Implement soundness check for min_specialization
This commit is contained in:
parent
32d330df30
commit
0bbbe719e8
@ -79,10 +79,18 @@ impl<'tcx> TypeVisitor<'tcx> for ParameterCollector {
|
||||
}
|
||||
|
||||
fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> bool {
|
||||
if let ty::ConstKind::Param(data) = c.val {
|
||||
self.parameters.push(Parameter::from(data));
|
||||
match c.val {
|
||||
ty::ConstKind::Unevaluated(..) if !self.include_nonconstraining => {
|
||||
// Constant expressions are not injective
|
||||
return c.ty.visit_with(self);
|
||||
}
|
||||
ty::ConstKind::Param(data) => {
|
||||
self.parameters.push(Parameter::from(data));
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
false
|
||||
|
||||
c.super_visit_with(self)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -9,6 +9,8 @@
|
||||
//! fixed, but for the moment it's easier to do these checks early.
|
||||
|
||||
use crate::constrained_generic_params as cgp;
|
||||
use min_specialization::check_min_specialization;
|
||||
|
||||
use rustc::ty::query::Providers;
|
||||
use rustc::ty::{self, TyCtxt, TypeFoldable};
|
||||
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
|
||||
@ -16,9 +18,11 @@ use rustc_errors::struct_span_err;
|
||||
use rustc_hir as hir;
|
||||
use rustc_hir::def_id::DefId;
|
||||
use rustc_hir::itemlikevisit::ItemLikeVisitor;
|
||||
use rustc_span::Span;
|
||||
|
||||
use std::collections::hash_map::Entry::{Occupied, Vacant};
|
||||
|
||||
use rustc_span::Span;
|
||||
mod min_specialization;
|
||||
|
||||
/// Checks that all the type/lifetime parameters on an impl also
|
||||
/// appear in the trait ref or self type (or are constrained by a
|
||||
@ -60,7 +64,9 @@ pub fn impl_wf_check(tcx: TyCtxt<'_>) {
|
||||
}
|
||||
|
||||
fn check_mod_impl_wf(tcx: TyCtxt<'_>, module_def_id: DefId) {
|
||||
tcx.hir().visit_item_likes_in_module(module_def_id, &mut ImplWfCheck { tcx });
|
||||
let min_specialization = tcx.features().min_specialization;
|
||||
tcx.hir()
|
||||
.visit_item_likes_in_module(module_def_id, &mut ImplWfCheck { tcx, min_specialization });
|
||||
}
|
||||
|
||||
pub fn provide(providers: &mut Providers<'_>) {
|
||||
@ -69,6 +75,7 @@ pub fn provide(providers: &mut Providers<'_>) {
|
||||
|
||||
struct ImplWfCheck<'tcx> {
|
||||
tcx: TyCtxt<'tcx>,
|
||||
min_specialization: bool,
|
||||
}
|
||||
|
||||
impl ItemLikeVisitor<'tcx> for ImplWfCheck<'tcx> {
|
||||
@ -77,6 +84,9 @@ impl ItemLikeVisitor<'tcx> for ImplWfCheck<'tcx> {
|
||||
let impl_def_id = self.tcx.hir().local_def_id(item.hir_id);
|
||||
enforce_impl_params_are_constrained(self.tcx, impl_def_id, items);
|
||||
enforce_impl_items_are_distinct(self.tcx, items);
|
||||
if self.min_specialization {
|
||||
check_min_specialization(self.tcx, impl_def_id, item.span);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
390
src/librustc_typeck/impl_wf_check/min_specialization.rs
Normal file
390
src/librustc_typeck/impl_wf_check/min_specialization.rs
Normal file
@ -0,0 +1,390 @@
|
||||
//! # Minimal Specialization
|
||||
//!
|
||||
//! This module contains the checks for sound specialization used when the
|
||||
//! `min_specialization` feature is enabled. This requires that the impl is
|
||||
//! *always applicable*.
|
||||
//!
|
||||
//! If `impl1` specializes `impl2` then `impl1` is always applicable if we know
|
||||
//! that all the bounds of `impl2` are satisfied, and all of the bounds of
|
||||
//! `impl1` are satisfied for some choice of lifetimes then we know that
|
||||
//! `impl1` applies for any choice of lifetimes.
|
||||
//!
|
||||
//! ## Basic approach
|
||||
//!
|
||||
//! To enforce this requirement on specializations we take the following
|
||||
//! approach:
|
||||
//!
|
||||
//! 1. Match up the substs for `impl2` so that the implemented trait and
|
||||
//! self-type match those for `impl1`.
