Moved all Adt* types to adt.rs

This commit is contained in:
Nicholas-Baron 2021-03-09 21:47:12 -08:00
parent ffcf7e8b6d
commit 0ba5a6b6e5
2 changed files with 488 additions and 467 deletions

View File

@ -0,0 +1,482 @@
use crate::ich::StableHashingContext;
use crate::mir::interpret::ErrorHandled;
use crate::ty;
use crate::ty::util::{Discr, IntTypeExt};
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_errors::ErrorReported;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_index::vec::{Idx, IndexVec};
use rustc_serialize::{self, Encodable, Encoder};
use rustc_session::DataTypeKind;
use rustc_span::symbol::sym;
use rustc_target::abi::VariantIdx;
use std::cell::RefCell;
use std::cmp::Ordering;
use std::hash::{Hash, Hasher};
use std::ops::Range;
use std::{ptr, str};
use super::{
Destructor, FieldDef, GenericPredicates, ReprOptions, Ty, TyCtxt, VariantDef, VariantDiscr,
};
#[derive(Clone, HashStable, Debug)]
pub struct AdtSizedConstraint<'tcx>(pub &'tcx [Ty<'tcx>]);
bitflags! {
#[derive(HashStable)]
pub struct AdtFlags: u32 {
const NO_ADT_FLAGS = 0;
/// Indicates whether the ADT is an enum.
const IS_ENUM = 1 << 0;
/// Indicates whether the ADT is a union.
const IS_UNION = 1 << 1;
/// Indicates whether the ADT is a struct.
const IS_STRUCT = 1 << 2;
/// Indicates whether the ADT is a struct and has a constructor.
const HAS_CTOR = 1 << 3;
/// Indicates whether the type is `PhantomData`.
const IS_PHANTOM_DATA = 1 << 4;
/// Indicates whether the type has a `#[fundamental]` attribute.
const IS_FUNDAMENTAL = 1 << 5;
/// Indicates whether the type is `Box`.
const IS_BOX = 1 << 6;
/// Indicates whether the type is `ManuallyDrop`.
const IS_MANUALLY_DROP = 1 << 7;
/// Indicates whether the variant list of this ADT is `#[non_exhaustive]`.
/// (i.e., this flag is never set unless this ADT is an enum).
const IS_VARIANT_LIST_NON_EXHAUSTIVE = 1 << 8;
}
}
/// The definition of a user-defined type, e.g., a `struct`, `enum`, or `union`.
///
/// These are all interned (by `alloc_adt_def`) into the global arena.
///
/// The initialism *ADT* stands for an [*algebraic data type (ADT)*][adt].
/// This is slightly wrong because `union`s are not ADTs.
/// Moreover, Rust only allows recursive data types through indirection.
///
/// [adt]: https://en.wikipedia.org/wiki/Algebraic_data_type
pub struct AdtDef {
/// The `DefId` of the struct, enum or union item.
pub did: DefId,
/// Variants of the ADT. If this is a struct or union, then there will be a single variant.
pub variants: IndexVec<VariantIdx, VariantDef>,
/// Flags of the ADT (e.g., is this a struct? is this non-exhaustive?).
flags: AdtFlags,
/// Repr options provided by the user.
pub repr: ReprOptions,
}
impl PartialOrd for AdtDef {
fn partial_cmp(&self, other: &AdtDef) -> Option<Ordering> {
Some(self.cmp(&other))
}
}
/// There should be only one AdtDef for each `did`, therefore
/// it is fine to implement `Ord` only based on `did`.
impl Ord for AdtDef {
fn cmp(&self, other: &AdtDef) -> Ordering {
self.did.cmp(&other.did)
}
}
impl PartialEq for AdtDef {
// `AdtDef`s are always interned, and this is part of `TyS` equality.
