auto merge of #7050 : huonw/rust/extra-complex-work, r=Aatch
This commit is contained in:
commit
075da9c3e9
@ -318,7 +318,7 @@ be distributed on the available cores.
|
||||
fn partial_sum(start: uint) -> f64 {
|
||||
let mut local_sum = 0f64;
|
||||
for uint::range(start*100000, (start+1)*100000) |num| {
|
||||
local_sum += (num as f64 + 1.0).pow(-2.0);
|
||||
local_sum += (num as f64 + 1.0).pow(&-2.0);
|
||||
}
|
||||
local_sum
|
||||
}
|
||||
@ -355,7 +355,7 @@ a single large vector of floats. Each task needs the full vector to perform its
|
||||
use extra::arc::ARC;
|
||||
|
||||
fn pnorm(nums: &~[float], p: uint) -> float {
|
||||
nums.iter().fold(0.0, |a,b| a+(*b).pow(p as float) ).pow(1f / (p as float))
|
||||
nums.iter().fold(0.0, |a,b| a+(*b).pow(&(p as float)) ).pow(&(1f / (p as float)))
|
||||
}
|
||||
|
||||
fn main() {
|
||||
|
@ -35,7 +35,7 @@ pub type Complex = Cmplx<float>;
|
||||
pub type Complex32 = Cmplx<f32>;
|
||||
pub type Complex64 = Cmplx<f64>;
|
||||
|
||||
impl<T: Copy + Num> Cmplx<T> {
|
||||
impl<T: Clone + Num> Cmplx<T> {
|
||||
/// Create a new Cmplx
|
||||
#[inline]
|
||||
pub fn new(re: T, im: T) -> Cmplx<T> {
|
||||
@ -55,7 +55,7 @@ impl<T: Copy + Num> Cmplx<T> {
|
||||
/// Returns the complex conjugate. i.e. `re - i im`
|
||||
#[inline]
|
||||
pub fn conj(&self) -> Cmplx<T> {
|
||||
Cmplx::new(self.re, -self.im)
|
||||
Cmplx::new(self.re.clone(), -self.im)
|
||||
}
|
||||
|
||||
|
||||
@ -80,42 +80,71 @@ impl<T: Copy + Num> Cmplx<T> {
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(not(stage0))] // Fixed by #4228
|
||||
impl<T: Clone + Algebraic + Num> Cmplx<T> {
|
||||
/// Calculate |self|
|
||||
#[inline(always)]
|
||||
pub fn norm(&self) -> T {
|
||||
self.re.hypot(&self.im)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(not(stage0))] // Fixed by #4228
|
||||
impl<T: Clone + Trigonometric + Algebraic + Num> Cmplx<T> {
|
||||
/// Calculate the principal Arg of self.
|
||||
#[inline(always)]
|
||||
pub fn arg(&self) -> T {
|
||||
self.im.atan2(&self.re)
|
||||
}
|
||||
/// Convert to polar form (r, theta), such that `self = r * exp(i
|
||||
/// * theta)`
|
||||
#[inline]
|
||||
pub fn to_polar(&self) -> (T, T) {
|
||||
(self.norm(), self.arg())
|
||||
}
|
||||
/// Convert a polar representation into a complex number.