|
||||
//! 2. Check for any direct use of `'static` in the substs of `impl2`.
|
||||
//! 3. Check that all of the generic parameters of `impl1` occur at most once
|
||||
//! in the *unconstrained* substs for `impl2`. A parameter is constrained if
|
||||
//! its value is completely determined by an associated type projection
|
||||
//! predicate.
|
||||
//! 4. Check that all predicates on `impl1` also exist on `impl2` (after
|
||||
//! matching substs).
|
||||
//!
|
||||
//! ## Example
|
||||
//!
|
||||
//! Suppose we have the following always applicable impl:
|
||||
//!
|
||||
//! ```rust
|
||||
//! impl<T> SpecExtend<T> for std::vec::IntoIter<T> { /* specialized impl */ }
|
||||
//! impl<T, I: Iterator<Item=T>> SpecExtend<T> for I { /* default impl */ }
|
||||
//! ```
|
||||
//!
|
||||
//! We get that the subst for `impl2` are `[T, std::vec::IntoIter<T>]`. `T` is
|
||||
//! constrained to be `<I as Iterator>::Item`, so we check only
|
||||
//! `std::vec::IntoIter<T>` for repeated parameters, which it doesn't have. The
|
||||
//! predicates of `impl1` are only `T: Sized`, which is also a predicate of
|
||||
//! `impl2`. So this specialization is sound.
|
||||
//!
|
||||
//! ## Extensions
|
||||
//!
|
||||
//! Unfortunately not all specializations in the standard library are allowed
|
||||
//! by this. So there are two extensions to these rules that allow specializing
|
||||
//! on some traits: that is, using them as bounds on the specializing impl,
|
||||
//! even when they don't occur in the base impl.
|
||||
//!
|
||||
//! ### rustc_specialization_trait
|
||||
//!
|
||||
//! If a trait is always applicable, then it's sound to specialize on it. We
|
||||
//! check trait is always applicable in the same way as impls, except that step
|
||||
//! 4 is now "all predicates on `impl1` are always applicable". We require that
|
||||
//! `specialization` or `min_specialization` is enabled to implement these
|
||||
//! traits.
|
||||
//!
|
||||
//! ### rustc_unsafe_specialization_marker
|
||||
//!
|
||||
//! There are also some specialization on traits with no methods, including the
|
||||
//! stable `FusedIterator` trait. We allow marking marker traits with an
|
||||
//! unstable attribute that means we ignore them in point 3 of the checks
|
||||
//! above. This is unsound, in the sense that the specialized impl may be used
|
||||
//! when it doesn't apply, but we allow it in the short term since it can't
|
||||
//! cause use after frees with purely safe code in the same way as specializing
|
||||
//! on traits with methods can.
|
||||
|
||||
use crate::constrained_generic_params as cgp;
|
||||
|
||||
use rustc::middle::region::ScopeTree;
|
||||
use rustc::ty::subst::{GenericArg, InternalSubsts, SubstsRef};
|
||||
use rustc::ty::trait_def::TraitSpecializationKind;
|
||||
use rustc::ty::{self, InstantiatedPredicates, TyCtxt, TypeFoldable};
|
||||
use rustc_data_structures::fx::FxHashSet;
|
||||
use rustc_hir as hir;
|
||||
use rustc_hir::def_id::DefId;
|
||||
use rustc_infer::infer::outlives::env::OutlivesEnvironment;
|
||||
use rustc_infer::infer::{InferCtxt, SuppressRegionErrors, TyCtxtInferExt};
|
||||
use rustc_infer::traits::specialization_graph::Node;
|
||||
use rustc_span::Span;
|
||||
use rustc_trait_selection::traits::{self, translate_substs, wf};
|
||||
|
||||
pub(super) fn check_min_specialization(tcx: TyCtxt<'_>, impl_def_id: DefId, span: Span) {
|
||||
if let Some(node) = parent_specialization_node(tcx, impl_def_id) {
|
||||
tcx.infer_ctxt().enter(|infcx| {
|
||||
check_always_applicable(&infcx, impl_def_id, node, span);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
fn parent_specialization_node(tcx: TyCtxt<'_>, impl1_def_id: DefId) -> Option<Node> {
|
||||
let trait_ref = tcx.impl_trait_ref(impl1_def_id)?;
|
||||
let trait_def = tcx.trait_def(trait_ref.def_id);
|
||||
|
||||
let impl2_node = trait_def.ancestors(tcx, impl1_def_id).ok()?.nth(1)?;
|
||||
|
||||
let always_applicable_trait =
|
||||
matches!(trait_def.specialization_kind, TraitSpecializationKind::AlwaysApplicable);
|
||||
if impl2_node.is_from_trait() && !always_applicable_trait {
|
||||
// Implementing a normal trait isn't a specialization.