#[inline]
fn eq(&self, other: &Self) -> bool {
ptr::eq(self, other)
}
}
impl Eq for AdtDef {}
impl Hash for AdtDef {
#[inline]
fn hash<H: Hasher>(&self, s: &mut H) {
(self as *const AdtDef).hash(s)
}
}
impl<S: Encoder> Encodable<S> for AdtDef {
fn encode(&self, s: &mut S) -> Result<(), S::Error> {
self.did.encode(s)
}
}
impl<'a> HashStable<StableHashingContext<'a>> for AdtDef {
fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
thread_local! {
static CACHE: RefCell<FxHashMap<usize, Fingerprint>> = Default::default();
}
let hash: Fingerprint = CACHE.with(|cache| {
let addr = self as *const AdtDef as usize;
*cache.borrow_mut().entry(addr).or_insert_with(|| {
let ty::AdtDef { did, ref variants, ref flags, ref repr } = *self;
let mut hasher = StableHasher::new();
did.hash_stable(hcx, &mut hasher);
variants.hash_stable(hcx, &mut hasher);
flags.hash_stable(hcx, &mut hasher);
repr.hash_stable(hcx, &mut hasher);
hasher.finish()
})
});
hash.hash_stable(hcx, hasher);
}
}
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
pub enum AdtKind {
Struct,
Union,
Enum,
}
impl Into<DataTypeKind> for AdtKind {
fn into(self) -> DataTypeKind {
match self {
AdtKind::Struct => DataTypeKind::Struct,
AdtKind::Union => DataTypeKind::Union,
AdtKind::Enum => DataTypeKind::Enum,
}
}
}
impl<'tcx> AdtDef {
/// Creates a new `AdtDef`.
pub(super) fn new(
tcx: TyCtxt<'_>,
did: DefId,
kind: AdtKind,
variants: IndexVec<VariantIdx, VariantDef>,
repr: ReprOptions,
) -> Self {
debug!("AdtDef::new({:?}, {:?}, {:?}, {:?})", did, kind, variants, repr);
let mut flags = AdtFlags::NO_ADT_FLAGS;
if kind == AdtKind::Enum && tcx.has_attr(did, sym::non_exhaustive) {
debug!("found non-exhaustive variant list for {:?}", did);
flags = flags | AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE;
}
flags |= match kind {
AdtKind::Enum => AdtFlags::IS_ENUM,
AdtKind::Union => AdtFlags::IS_UNION,
AdtKind::Struct => AdtFlags::IS_STRUCT,
};
if kind == AdtKind::Struct && variants[VariantIdx::new(0)].ctor_def_id.is_some() {
flags |= AdtFlags::HAS_CTOR;
}
let attrs = tcx.get_attrs(did);
if tcx.sess.contains_name(&attrs, sym::fundamental) {
flags |= AdtFlags::IS_FUNDAMENTAL;
}
if Some(did) == tcx.lang_items().phantom_data() {
flags |= AdtFlags::IS_PHANTOM_DATA;
}
if Some(did) == tcx.lang_items().owned_box() {
flags |= AdtFlags::IS_BOX;
}
if Some(did) == tcx.lang_items().manually_drop() {
flags |= AdtFlags::IS_MANUALLY_DROP;
}
AdtDef { did, variants, flags, repr }
}
/// Returns `true` if this is a struct.
#[inline]
pub fn is_struct(&self) -> bool {
self.flags.contains(AdtFlags::IS_STRUCT)
}
/// Returns `true` if this is a union.
#[inline]
pub fn is_union(&self) -> bool {
self.flags.contains(AdtFlags::IS_UNION)
}
/// Returns `true` if this is a enum.
#[inline]
pub fn is_enum(&self) -> bool {
self.flags.contains(AdtFlags::IS_ENUM)
}
/// Returns `true` if the variant list of this ADT is `#[non_exhaustive]`.
#[inline]
pub fn is_variant_list_non_exhaustive(&self) -> bool {
self.flags.contains(AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE)
}
/// Returns the kind of the ADT.
#[inline]
pub fn adt_kind(&self) -> AdtKind {
if self.is_enum() {
AdtKind::Enum
} else if self.is_union() {
AdtKind::Union
} else {
AdtKind::Struct
}
}
/// Returns a description of this abstract data type.
pub fn descr(&self) -> &'static str {
match self.adt_kind() {
AdtKind::Struct => "struct",
AdtKind::Union => "union",
AdtKind::Enum => "enum",
}
}
/// Returns a description of a variant of this abstract data type.
#[inline]
pub fn variant_descr(&self) -> &'static str {
match self.adt_kind() {
AdtKind::Struct => "struct",
AdtKind::Union => "union",
AdtKind::Enum => "variant",
}
}
/// If this function returns `true`, it implies that `is_struct` must return `true`.
#[inline]
pub fn has_ctor(&self) -> bool {
self.flags.contains(AdtFlags::HAS_CTOR)
}
/// Returns `true` if this type is `#[fundamental]` for the purposes
/// of coherence checking.
#[inline]
pub fn is_fundamental(&self) -> bool {
self.flags.contains(AdtFlags::IS_FUNDAMENTAL)
}
/// Returns `true` if this is `PhantomData<T>`.