|
||||
#[inline]
|
||||
pub fn from_polar(r: &T, theta: &T) -> Cmplx<T> {
|
||||
Cmplx::new(r * theta.cos(), r * theta.sin())
|
||||
}
|
||||
}
|
||||
|
||||
/* arithmetic */
|
||||
// (a + i b) + (c + i d) == (a + c) + i (b + d)
|
||||
impl<T: Copy + Num> Add<Cmplx<T>, Cmplx<T>> for Cmplx<T> {
|
||||
impl<T: Clone + Num> Add<Cmplx<T>, Cmplx<T>> for Cmplx<T> {
|
||||
#[inline]
|
||||
fn add(&self, other: &Cmplx<T>) -> Cmplx<T> {
|
||||
Cmplx::new(self.re + other.re, self.im + other.im)
|
||||
}
|
||||
}
|
||||
// (a + i b) - (c + i d) == (a - c) + i (b - d)
|
||||
impl<T: Copy + Num> Sub<Cmplx<T>, Cmplx<T>> for Cmplx<T> {
|
||||
impl<T: Clone + Num> Sub<Cmplx<T>, Cmplx<T>> for Cmplx<T> {
|
||||
#[inline]
|
||||
fn sub(&self, other: &Cmplx<T>) -> Cmplx<T> {
|
||||
Cmplx::new(self.re - other.re, self.im - other.im)
|
||||
}
|
||||
}
|
||||
// (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c)
|
||||
impl<T: Copy + Num> Mul<Cmplx<T>, Cmplx<T>> for Cmplx<T> {
|
||||
impl<T: Clone + Num> Mul<Cmplx<T>, Cmplx<T>> for Cmplx<T> {
|
||||
#[inline]
|
||||
fn mul(&self, other: &Cmplx<T>) -> Cmplx<T> {
|
||||
Cmplx::new(self.re*other.re - self.im*other.im,
|
||||
self.re*other.im + self.im*other.re)
|
||||
self.re*other.im + self.im*other.re)
|
||||
}
|
||||
}
|
||||
|
||||
// (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d)
|
||||
// == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)]
|
||||
impl<T: Copy + Num> Div<Cmplx<T>, Cmplx<T>> for Cmplx<T> {
|
||||
impl<T: Clone + Num> Div<Cmplx<T>, Cmplx<T>> for Cmplx<T> {
|
||||
#[inline]
|
||||
fn div(&self, other: &Cmplx<T>) -> Cmplx<T> {
|
||||
let norm_sqr = other.norm_sqr();
|
||||
Cmplx::new((self.re*other.re + self.im*other.im) / norm_sqr,
|
||||
(self.im*other.re - self.re*other.im) / norm_sqr)
|
||||
(self.im*other.re - self.re*other.im) / norm_sqr)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Copy + Num> Neg<Cmplx<T>> for Cmplx<T> {
|
||||
impl<T: Clone + Num> Neg<Cmplx<T>> for Cmplx<T> {
|
||||
#[inline]
|
||||
fn neg(&self) -> Cmplx<T> {
|
||||
Cmplx::new(-self.re, -self.im)
|
||||
@ -123,7 +152,7 @@ impl<T: Copy + Num> Neg<Cmplx<T>> for Cmplx<T> {
|
||||
}
|
||||
|
||||
/* constants */
|
||||
impl<T: Copy + Num> Zero for Cmplx<T> {
|
||||
impl<T: Clone + Num> Zero for Cmplx<T> {
|
||||
#[inline]
|
||||
fn zero() -> Cmplx<T> {
|
||||
Cmplx::new(Zero::zero(), Zero::zero())
|
||||
@ -131,11 +160,11 @@ impl<T: Copy + Num> Zero for Cmplx<T> {
|
||||
|
||||
#[inline]
|
||||
fn is_zero(&self) -> bool {
|
||||
*self == Zero::zero()
|
||||
self.re.is_zero() && self.im.is_zero()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Copy + Num> One for Cmplx<T> {
|
||||
impl<T: Clone + Num> One for Cmplx<T> {
|
||||
#[inline]
|
||||
fn one() -> Cmplx<T> {
|
||||
Cmplx::new(One::one(), Zero::zero())
|
||||
@ -166,7 +195,7 @@ impl<T: ToStrRadix + Num + Ord> ToStrRadix for Cmplx<T> {
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::*;
|
||||
use core::num::{Zero,One};
|
||||
use core::num::{Zero,One,Real};
|
||||
|
||||
pub static _0_0i : Complex = Cmplx { re: 0f, im: 0f };
|
||||
pub static _1_0i : Complex = Cmplx { re: 1f, im: 0f };