|
||||
return None;
|
||||
}
|
||||
Some(impl2_node)
|
||||
}
|
||||
|
||||
/// Check that `impl1` is a sound specialization
|
||||
fn check_always_applicable(
|
||||
infcx: &InferCtxt<'_, '_>,
|
||||
impl1_def_id: DefId,
|
||||
impl2_node: Node,
|
||||
span: Span,
|
||||
) {
|
||||
if let Some((impl1_substs, impl2_substs)) =
|
||||
get_impl_substs(infcx, impl1_def_id, impl2_node, span)
|
||||
{
|
||||
let impl2_def_id = impl2_node.def_id();
|
||||
debug!(
|
||||
"check_always_applicable(\nimpl1_def_id={:?},\nimpl2_def_id={:?},\nimpl2_substs={:?}\n)",
|
||||
impl1_def_id, impl2_def_id, impl2_substs
|
||||
);
|
||||
|
||||
let tcx = infcx.tcx;
|
||||
|
||||
let parent_substs = if impl2_node.is_from_trait() {
|
||||
impl2_substs.to_vec()
|
||||
} else {
|
||||
unconstrained_parent_impl_substs(tcx, impl2_def_id, impl2_substs)
|
||||
};
|
||||
|
||||
check_static_lifetimes(tcx, &parent_substs, span);
|
||||
check_duplicate_params(tcx, impl1_substs, &parent_substs, span);
|
||||
|
||||
check_predicates(tcx, impl1_def_id, impl1_substs, impl2_node, impl2_substs, span);
|
||||
}
|
||||
}
|
||||
|
||||
/// Given a specializing impl `impl1`, and the base impl `impl2`, returns two
|
||||
/// substitutions `(S1, S2)` that equate their trait references. The returned
|
||||
/// types are expressed in terms of the generics of `impl1`.
|
||||
///
|
||||
/// Example
|
||||
///
|
||||
/// impl<A, B> Foo<A> for B { /* impl2 */ }
|
||||
/// impl<C> Foo<Vec<C>> for C { /* impl1 */ }
|
||||
///
|
||||
/// Would return `S1 = [C]` and `S2 = [Vec<C>, C]`.
|
||||
fn get_impl_substs<'tcx>(
|
||||
infcx: &InferCtxt<'_, 'tcx>,
|
||||
impl1_def_id: DefId,
|
||||
impl2_node: Node,
|
||||
span: Span,
|
||||
) -> Option<(SubstsRef<'tcx>, SubstsRef<'tcx>)> {
|
||||
let tcx = infcx.tcx;
|
||||
let param_env = tcx.param_env(impl1_def_id);
|
||||
|
||||
let impl1_substs = InternalSubsts::identity_for_item(tcx, impl1_def_id);
|
||||
let impl2_substs = translate_substs(infcx, param_env, impl1_def_id, impl1_substs, impl2_node);
|
||||
|
||||
// Conservatively use an empty `ParamEnv`.
|
||||
let outlives_env = OutlivesEnvironment::new(ty::ParamEnv::empty());
|
||||
infcx.resolve_regions_and_report_errors(
|
||||
impl1_def_id,
|
||||
&ScopeTree::default(),
|
||||
&outlives_env,
|
||||
SuppressRegionErrors::default(),
|
||||
);
|
||||
let impl2_substs = match infcx.fully_resolve(&impl2_substs) {
|
||||
Ok(s) => s,
|
||||
Err(_) => {
|
||||
tcx.sess.struct_span_err(span, "could not resolve substs on overridden impl").emit();
|
||||
return None;
|
||||
}
|
||||
};
|
||||
Some((impl1_substs, impl2_substs))
|
||||
}
|
||||
|
||||
/// Returns a list of all of the unconstrained subst of the given impl.
|
||||
///
|
||||
/// For example given the impl:
|
||||
///
|
||||
/// impl<'a, T, I> ... where &'a I: IntoIterator<Item=&'a T>
|
||||
///
|
||||
/// This would return the substs corresponding to `['a, I]`, because knowing
|
||||
/// `'a` and `I` determines the value of `T`.