#[inline]
pub fn is_phantom_data(&self) -> bool {
self.flags.contains(AdtFlags::IS_PHANTOM_DATA)
}
/// Returns `true` if this is Box<T>.
#[inline]
pub fn is_box(&self) -> bool {
self.flags.contains(AdtFlags::IS_BOX)
}
/// Returns `true` if this is `ManuallyDrop<T>`.
#[inline]
pub fn is_manually_drop(&self) -> bool {
self.flags.contains(AdtFlags::IS_MANUALLY_DROP)
}
/// Returns `true` if this type has a destructor.
pub fn has_dtor(&self, tcx: TyCtxt<'tcx>) -> bool {
self.destructor(tcx).is_some()
}
/// Asserts this is a struct or union and returns its unique variant.
pub fn non_enum_variant(&self) -> &VariantDef {
assert!(self.is_struct() || self.is_union());
&self.variants[VariantIdx::new(0)]
}
#[inline]
pub fn predicates(&self, tcx: TyCtxt<'tcx>) -> GenericPredicates<'tcx> {
tcx.predicates_of(self.did)
}
/// Returns an iterator over all fields contained
/// by this ADT.
#[inline]
pub fn all_fields(&self) -> impl Iterator<Item = &FieldDef> + Clone {
self.variants.iter().flat_map(|v| v.fields.iter())
}
/// Whether the ADT lacks fields. Note that this includes uninhabited enums,
/// e.g., `enum Void {}` is considered payload free as well.
pub fn is_payloadfree(&self) -> bool {
self.variants.iter().all(|v| v.fields.is_empty())
}
/// Return a `VariantDef` given a variant id.
pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
self.variants.iter().find(|v| v.def_id == vid).expect("variant_with_id: unknown variant")
}
/// Return a `VariantDef` given a constructor id.
pub fn variant_with_ctor_id(&self, cid: DefId) -> &VariantDef {
self.variants
.iter()
.find(|v| v.ctor_def_id == Some(cid))
.expect("variant_with_ctor_id: unknown variant")
}
/// Return the index of `VariantDef` given a variant id.
pub fn variant_index_with_id(&self, vid: DefId) -> VariantIdx {
self.variants
.iter_enumerated()
.find(|(_, v)| v.def_id == vid)
.expect("variant_index_with_id: unknown variant")
.0
}
/// Return the index of `VariantDef` given a constructor id.
pub fn variant_index_with_ctor_id(&self, cid: DefId) -> VariantIdx {
self.variants
.iter_enumerated()
.find(|(_, v)| v.ctor_def_id == Some(cid))
.expect("variant_index_with_ctor_id: unknown variant")
.0
}
pub fn variant_of_res(&self, res: Res) -> &VariantDef {
match res {
Res::Def(DefKind::Variant, vid) => self.variant_with_id(vid),
Res::Def(DefKind::Ctor(..), cid) => self.variant_with_ctor_id(cid),
Res::Def(DefKind::Struct, _)
| Res::Def(DefKind::Union, _)
| Res::Def(DefKind::TyAlias, _)
| Res::Def(DefKind::AssocTy, _)
| Res::SelfTy(..)
| Res::SelfCtor(..) => self.non_enum_variant(),
_ => bug!("unexpected res {:?} in variant_of_res", res),
}
}
#[inline]
pub fn eval_explicit_discr(&self, tcx: TyCtxt<'tcx>, expr_did: DefId) -> Option<Discr<'tcx>> {
assert!(self.is_enum());
let param_env = tcx.param_env(expr_did);
let repr_type = self.repr.discr_type();
match tcx.const_eval_poly(expr_did) {
Ok(val) => {
let ty = repr_type.to_ty(tcx);
if let Some(b) = val.try_to_bits_for_ty(tcx, param_env, ty) {
trace!("discriminants: {} ({:?})", b, repr_type);
Some(Discr { val: b, ty })
} else {
info!("invalid enum discriminant: {:#?}", val);
crate::mir::interpret::struct_error(
tcx.at(tcx.def_span(expr_did)),
"constant evaluation of enum discriminant resulted in non-integer",
)
.emit();
None
}
}
Err(err) => {
let msg = match err {
ErrorHandled::Reported(ErrorReported) | ErrorHandled::Linted => {
"enum discriminant evaluation failed"
}
ErrorHandled::TooGeneric => "enum discriminant depends on generics",
};
tcx.sess.delay_span_bug(tcx.def_span(expr_did), msg);
None
}
}
}
#[inline]
pub fn discriminants(
&'tcx self,
tcx: TyCtxt<'tcx>,
) -> impl Iterator<Item = (VariantIdx, Discr<'tcx>)> + Captures<'tcx> {
assert!(self.is_enum());
let repr_type = self.repr.discr_type();
let initial = repr_type.initial_discriminant(tcx);
let mut prev_discr = None::<Discr<'tcx>>;
self.variants.iter_enumerated().map(move |(i, v)| {
let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
if let VariantDiscr::Explicit(expr_did) = v.discr {
if let Some(new_discr) = self.eval_explicit_discr(tcx, expr_did) {
discr = new_discr;
}
}
prev_discr = Some(discr);
(i, discr)
})
}
#[inline]
pub fn variant_range(&self) -> Range<VariantIdx> {
VariantIdx::new(0)..VariantIdx::new(self.variants.len())
}
/// Computes the discriminant value used by a specific variant.
