferTy {
/// A type variable.
TyVar(TyVid),
/// An integral type variable (`{integer}`).
///
/// These are created when the compiler sees an integer literal like
/// `1` that could be several different types (`u8`, `i32`, `u32`, etc.).
/// We don't know until it's used what type it's supposed to be, so
/// we create a fresh type variable.
IntVar(IntVid),
/// A floating-point type variable (`{float}`).
///
/// These are created when the compiler sees an float literal like
/// `1.0` that could be either an `f32` or an `f64`.
/// We don't know until it's used what type it's supposed to be, so
/// we create a fresh type variable.
FloatVar(FloatVid),
/// A [`FreshTy`][Self::FreshTy] is one that is generated as a replacement
/// for an unbound type variable. This is convenient for caching etc. See
/// `rustc_infer::infer::freshen` for more details.
///
/// Compare with [`TyVar`][Self::TyVar].
FreshTy(u32),
/// Like [`FreshTy`][Self::FreshTy], but as a replacement for [`IntVar`][Self::IntVar].
FreshIntTy(u32),
/// Like [`FreshTy`][Self::FreshTy], but as a replacement for [`FloatVar`][Self::FloatVar].
FreshFloatTy(u32),
}
/// Raw `TyVid` are used as the unification key for `sub_relations`;
/// they carry no values.
impl UnifyKey for TyVid {
type Value = ();
fn index(&self) -> u32 {
self.index
}
fn from_index(i: u32) -> TyVid {
TyVid { index: i }
}
fn tag() -> &'static str {
"TyVid"
}
}
impl EqUnifyValue for IntVarValue {}
impl UnifyKey for IntVid {
type Value = Option<IntVarValue>;
fn index(&self) -> u32 {
self.index
}
fn from_index(i: u32) -> IntVid {
IntVid { index: i }
}
fn tag() -> &'static str {
"IntVid"
}
}
impl EqUnifyValue for FloatVarValue {}
impl UnifyKey for FloatVid {
type Value = Option<FloatVarValue>;
fn index(&self) -> u32 {
self.index
}
fn from_index(i: u32) -> FloatVid {
FloatVid { index: i }
}
fn tag() -> &'static str {
"FloatVid"
}
}
#[derive(Copy, Clone, PartialEq, Decodable, Encodable)]
pub enum Variance {
Covariant, // T<A> <: T<B> iff A <: B -- e.g., function return type
Invariant, // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
Contravariant, // T<A> <: T<B> iff B <: A -- e.g., function param type
Bivariant, // T<A> <: T<B> -- e.g., unused type parameter
}
impl Variance {
/// `a.xform(b)` combines the variance of a context with the
/// variance of a type with the following meaning. If we are in a
/// context with variance `a`, and we encounter a type argument in
/// a position with variance `b`, then `a.xform(b)` is the new
/// variance with which the argument appears.
///
/// Example 1:
///
/// *mut Vec<i32>
///
/// Here, the "ambient" variance starts as covariant. `*mut T` is
/// invariant with respect to `T`, so the variance in which the
/// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
/// yields `Invariant`. Now, the type `Vec<T>` is covariant with
/// respect to its type argument `T`, and hence the variance of
/// the `i32` here is `Invariant.xform(Covariant)`, which results
/// (again) in `Invariant`.
///
/// Example 2:
///
/// fn(*const Vec<i32>, *mut Vec<i32)
///
/// The ambient variance is covariant. A `fn` type is
/// contravariant with respect to its parameters, so the variance
/// within which both pointer types appear is
/// `Covariant.xform(Contravariant)`, or `Contravariant`. `*const
/// T` is covariant with respect to `T`, so the variance within
/// which the first `Vec<i32>` appears is
/// `Contravariant.xform(Covariant)` or `Contravariant`. The same
/// is true for its `i32` argument. In the `*mut T` case, the
/// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
/// and hence the outermost type is `Invariant` with respect to
/// `Vec<i32>` (and its `i32` argument).