|
||||
fn unconstrained_parent_impl_substs<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
impl_def_id: DefId,
|
||||
impl_substs: SubstsRef<'tcx>,
|
||||
) -> Vec<GenericArg<'tcx>> {
|
||||
let impl_generic_predicates = tcx.predicates_of(impl_def_id);
|
||||
let mut unconstrained_parameters = FxHashSet::default();
|
||||
let mut constrained_params = FxHashSet::default();
|
||||
let impl_trait_ref = tcx.impl_trait_ref(impl_def_id);
|
||||
|
||||
// Unfortunately the functions in `constrained_generic_parameters` don't do
|
||||
// what we want here. We want only a list of constrained parameters while
|
||||
// the functions in `cgp` add the constrained parameters to a list of
|
||||
// unconstrained parameters.
|
||||
for (predicate, _) in impl_generic_predicates.predicates.iter() {
|
||||
if let ty::Predicate::Projection(proj) = predicate {
|
||||
let projection_ty = proj.skip_binder().projection_ty;
|
||||
let projected_ty = proj.skip_binder().ty;
|
||||
|
||||
let unbound_trait_ref = projection_ty.trait_ref(tcx);
|
||||
if Some(unbound_trait_ref) == impl_trait_ref {
|
||||
continue;
|
||||
}
|
||||
|
||||
unconstrained_parameters.extend(cgp::parameters_for(&projection_ty, true));
|
||||
|
||||
for param in cgp::parameters_for(&projected_ty, false) {
|
||||
if !unconstrained_parameters.contains(¶m) {
|
||||
constrained_params.insert(param.0);
|
||||
}
|
||||
}
|
||||
|
||||
unconstrained_parameters.extend(cgp::parameters_for(&projected_ty, true));
|
||||
}
|
||||
}
|
||||
|
||||
impl_substs
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter(|&(idx, _)| !constrained_params.contains(&(idx as u32)))
|
||||
.map(|(_, arg)| *arg)
|
||||
.collect()
|
||||
}
|
||||
|
||||
/// Check that parameters of the derived impl don't occur more than once in the
|
||||
/// equated substs of the base impl.
|
||||
///
|
||||
/// For example forbid the following:
|
||||
///
|
||||
/// impl<A> Tr for A { }
|
||||
/// impl<B> Tr for (B, B) { }
|
||||
///
|
||||
/// Note that only consider the unconstrained parameters of the base impl:
|
||||
///
|
||||
/// impl<S, I: IntoIterator<Item = S>> Tr<S> for I { }
|
||||
/// impl<T> Tr<T> for Vec<T> { }
|
||||
///
|
||||
/// The substs for the parent impl here are `[T, Vec<T>]`, which repeats `T`,
|
||||
/// but `S` is constrained in the parent impl, so `parent_substs` is only
|
||||
/// `[Vec<T>]`. This means we allow this impl.
|
||||
fn check_duplicate_params<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
impl1_substs: SubstsRef<'tcx>,
|
||||
parent_substs: &Vec<GenericArg<'tcx>>,
|
||||
span: Span,
|
||||
) {
|
||||
let mut base_params = cgp::parameters_for(parent_substs, true);
|
||||
base_params.sort_by_key(|param| param.0);
|
||||
if let (_, [duplicate, ..]) = base_params.partition_dedup() {
|
||||
let param = impl1_substs[duplicate.0 as usize];
|
||||
tcx.sess
|
||||
.struct_span_err(span, &format!("specializing impl repeats parameter `{}`", param))
|
||||
.emit();
|
||||
}
|
||||
}
|
||||
|
||||
/// Check that `'static` lifetimes are not introduced by the specializing impl.
|
||||
///
|
||||
/// For example forbid the following:
|
||||
///
|
||||
/// impl<A> Tr for A { }
|
||||
/// impl Tr for &'static i32 { }
|
||||
fn check_static_lifetimes<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
parent_substs: &Vec<GenericArg<'tcx>>,
|
||||
span: Span,
|
||||
) {
|
||||
if tcx.any_free_region_meets(parent_substs, |r| *r == ty::ReStatic) {
|
||||
tcx.sess.struct_span_err(span, &format!("cannot specialize on `'static` lifetime")).emit();
|
||||
}
|
||||
}
|
||||
|
||||
/// Check whether predicates on the specializing impl (`impl1`) are allowed.
|
||||
///
|
||||
/// Each predicate `P` must be:
|
||||
///
|
||||
/// * global (not reference any parameters)
|
||||
/// * `T: Tr` predicate where `Tr` is an always-applicable trait
|
||||
/// * on the base `impl impl2`
|
||||
/// * Currently this check is done using syntactic equality, which is
|
||||
/// conservative but generally sufficient.