/// Unlike `discriminants`, this is (amortized) constant-time,
/// only doing at most one query for evaluating an explicit
/// discriminant (the last one before the requested variant),
/// assuming there are no constant-evaluation errors there.
#[inline]
pub fn discriminant_for_variant(
&self,
tcx: TyCtxt<'tcx>,
variant_index: VariantIdx,
) -> Discr<'tcx> {
assert!(self.is_enum());
let (val, offset) = self.discriminant_def_for_variant(variant_index);
let explicit_value = val
.and_then(|expr_did| self.eval_explicit_discr(tcx, expr_did))
.unwrap_or_else(|| self.repr.discr_type().initial_discriminant(tcx));
explicit_value.checked_add(tcx, offset as u128).0
}
/// Yields a `DefId` for the discriminant and an offset to add to it
/// Alternatively, if there is no explicit discriminant, returns the
/// inferred discriminant directly.
pub fn discriminant_def_for_variant(&self, variant_index: VariantIdx) -> (Option<DefId>, u32) {
assert!(!self.variants.is_empty());
let mut explicit_index = variant_index.as_u32();
let expr_did;
loop {
match self.variants[VariantIdx::from_u32(explicit_index)].discr {
ty::VariantDiscr::Relative(0) => {
expr_did = None;
break;
}
ty::VariantDiscr::Relative(distance) => {
explicit_index -= distance;
}
ty::VariantDiscr::Explicit(did) => {
expr_did = Some(did);
break;
}
}
}
(expr_did, variant_index.as_u32() - explicit_index)
}
pub fn destructor(&self, tcx: TyCtxt<'tcx>) -> Option<Destructor> {
tcx.adt_destructor(self.did)
}
/// Returns a list of types such that `Self: Sized` if and only
/// if that type is `Sized`, or `TyErr` if this type is recursive.
///
/// Oddly enough, checking that the sized-constraint is `Sized` is
/// actually more expressive than checking all members:
/// the `Sized` trait is inductive, so an associated type that references
/// `Self` would prevent its containing ADT from being `Sized`.
///
/// Due to normalization being eager, this applies even if
/// the associated type is behind a pointer (e.g., issue #31299).