|
||||
@ -193,9 +222,10 @@ mod test {
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_norm_sqr() {
|
||||
fn test_norm() {
|
||||
fn test(c: Complex, ns: float) {
|
||||
assert_eq!(c.norm_sqr(), ns);
|
||||
assert_eq!(c.norm(), ns.sqrt())
|
||||
}
|
||||
test(_0_0i, 0f);
|
||||
test(_1_0i, 1f);
|
||||
@ -235,6 +265,25 @@ mod test {
|
||||
_0_0i.inv();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_arg() {
|
||||
fn test(c: Complex, arg: float) {
|
||||
assert!(c.arg().approx_eq(&arg))
|
||||
}
|
||||
test(_1_0i, 0f);
|
||||
test(_1_1i, 0.25f * Real::pi());
|
||||
test(_neg1_1i, 0.75f * Real::pi());
|
||||
test(_05_05i, 0.25f * Real::pi());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_polar_conv() {
|
||||
fn test(c: Complex) {
|
||||
let (r, theta) = c.to_polar();
|
||||
assert!((c - Cmplx::from_polar(&r, &theta)).norm() < 1e-6);
|
||||
}
|
||||
for all_consts.each |&c| { test(c); }
|
||||
}
|
||||
|
||||
mod arith {
|
||||
use super::*;
|
||||
|
@ -391,7 +391,7 @@ impl Fractional for f32 {
|
||||
|
||||
impl Algebraic for f32 {
|
||||
#[inline(always)]
|
||||
fn pow(&self, n: f32) -> f32 { pow(*self, n) }
|
||||
fn pow(&self, n: &f32) -> f32 { pow(*self, *n) }
|
||||
|
||||
#[inline(always)]
|
||||
fn sqrt(&self) -> f32 { sqrt(*self) }
|
||||
@ -403,7 +403,7 @@ impl Algebraic for f32 {
|
||||
fn cbrt(&self) -> f32 { cbrt(*self) }
|
||||
|
||||
#[inline(always)]
|
||||
fn hypot(&self, other: f32) -> f32 { hypot(*self, other) }
|
||||
fn hypot(&self, other: &f32) -> f32 { hypot(*self, *other) }
|
||||
}
|
||||
|
||||
impl Trigonometric for f32 {
|
||||
@ -426,7 +426,7 @@ impl Trigonometric for f32 {
|
||||
fn atan(&self) -> f32 { atan(*self) }
|
||||
|
||||
#[inline(always)]
|
||||
fn atan2(&self, other: f32) -> f32 { atan2(*self, other) }
|
||||
fn atan2(&self, other: &f32) -> f32 { atan2(*self, *other) }
|
||||
|
||||
/// Simultaneously computes the sine and cosine of the number
|
||||
#[inline(always)]
|
||||
@ -450,7 +450,7 @@ impl Exponential for f32 {
|
||||
|
||||
/// Returns the logarithm of the number with respect to an arbitrary base
|
||||
#[inline(always)]
|
||||
fn log(&self, base: f32) -> f32 { self.ln() / base.ln() }
|
||||
fn log(&self, base: &f32) -> f32 { self.ln() / base.ln() }
|
||||
|
||||
/// Returns the base 2 logarithm of the number
|
||||
#[inline(always)]
|
||||
|
@ -403,7 +403,7 @@ impl Fractional for f64 {
|
||||
|
||||
impl Algebraic for f64 {
|
||||
#[inline(always)]
|
||||
fn pow(&self, n: f64) -> f64 { pow(*self, n) }
|
||||
fn pow(&self, n: &f64) -> f64 { pow(*self, *n) }
|
||||
|
||||
#[inline(always)]
|
||||
fn sqrt(&self) -> f64 { sqrt(*self) }
|
||||
@ -415,7 +415,7 @@ impl Algebraic for f64 {
|
||||
fn cbrt(&self) -> f64 { cbrt(*self) }
|
||||
|
||||
#[inline(always)]
|
||||
fn hypot(&self, other: f64) -> f64 { hypot(*self, other) }
|
||||
fn hypot(&self, other: &f64) -> f64 { hypot(*self, *other) }
|
||||
}
|
||||
|
||||
impl Trigonometric for f64 {
|
||||
@ -438,7 +438,7 @@ impl Trigonometric for f64 {
|
||||
fn atan(&self) -> f64 { atan(*self) }
|
||||
|
||||
#[inline(always)]
|
||||