|
||||
fn check_predicates<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
impl1_def_id: DefId,
|
||||
impl1_substs: SubstsRef<'tcx>,
|
||||
impl2_node: Node,
|
||||
impl2_substs: SubstsRef<'tcx>,
|
||||
span: Span,
|
||||
) {
|
||||
let impl1_predicates = tcx.predicates_of(impl1_def_id).instantiate(tcx, impl1_substs);
|
||||
let mut impl2_predicates = if impl2_node.is_from_trait() {
|
||||
// Always applicable traits have to be always applicable without any
|
||||
// assumptions.
|
||||
InstantiatedPredicates::empty()
|
||||
} else {
|
||||
tcx.predicates_of(impl2_node.def_id()).instantiate(tcx, impl2_substs)
|
||||
};
|
||||
debug!(
|
||||
"check_always_applicable(\nimpl1_predicates={:?},\nimpl2_predicates={:?}\n)",
|
||||
impl1_predicates, impl2_predicates,
|
||||
);
|
||||
|
||||
// Since impls of always applicable traits don't get to assume anything, we
|
||||
// can also assume their supertraits apply.
|
||||
//
|
||||
// For example, we allow:
|
||||
//
|
||||
// #[rustc_specialization_trait]
|
||||
// trait AlwaysApplicable: Debug { }
|
||||
//
|
||||
// impl<T> Tr for T { }
|
||||
// impl<T: AlwaysApplicable> Tr for T { }
|
||||
//
|
||||
// Specializing on `AlwaysApplicable` allows also specializing on `Debug`
|
||||
// which is sound because we forbid impls like the following
|
||||
//
|
||||
// impl<D: Debug> AlwaysApplicable for D { }
|
||||
let always_applicable_traits: Vec<_> = impl1_predicates
|
||||
.predicates
|
||||
.iter()
|
||||
.filter(|predicate| {
|
||||
matches!(
|
||||
trait_predicate_kind(tcx, predicate),
|
||||
Some(TraitSpecializationKind::AlwaysApplicable)
|
||||
)
|
||||
})
|
||||
.copied()
|
||||
.collect();
|
||||
impl2_predicates.predicates.extend(traits::elaborate_predicates(tcx, always_applicable_traits));
|
||||
|
||||
for predicate in impl1_predicates.predicates {
|
||||
if !impl2_predicates.predicates.contains(&predicate) {
|
||||
check_specialization_on(tcx, &predicate, span)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn check_specialization_on<'tcx>(tcx: TyCtxt<'tcx>, predicate: &ty::Predicate<'tcx>, span: Span) {
|
||||
debug!("can_specialize_on(predicate = {:?})", predicate);
|
||||
match predicate {
|
||||
// Global predicates are either always true or always false, so we
|
||||
// are fine to specialize on.
|
||||
_ if predicate.is_global() => (),
|
||||
// We allow specializing on explicitly marked traits with no associated
|
||||
// items.
|
||||
ty::Predicate::Trait(pred, hir::Constness::NotConst) => {
|
||||
if !matches!(
|
||||
trait_predicate_kind(tcx, predicate),
|
||||
Some(TraitSpecializationKind::Marker)
|
||||
) {
|
||||
tcx.sess
|
||||
.struct_span_err(
|
||||
span,
|
||||
&format!(
|
||||
"cannot specialize on trait `{}`",
|
||||
tcx.def_path_str(pred.def_id()),
|
||||
),
|
||||
)
|
||||
.emit()
|
||||
}
|
||||
}
|
||||
_ => tcx
|
||||
.sess
|
||||
.struct_span_err(span, &format!("cannot specialize on `{:?}`", predicate))
|
||||
.emit(),
|
||||
}
|
||||
}
|
||||
|
||||
fn trait_predicate_kind<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
predicate: &ty::Predicate<'tcx>,
|
||||
) -> Option<TraitSpecializationKind> {
|
||||
match predicate {
|
||||
ty::Predicate::Trait(pred, hir::Constness::NotConst) => {
|
||||
Some(tcx.trait_def(pred.def_id()).specialization_kind)
|
||||
}
|
||||
ty::Predicate::Trait(_, hir::Constness::Const)
|
||||
| ty::Predicate::RegionOutlives(_)
|
||||
| ty::Predicate::TypeOutlives(_)
|
||||
| ty::Predicate::Projection(_)
|
||||
| ty::Predicate::WellFormed(_)
|
||||
| ty::Predicate::Subtype(_)
|
||||
| ty::Predicate::ObjectSafe(_)
|
||||
| ty::Predicate::ClosureKind(..)
|
||||
| ty::Predicate::ConstEvaluatable(..) => None,
|
||||
}
|
||||
}
|
@ -64,6 +64,7 @@ This API is completely unstable and subject to change.