pub fn sized_constraint(&self, tcx: TyCtxt<'tcx>) -> &'tcx [Ty<'tcx>] {
tcx.adt_sized_constraint(self.did).0
}
}

View File

@ -14,6 +14,7 @@ pub use self::AssocItemContainer::*;
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
pub use self::Variance::*;
pub use adt::*;
pub use assoc::*;
pub use generics::*;
pub use upvar::*;
@ -24,39 +25,32 @@ use crate::hir::place::{
};
use crate::ich::StableHashingContext;
use crate::middle::cstore::CrateStoreDyn;
use crate::mir::interpret::ErrorHandled;
use crate::mir::{Body, GeneratorLayout};
use crate::traits::{self, Reveal};
use crate::ty;
use crate::ty::subst::{GenericArg, InternalSubsts, Subst, SubstsRef};
use crate::ty::util::{Discr, IntTypeExt};
use crate::ty::util::Discr;
use rustc_ast as ast;
use rustc_attr as attr;
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap};
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::sync::{self, par_iter, ParallelIterator};
use rustc_data_structures::tagged_ptr::CopyTaggedPtr;
use rustc_errors::ErrorReported;
use rustc_hir as hir;
use rustc_hir::def::{CtorKind, CtorOf, DefKind, Res};
use rustc_hir::def_id::{CrateNum, DefId, DefIdMap, LocalDefId, CRATE_DEF_INDEX};
use rustc_hir::lang_items::LangItem;
use rustc_hir::{Constness, Node};
use rustc_index::vec::{Idx, IndexVec};
use rustc_macros::HashStable;
use rustc_serialize::{self, Encodable, Encoder};
use rustc_session::DataTypeKind;
use rustc_span::hygiene::ExpnId;
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::symbol::{kw, Ident, Symbol};
use rustc_span::Span;
use rustc_target::abi::{Align, VariantIdx};
use rustc_target::abi::Align;
use std::cell::RefCell;
use std::cmp::Ordering;
use std::hash::{Hash, Hasher};
use std::ops::{ControlFlow, Range};
use std::ops::ControlFlow;
use std::{fmt, ptr, str};
pub use crate::ty::diagnostics::*;
@ -107,6 +101,7 @@ pub mod trait_def;
pub mod util;
pub mod walk;
mod adt;
mod assoc;
mod consts;
mod context;
@ -1447,32 +1442,6 @@ pub struct Destructor {
pub did: DefId,
}
bitflags! {
#[derive(HashStable)]
pub struct AdtFlags: u32 {
const NO_ADT_FLAGS = 0;
/// Indicates whether the ADT is an enum.
const IS_ENUM = 1 << 0;
/// Indicates whether the ADT is a union.
const IS_UNION = 1 << 1;
/// Indicates whether the ADT is a struct.
const IS_STRUCT = 1 << 2;
/// Indicates whether the ADT is a struct and has a constructor.
const HAS_CTOR = 1 << 3;
/// Indicates whether the type is `PhantomData`.
const IS_PHANTOM_DATA = 1 << 4;
/// Indicates whether the type has a `#[fundamental]` attribute.
const IS_FUNDAMENTAL = 1 << 5;
/// Indicates whether the type is `Box`.
const IS_BOX = 1 << 6;
/// Indicates whether the type is `ManuallyDrop`.
const IS_MANUALLY_DROP = 1 << 7;
/// Indicates whether the variant list of this ADT is `#[non_exhaustive]`.
/// (i.e., this flag is never set unless this ADT is an enum).
const IS_VARIANT_LIST_NON_EXHAUSTIVE = 1 << 8;
}
}
bitflags! {
#[derive(HashStable)]
pub struct VariantFlags: u32 {
@ -1596,105 +1565,6 @@ pub struct FieldDef {
pub vis: Visibility,
}
/// The definition of a user-defined type, e.g., a `struct`, `enum`, or `union`.
///
/// These are all interned (by `alloc_adt_def`) into the global arena.
///
/// The initialism *ADT* stands for an [*algebraic data type (ADT)*][adt].
/// This is slightly wrong because `union`s are not ADTs.
/// Moreover, Rust only allows recursive data types through indirection.
///
/// [adt]: https://en.wikipedia.org/wiki/Algebraic_data_type
pub struct AdtDef {
/// The `DefId` of the struct, enum or union item.
pub did: DefId,
/// Variants of the ADT. If this is a struct or union, then there will be a single variant.
pub variants: IndexVec<VariantIdx, VariantDef>,
/// Flags of the ADT (e.g., is this a struct? is this non-exhaustive?).
flags: AdtFlags,
/// Repr options provided by the user.
pub repr: ReprOptions,
}
impl PartialOrd for AdtDef {
fn partial_cmp(&self, other: &AdtDef) -> Option<Ordering> {
Some(self.cmp(&other))
}
}
/// There should be only one AdtDef for each `did`, therefore
/// it is fine to implement `Ord` only based on `did`.
impl Ord for AdtDef {
fn cmp(&self, other: &AdtDef) -> Ordering {
self.did.cmp(&other.did)
}
}
impl PartialEq for AdtDef {
// `AdtDef`s are always interned, and this is part of `TyS` equality.