///
/// Source: Figure 1 of "Taming the Wildcards:
/// Combining Definition- and Use-Site Variance" published in PLDI'11.
pub fn xform(self, v: Variance) -> Variance {
match (self, v) {
// Figure 1, column 1.
(Variance::Covariant, Variance::Covariant) => Variance::Covariant,
(Variance::Covariant, Variance::Contravariant) => Variance::Contravariant,
(Variance::Covariant, Variance::Invariant) => Variance::Invariant,
(Variance::Covariant, Variance::Bivariant) => Variance::Bivariant,
// Figure 1, column 2.
(Variance::Contravariant, Variance::Covariant) => Variance::Contravariant,
(Variance::Contravariant, Variance::Contravariant) => Variance::Covariant,
(Variance::Contravariant, Variance::Invariant) => Variance::Invariant,
(Variance::Contravariant, Variance::Bivariant) => Variance::Bivariant,
// Figure 1, column 3.
(Variance::Invariant, _) => Variance::Invariant,
// Figure 1, column 4.
(Variance::Bivariant, _) => Variance::Bivariant,
}
}
}
impl<CTX> HashStable<CTX> for DebruijnIndex {
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
self.as_u32().hash_stable(ctx, hasher);
}
}
impl<CTX> HashStable<CTX> for IntTy {
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
discriminant(self).hash_stable(ctx, hasher);
}
}
impl<CTX> HashStable<CTX> for UintTy {
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
discriminant(self).hash_stable(ctx, hasher);
}
}
impl<CTX> HashStable<CTX> for FloatTy {
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
discriminant(self).hash_stable(ctx, hasher);
}
}
impl<CTX> HashStable<CTX> for InferTy {
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
use InferTy::*;
match self {
TyVar(v) => v.index.hash_stable(ctx, hasher),
IntVar(v) => v.index.hash_stable(ctx, hasher),
FloatVar(v) => v.index.hash_stable(ctx, hasher),
FreshTy(v) | FreshIntTy(v) | FreshFloatTy(v) => v.hash_stable(ctx, hasher),
}
}
}
impl<CTX> HashStable<CTX> for Variance {
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
discriminant(self).hash_stable(ctx, hasher);
}
}
impl fmt::Debug for IntVarValue {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
IntVarValue::IntType(ref v) => v.fmt(f),
IntVarValue::UintType(ref v) => v.fmt(f),
}
}
}
impl fmt::Debug for FloatVarValue {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
impl fmt::Debug for TyVid {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "_#{}t", self.index)
}
}
impl fmt::Debug for IntVid {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "_#{}i", self.index)
}
}
impl fmt::Debug for FloatVid {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "_#{}f", self.index)
}
}
impl fmt::Debug for InferTy {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use InferTy::*;
match *self {
TyVar(ref v) => v.fmt(f),
IntVar(ref v) => v.fmt(f),
FloatVar(ref v) => v.fmt(f),
FreshTy(v) => write!(f, "FreshTy({:?})", v),
FreshIntTy(v) => write!(f, "FreshIntTy({:?})", v),
FreshFloatTy(v) => write!(f, "FreshFloatTy({:?})", v),
}
}
}
impl fmt::Debug for Variance {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match *self {
Variance::Covariant => "+",
Variance::Contravariant => "-",
Variance::Invariant => "o",
Variance::Bivariant => "*",
})
}
}
impl fmt::Display for InferTy {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use InferTy::*;
match *self {
TyVar(_) => write!(f, "_"),
IntVar(_) => write!(f, "{}", "{integer}"),
FloatVar(_) => write!(f, "{}", "{float}"),
FreshTy(v) => write!(f, "FreshTy({})", v),
FreshIntTy(v) => write!(f, "FreshIntTy({})", v),
FreshFloatTy(v) => write!(f, "FreshFloatTy({})", v),
}
}
}