|
||||
#![feature(nll)]
|
||||
#![feature(try_blocks)]
|
||||
#![feature(never_type)]
|
||||
#![feature(slice_partition_dedup)]
|
||||
#![recursion_limit = "256"]
|
||||
|
||||
#[macro_use]
|
||||
|
@ -0,0 +1,32 @@
|
||||
// Test that associated types in trait objects are not considered to be
|
||||
// constrained.
|
||||
|
||||
#![feature(min_specialization)]
|
||||
|
||||
trait Specializable {
|
||||
fn f();
|
||||
}
|
||||
|
||||
trait B<T> {
|
||||
type Y;
|
||||
}
|
||||
|
||||
trait C {
|
||||
type Y;
|
||||
}
|
||||
|
||||
impl<A: ?Sized> Specializable for A {
|
||||
default fn f() {}
|
||||
}
|
||||
|
||||
impl<'a, T> Specializable for dyn B<T, Y = T> + 'a {
|
||||
//~^ ERROR specializing impl repeats parameter `T`
|
||||
fn f() {}
|
||||
}
|
||||
|
||||
impl<'a, T> Specializable for dyn C<Y = (T, T)> + 'a {
|
||||
//~^ ERROR specializing impl repeats parameter `T`
|
||||
fn f() {}
|
||||
}
|
||||
|
||||
fn main() {}
|
@ -0,0 +1,20 @@
|
||||
error: specializing impl repeats parameter `T`
|
||||
--> $DIR/dyn-trait-assoc-types.rs:22:1
|
||||
|
|
||||
LL | / impl<'a, T> Specializable for dyn B<T, Y = T> + 'a {
|
||||
LL | |
|
||||
LL | | fn f() {}
|
||||
LL | | }
|
||||
| |_^
|
||||
|
||||
error: specializing impl repeats parameter `T`
|
||||
--> $DIR/dyn-trait-assoc-types.rs:27:1
|
||||
|
|
||||
LL | / impl<'a, T> Specializable for dyn C<Y = (T, T)> + 'a {
|
||||
LL | |
|
||||
LL | | fn f() {}
|
||||
LL | | }
|
||||
| |_^
|
||||
|
||||
error: aborting due to 2 previous errors
|
||||
|
@ -0,0 +1,24 @@
|
||||
// Test that projection bounds can't be specialized on.
|
||||
|
||||
#![feature(min_specialization)]
|
||||
|
||||
trait X {
|
||||
fn f();
|
||||
}
|
||||
trait Id {
|
||||
type This;
|
||||
}
|
||||
impl<T> Id for T {
|
||||
type This = T;
|
||||
}
|
||||
|
||||
impl<T: Id> X for T {
|
||||
default fn f() {}
|
||||
}
|
||||
|
||||
impl<I, V: Id<This = (I,)>> X for V {
|
||||
//~^ ERROR cannot specialize on
|
||||
fn f() {}
|
||||
}
|
||||
|
||||
fn main() {}
|
@ -0,0 +1,11 @@
|
||||
error: cannot specialize on `Binder(ProjectionPredicate(ProjectionTy { substs: [V], item_def_id: DefId(0:6 ~ repeated_projection_type[317d]::Id[0]::This[0]) }, (I,)))`
|
||||
--> $DIR/repeated_projection_type.rs:19:1
|
||||
|
|
||||
LL | / impl<I, V: Id<This = (I,)>> X for V {
|
||||
LL | |
|
||||
LL | | fn f() {}
|
||||
LL | | }
|
||||
| |_^
|
||||
|
||||
error: aborting due to previous error
|
||||
|
@ -0,0 +1,19 @@
|
||||
// Test that directly specializing on repeated lifetime parameters is not
|
||||
// allowed.
|
||||
|
||||
#![feature(min_specialization)]
|
||||
|
||||
trait X {
|
||||
fn f();
|
||||
}
|
||||
|
||||
impl<T> X for T {
|
||||
default fn f() {}
|
||||
}
|
||||
|
||||
impl<'a> X for (&'a u8, &'a u8) {
|
||||
//~^ ERROR specializing impl repeats parameter `'a`
|
||||
fn f() {}
|
||||
}
|
||||
|
||||
fn main() {}
|
@ -0,0 +1,11 @@
|
||||
error: specializing impl repeats parameter `'a`
|
||||
--> $DIR/repeating_lifetimes.rs:14:1
|
||||
|
|
||||
LL | / impl<'a> X for (&'a u8, &'a u8) {
|
||||
LL | |
|
||||
LL | | fn f() {}
|
||||
LL | | }
|
||||
| |_^
|
||||
|
||||
error: aborting due to previous error
|
||||
|
@ -0,0 +1,17 @@
|
||||
// Test that specializing on two type parameters being equal is not allowed.