#[inline]
fn eq(&self, other: &Self) -> bool {
ptr::eq(self, other)
}
}
impl Eq for AdtDef {}
impl Hash for AdtDef {
#[inline]
fn hash<H: Hasher>(&self, s: &mut H) {
(self as *const AdtDef).hash(s)
}
}
impl<S: Encoder> Encodable<S> for AdtDef {
fn encode(&self, s: &mut S) -> Result<(), S::Error> {
self.did.encode(s)
}
}
impl<'a> HashStable<StableHashingContext<'a>> for AdtDef {
fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
thread_local! {
static CACHE: RefCell<FxHashMap<usize, Fingerprint>> = Default::default();
}
let hash: Fingerprint = CACHE.with(|cache| {
let addr = self as *const AdtDef as usize;
*cache.borrow_mut().entry(addr).or_insert_with(|| {
let ty::AdtDef { did, ref variants, ref flags, ref repr } = *self;
let mut hasher = StableHasher::new();
did.hash_stable(hcx, &mut hasher);
variants.hash_stable(hcx, &mut hasher);
flags.hash_stable(hcx, &mut hasher);
repr.hash_stable(hcx, &mut hasher);
hasher.finish()
})
});
hash.hash_stable(hcx, hasher);
}
}
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
pub enum AdtKind {
Struct,
Union,
Enum,
}
impl Into<DataTypeKind> for AdtKind {
fn into(self) -> DataTypeKind {
match self {
AdtKind::Struct => DataTypeKind::Struct,
AdtKind::Union => DataTypeKind::Union,
AdtKind::Enum => DataTypeKind::Enum,
}
}
}
bitflags! {
#[derive(TyEncodable, TyDecodable, Default, HashStable)]
pub struct ReprFlags: u8 {
@ -1817,334 +1687,6 @@ impl ReprOptions {
}
}
impl<'tcx> AdtDef {
/// Creates a new `AdtDef`.
fn new(
tcx: TyCtxt<'_>,
did: DefId,
kind: AdtKind,
variants: IndexVec<VariantIdx, VariantDef>,
repr: ReprOptions,
) -> Self {
debug!("AdtDef::new({:?}, {:?}, {:?}, {:?})", did, kind, variants, repr);
let mut flags = AdtFlags::NO_ADT_FLAGS;
if kind == AdtKind::Enum && tcx.has_attr(did, sym::non_exhaustive) {
debug!("found non-exhaustive variant list for {:?}", did);
flags = flags | AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE;
}
flags |= match kind {
AdtKind::Enum => AdtFlags::IS_ENUM,
AdtKind::Union => AdtFlags::IS_UNION,
AdtKind::Struct => AdtFlags::IS_STRUCT,
};
if kind == AdtKind::Struct && variants[VariantIdx::new(0)].ctor_def_id.is_some() {
flags |= AdtFlags::HAS_CTOR;
}
let attrs = tcx.get_attrs(did);
if tcx.sess.contains_name(&attrs, sym::fundamental) {
flags |= AdtFlags::IS_FUNDAMENTAL;
}
if Some(did) == tcx.lang_items().phantom_data() {
flags |= AdtFlags::IS_PHANTOM_DATA;
}
if Some(did) == tcx.lang_items().owned_box() {
flags |= AdtFlags::IS_BOX;
}
if Some(did) == tcx.lang_items().manually_drop() {
flags |= AdtFlags::IS_MANUALLY_DROP;
}
AdtDef { did, variants, flags, repr }
}
/// Returns `true` if this is a struct.
#[inline]
pub fn is_struct(&self) -> bool {
self.flags.contains(AdtFlags::IS_STRUCT)
}
/// Returns `true` if this is a union.
#[inline]
pub fn is_union(&self) -> bool {
self.flags.contains(AdtFlags::IS_UNION)
}
/// Returns `true` if this is a enum.
#[inline]
pub fn is_enum(&self) -> bool {
self.flags.contains(AdtFlags::IS_ENUM)
}
/// Returns `true` if the variant list of this ADT is `#[non_exhaustive]`.
#[inline]
pub fn is_variant_list_non_exhaustive(&self) -> bool {
self.flags.contains(AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE)
}
/// Returns the kind of the ADT.
#[inline]
pub fn adt_kind(&self) -> AdtKind {
if self.is_enum() {
AdtKind::Enum
} else if self.is_union() {
AdtKind::Union
} else {
AdtKind::Struct
}
}
/// Returns a description of this abstract data type.
pub fn descr(&self) -> &'static str {
match self.adt_kind() {
AdtKind::Struct => "struct",
AdtKind::Union => "union",
AdtKind::Enum => "enum",
}
}
/// Returns a description of a variant of this abstract data type.
#[inline]
pub fn variant_descr(&self) -> &'static str {
match self.adt_kind() {
AdtKind::Struct => "struct",
AdtKind::Union => "union",
AdtKind::Enum => "variant",
}
}
/// If this function returns `true`, it implies that `is_struct` must return `true`.