fn atan2(&self, other: f64) -> f64 { atan2(*self, other) }
|
||||
fn atan2(&self, other: &f64) -> f64 { atan2(*self, *other) }
|
||||
|
||||
/// Simultaneously computes the sine and cosine of the number
|
||||
#[inline(always)]
|
||||
@ -462,7 +462,7 @@ impl Exponential for f64 {
|
||||
|
||||
/// Returns the logarithm of the number with respect to an arbitrary base
|
||||
#[inline(always)]
|
||||
fn log(&self, base: f64) -> f64 { self.ln() / base.ln() }
|
||||
fn log(&self, base: &f64) -> f64 { self.ln() / base.ln() }
|
||||
|
||||
/// Returns the base 2 logarithm of the number
|
||||
#[inline(always)]
|
||||
|
@ -475,8 +475,8 @@ impl Fractional for float {
|
||||
|
||||
impl Algebraic for float {
|
||||
#[inline(always)]
|
||||
fn pow(&self, n: float) -> float {
|
||||
(*self as f64).pow(n as f64) as float
|
||||
fn pow(&self, n: &float) -> float {
|
||||
(*self as f64).pow(&(*n as f64)) as float
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
@ -495,8 +495,8 @@ impl Algebraic for float {
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn hypot(&self, other: float) -> float {
|
||||
(*self as f64).hypot(other as f64) as float
|
||||
fn hypot(&self, other: &float) -> float {
|
||||
(*self as f64).hypot(&(*other as f64)) as float
|
||||
}
|
||||
}
|
||||
|
||||
@ -532,8 +532,8 @@ impl Trigonometric for float {
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn atan2(&self, other: float) -> float {
|
||||
(*self as f64).atan2(other as f64) as float
|
||||
fn atan2(&self, other: &float) -> float {
|
||||
(*self as f64).atan2(&(*other as f64)) as float
|
||||
}
|
||||
|
||||
/// Simultaneously computes the sine and cosine of the number
|
||||
@ -566,8 +566,8 @@ impl Exponential for float {
|
||||
|
||||
/// Returns the logarithm of the number with respect to an arbitrary base
|
||||
#[inline(always)]
|
||||
fn log(&self, base: float) -> float {
|
||||
(*self as f64).log(base as f64) as float
|
||||
fn log(&self, base: &float) -> float {
|
||||
(*self as f64).log(&(*base as f64)) as float
|
||||
}
|
||||
|
||||
/// Returns the base 2 logarithm of the number
|
||||
|
@ -106,11 +106,11 @@ pub trait Fractional: Num
|
||||
}
|
||||
|
||||
pub trait Algebraic {
|
||||
fn pow(&self, n: Self) -> Self;
|
||||
fn pow(&self, n: &Self) -> Self;
|
||||
fn sqrt(&self) -> Self;
|
||||
fn rsqrt(&self) -> Self;
|
||||
fn cbrt(&self) -> Self;
|
||||
fn hypot(&self, other: Self) -> Self;
|
||||
fn hypot(&self, other: &Self) -> Self;
|
||||
}
|
||||
|
||||
pub trait Trigonometric {
|
||||
@ -120,7 +120,7 @@ pub trait Trigonometric {
|
||||
fn asin(&self) -> Self;
|
||||
fn acos(&self) -> Self;
|
||||
fn atan(&self) -> Self;
|
||||
fn atan2(&self, other: Self) -> Self;
|
||||
fn atan2(&self, other: &Self) -> Self;
|
||||
fn sin_cos(&self) -> (Self, Self);
|
||||
}
|
||||
|
||||
@ -128,7 +128,7 @@ pub trait Exponential {
|
||||
fn exp(&self) -> Self;
|
||||
fn exp2(&self) -> Self;
|
||||
fn ln(&self) -> Self;
|
||||
fn log(&self, base: Self) -> Self;
|
||||
fn log(&self, base: &Self) -> Self;
|
||||
fn log2(&self) -> Self;
|
||||
fn log10(&self) -> Self;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user