|
||||
|
||||
#![feature(min_specialization)]
|
||||
|
||||
trait X {
|
||||
fn f();
|
||||
}
|
||||
|
||||
impl<T> X for T {
|
||||
default fn f() {}
|
||||
}
|
||||
impl<T> X for (T, T) {
|
||||
//~^ ERROR specializing impl repeats parameter `T`
|
||||
fn f() {}
|
||||
}
|
||||
|
||||
fn main() {}
|
@ -0,0 +1,11 @@
|
||||
error: specializing impl repeats parameter `T`
|
||||
--> $DIR/repeating_param.rs:12:1
|
||||
|
|
||||
LL | / impl<T> X for (T, T) {
|
||||
LL | |
|
||||
LL | | fn f() {}
|
||||
LL | | }
|
||||
| |_^
|
||||
|
||||
error: aborting due to previous error
|
||||
|
20
src/test/ui/specialization/min_specialization/spec-iter.rs
Normal file
20
src/test/ui/specialization/min_specialization/spec-iter.rs
Normal file
@ -0,0 +1,20 @@
|
||||
// Check that we can specialize on a concrete iterator type. This requires us
|
||||
// to consider which parameters in the parent impl are constrained.
|
||||
|
||||
// check-pass
|
||||
|
||||
#![feature(min_specialization)]
|
||||
|
||||
trait SpecFromIter<T> {
|
||||
fn f(&self);
|
||||
}
|
||||
|
||||
impl<'a, T: 'a, I: Iterator<Item = &'a T>> SpecFromIter<T> for I {
|
||||
default fn f(&self) {}
|
||||
}
|
||||
|
||||
impl<'a, T> SpecFromIter<T> for std::slice::Iter<'a, T> {
|
||||
fn f(&self) {}
|
||||
}
|
||||
|
||||
fn main() {}
|
@ -0,0 +1,19 @@
|
||||
// Check that lifetime parameters are allowed in specializing impls.
|
||||
|
||||
// check-pass
|
||||
|
||||
#![feature(min_specialization)]
|
||||
|
||||
trait MySpecTrait {
|
||||
fn f();
|
||||
}
|
||||
|
||||
impl<T> MySpecTrait for T {
|
||||
default fn f() {}
|
||||
}
|
||||
|
||||
impl<'a, T: ?Sized> MySpecTrait for &'a T {
|
||||
fn f() {}
|
||||
}
|
||||
|
||||
fn main() {}
|
@ -0,0 +1,17 @@
|
||||
// Test that `rustc_unsafe_specialization_marker` is only allowed on marker traits.
|
||||
|
||||
#![feature(rustc_attrs)]
|
||||
|
||||
#[rustc_unsafe_specialization_marker]
|
||||
trait SpecMarker {
|
||||
fn f();
|
||||
//~^ ERROR marker traits
|
||||
}
|
||||
|
||||
#[rustc_unsafe_specialization_marker]
|
||||
trait SpecMarker2 {
|
||||
type X;
|
||||
//~^ ERROR marker traits
|
||||
}
|
||||
|
||||
fn main() {}
|
@ -0,0 +1,15 @@
|
||||
error[E0714]: marker traits cannot have associated items
|
||||
--> $DIR/specialization_marker.rs:7:5
|
||||
|
|
||||
LL | fn f();
|
||||
| ^^^^^^^
|
||||
|
||||
error[E0714]: marker traits cannot have associated items
|
||||
--> $DIR/specialization_marker.rs:13:5
|
||||
|
|
||||
LL | type X;
|
||||
| ^^^^^^^
|
||||
|
||||
error: aborting due to 2 previous errors
|
||||
|
||||
For more information about this error, try `rustc --explain E0714`.
|
@ -0,0 +1,26 @@
|
||||
// Test that `rustc_specialization_trait` requires always applicable impls.