#[inline]
pub fn has_ctor(&self) -> bool {
self.flags.contains(AdtFlags::HAS_CTOR)
}
/// Returns `true` if this type is `#[fundamental]` for the purposes
/// of coherence checking.
#[inline]
pub fn is_fundamental(&self) -> bool {
self.flags.contains(AdtFlags::IS_FUNDAMENTAL)
}
/// Returns `true` if this is `PhantomData<T>`.
#[inline]
pub fn is_phantom_data(&self) -> bool {
self.flags.contains(AdtFlags::IS_PHANTOM_DATA)
}
/// Returns `true` if this is Box<T>.
#[inline]
pub fn is_box(&self) -> bool {
self.flags.contains(AdtFlags::IS_BOX)
}
/// Returns `true` if this is `ManuallyDrop<T>`.
#[inline]
pub fn is_manually_drop(&self) -> bool {
self.flags.contains(AdtFlags::IS_MANUALLY_DROP)
}
/// Returns `true` if this type has a destructor.
pub fn has_dtor(&self, tcx: TyCtxt<'tcx>) -> bool {
self.destructor(tcx).is_some()
}
/// Asserts this is a struct or union and returns its unique variant.
pub fn non_enum_variant(&self) -> &VariantDef {
assert!(self.is_struct() || self.is_union());
&self.variants[VariantIdx::new(0)]
}
#[inline]
pub fn predicates(&self, tcx: TyCtxt<'tcx>) -> GenericPredicates<'tcx> {
tcx.predicates_of(self.did)
}
/// Returns an iterator over all fields contained
/// by this ADT.
#[inline]
pub fn all_fields(&self) -> impl Iterator<Item = &FieldDef> + Clone {
self.variants.iter().flat_map(|v| v.fields.iter())
}
/// Whether the ADT lacks fields. Note that this includes uninhabited enums,
/// e.g., `enum Void {}` is considered payload free as well.
pub fn is_payloadfree(&self) -> bool {
self.variants.iter().all(|v| v.fields.is_empty())
}
/// Return a `VariantDef` given a variant id.
pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
self.variants.iter().find(|v| v.def_id == vid).expect("variant_with_id: unknown variant")
}
/// Return a `VariantDef` given a constructor id.
pub fn variant_with_ctor_id(&self, cid: DefId) -> &VariantDef {
self.variants
.iter()
.find(|v| v.ctor_def_id == Some(cid))
.expect("variant_with_ctor_id: unknown variant")
}
/// Return the index of `VariantDef` given a variant id.
pub fn variant_index_with_id(&self, vid: DefId) -> VariantIdx {
self.variants
.iter_enumerated()
.find(|(_, v)| v.def_id == vid)
.expect("variant_index_with_id: unknown variant")
.0
}
/// Return the index of `VariantDef` given a constructor id.
pub fn variant_index_with_ctor_id(&self, cid: DefId) -> VariantIdx {
self.variants
.iter_enumerated()
.find(|(_, v)| v.ctor_def_id == Some(cid))
.expect("variant_index_with_ctor_id: unknown variant")
.0
}
pub fn variant_of_res(&self, res: Res) -> &VariantDef {
match res {
Res::Def(DefKind::Variant, vid) => self.variant_with_id(vid),
Res::Def(DefKind::Ctor(..), cid) => self.variant_with_ctor_id(cid),
Res::Def(DefKind::Struct, _)
| Res::Def(DefKind::Union, _)
| Res::Def(DefKind::TyAlias, _)
| Res::Def(DefKind::AssocTy, _)
| Res::SelfTy(..)
| Res::SelfCtor(..) => self.non_enum_variant(),
_ => bug!("unexpected res {:?} in variant_of_res", res),
}
}
#[inline]
pub fn eval_explicit_discr(&self, tcx: TyCtxt<'tcx>, expr_did: DefId) -> Option<Discr<'tcx>> {
assert!(self.is_enum());
let param_env = tcx.param_env(expr_did);
let repr_type = self.repr.discr_type();
match tcx.const_eval_poly(expr_did) {
Ok(val) => {
let ty = repr_type.to_ty(tcx);
if let Some(b) = val.try_to_bits_for_ty(tcx, param_env, ty) {
trace!("discriminants: {} ({:?})", b, repr_type);
Some(Discr { val: b, ty })
} else {
info!("invalid enum discriminant: {:#?}", val);
crate::mir::interpret::struct_error(
tcx.at(tcx.def_span(expr_did)),
"constant evaluation of enum discriminant resulted in non-integer",
)
.emit();
None
}
}
Err(err) => {
let msg = match err {
ErrorHandled::Reported(ErrorReported) | ErrorHandled::Linted => {
"enum discriminant evaluation failed"
}
ErrorHandled::TooGeneric => "enum discriminant depends on generics",
};
tcx.sess.delay_span_bug(tcx.def_span(expr_did), msg);
None
}
}
}
#[inline]
pub fn discriminants(
&'tcx self,
tcx: TyCtxt<'tcx>,
) -> impl Iterator<Item = (VariantIdx, Discr<'tcx>)> + Captures<'tcx> {
assert!(self.is_enum());
let repr_type = self.repr.discr_type();
let initial = repr_type.initial_discriminant(tcx);
let mut prev_discr = None::<Discr<'tcx>>;
self.variants.iter_enumerated().map(move |(i, v)| {
let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
if let VariantDiscr::Explicit(expr_did) = v.discr {
if let Some(new_discr) = self.eval_explicit_discr(tcx, expr_did) {
discr = new_discr;
}
}
prev_discr = Some(discr);
(i, discr)
})
}
#[inline]
pub fn variant_range(&self) -> Range<VariantIdx> {
VariantIdx::new(0)..VariantIdx::new(self.variants.len())
}
/// Computes the discriminant value used by a specific variant.
/// Unlike `discriminants`, this is (amortized) constant-time,
/// only doing at most one query for evaluating an explicit
/// discriminant (the last one before the requested variant),
/// assuming there are no constant-evaluation errors there.
#[inline]
pub fn discriminant_for_variant(
&self,
tcx: TyCtxt<'tcx>,
variant_index: VariantIdx,
) -> Discr<'tcx> {
assert!(self.is_enum());
let (val, offset) = self.discriminant_def_for_variant(variant_index);
let explicit_value = val
.and_then(|expr_did| self.eval_explicit_discr(tcx, expr_did))
.unwrap_or_else(|| self.repr.discr_type().initial_discriminant(tcx));
explicit_value.checked_add(tcx, offset as u128).0
}
/// Yields a `DefId` for the discriminant and an offset to add to it
/// Alternatively, if there is no explicit discriminant, returns the
/// inferred discriminant directly.
pub fn discriminant_def_for_variant(&self, variant_index: VariantIdx) -> (Option<DefId>, u32) {
assert!(!self.variants.is_empty());
let mut explicit_index = variant_index.as_u32();
let expr_did;
loop {
match self.variants[VariantIdx::from_u32(explicit_index)].discr {
ty::VariantDiscr::Relative(0) => {
expr_did = None;
break;
}
ty::VariantDiscr::Relative(distance) => {
explicit_index -= distance;
}
ty::VariantDiscr::Explicit(did) => {
expr_did = Some(did);
break;
}
}
}
(expr_did, variant_index.as_u32() - explicit_index)
}
pub fn destructor(&self, tcx: TyCtxt<'tcx>) -> Option<Destructor> {
tcx.adt_destructor(self.did)
}
/// Returns a list of types such that `Self: Sized` if and only
/// if that type is `Sized`, or `TyErr` if this type is recursive.
///
/// Oddly enough, checking that the sized-constraint is `Sized` is
/// actually more expressive than checking all members:
/// the `Sized` trait is inductive, so an associated type that references
/// `Self` would prevent its containing ADT from being `Sized`.
///
/// Due to normalization being eager, this applies even if
/// the associated type is behind a pointer (e.g., issue #31299).
pub fn sized_constraint(&self, tcx: TyCtxt<'tcx>) -> &'tcx [Ty<'tcx>] {
tcx.adt_sized_constraint(self.did).0
}
}
impl<'tcx> FieldDef {
/// Returns the type of this field. The `subst` is typically obtained
/// via the second field of `TyKind::AdtDef`.
@ -2597,9 +2139,6 @@ impl<'tcx> TyCtxt<'tcx> {
}
}
#[derive(Clone, HashStable, Debug)]
pub struct AdtSizedConstraint<'tcx>(pub &'tcx [Ty<'tcx>]);
/// Yields the parent function's `DefId` if `def_id` is an `impl Trait` definition.
pub fn is_impl_trait_defn(tcx: TyCtxt<'_>, def_id: DefId) -> Option<DefId> {
if let Some(def_id) = def_id.as_local() {