|
||||
|
||||
#![feature(min_specialization)]
|
||||
#![feature(rustc_attrs)]
|
||||
|
||||
#[rustc_specialization_trait]
|
||||
trait SpecMarker {
|
||||
fn f();
|
||||
}
|
||||
|
||||
impl SpecMarker for &'static u8 {
|
||||
//~^ ERROR cannot specialize
|
||||
fn f() {}
|
||||
}
|
||||
|
||||
impl<T> SpecMarker for (T, T) {
|
||||
//~^ ERROR specializing impl
|
||||
fn f() {}
|
||||
}
|
||||
|
||||
impl<T: Clone> SpecMarker for [T] {
|
||||
//~^ ERROR cannot specialize
|
||||
fn f() {}
|
||||
}
|
||||
|
||||
fn main() {}
|
@ -0,0 +1,29 @@
|
||||
error: cannot specialize on `'static` lifetime
|
||||
--> $DIR/specialization_trait.rs:11:1
|
||||
|
|
||||
LL | / impl SpecMarker for &'static u8 {
|
||||
LL | |
|
||||
LL | | fn f() {}
|
||||
LL | | }
|
||||
| |_^
|
||||
|
||||
error: specializing impl repeats parameter `T`
|
||||
--> $DIR/specialization_trait.rs:16:1
|
||||
|
|
||||
LL | / impl<T> SpecMarker for (T, T) {
|
||||
LL | |
|
||||
LL | | fn f() {}
|
||||
LL | | }
|
||||
| |_^
|
||||
|
||||
error: cannot specialize on trait `std::clone::Clone`
|
||||
--> $DIR/specialization_trait.rs:21:1
|
||||
|
|
||||
LL | / impl<T: Clone> SpecMarker for [T] {
|
||||
LL | |
|
||||
LL | | fn f() {}
|
||||
LL | | }
|
||||
| |_^
|
||||
|
||||
error: aborting due to 3 previous errors
|
||||
|
@ -0,0 +1,24 @@
|
||||
// Test that specializing on a `rustc_unsafe_specialization_marker` trait is
|
||||
// allowed.
|
||||
|
||||
// check-pass
|
||||
|
||||
#![feature(min_specialization)]
|
||||
#![feature(rustc_attrs)]
|
||||
|
||||
#[rustc_unsafe_specialization_marker]
|
||||
trait SpecMarker {}
|
||||
|
||||
trait X {
|
||||
fn f();
|
||||
}
|
||||
|
||||
impl<T> X for T {
|
||||
default fn f() {}
|
||||
}
|
||||
|
||||
impl<T: SpecMarker> X for T {
|
||||
fn f() {}
|
||||
}
|
||||
|
||||
fn main() {}
|
@ -0,0 +1,27 @@
|
||||
// Test that specializing on a `rustc_specialization_trait` trait is allowed.
|
||||
|
||||
// check-pass
|
||||
|
||||
#![feature(min_specialization)]
|
||||
#![feature(rustc_attrs)]
|
||||
|
||||
#[rustc_specialization_trait]
|
||||
trait SpecTrait {
|
||||
fn g(&self);
|
||||
}
|
||||
|
||||
trait X {
|
||||
fn f(&self);
|
||||
}
|
||||
|
||||
impl<T> X for T {
|
||||
default fn f(&self) {}
|
||||
}
|
||||
|
||||
impl<T: SpecTrait> X for T {
|
||||
fn f(&self) {
|
||||
self.g();
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {}
|
@ -0,0 +1,18 @@
|
||||
// Test that directly specializing on `'static` is not allowed.
|
||||
|
||||
#![feature(min_specialization)]
|
||||
|
||||
trait X {
|
||||
fn f();
|
||||
}
|
||||
|
||||
impl<T> X for &'_ T {
|
||||
default fn f() {}
|
||||
}
|
||||
|
||||
impl X for &'static u8 {
|
||||
//~^ ERROR cannot specialize on `'static` lifetime
|
||||
fn f() {}
|
||||
}
|
||||
|
||||
fn main() {}
|
@ -0,0 +1,11 @@
|
||||
error: cannot specialize on `'static` lifetime
|
||||
--> $DIR/specialize_on_static.rs:13:1
|
||||
|
|
||||
LL | / impl X for &'static u8 {
|
||||
LL | |
|
||||
LL | | fn f() {}
|
||||
LL | | }
|
||||
| |_^
|
||||
|
||||
error: aborting due to previous error
|
||||
|
@ -0,0 +1,20 @@
|
||||
// Test that specializing on a trait is not allowed in general.
|
||||
|
||||
#![feature(min_specialization)]
|
||||
|
||||
trait SpecMarker {}
|
||||
|
||||
trait X {
|
||||
fn f();
|
||||
}
|
||||
|
||||
impl<T> X for T {
|
||||
default fn f() {}
|
||||
}
|
||||
|
||||
impl<T: SpecMarker> X for T {
|
||||
//~^ ERROR cannot specialize on trait `SpecMarker`
|
||||
fn f() {}
|
||||
}
|
||||
|
||||
fn main() {}
|
@ -0,0 +1,11 @@
|
||||
error: cannot specialize on trait `SpecMarker`
|
||||
--> $DIR/specialize_on_trait.rs:15:1
|
||||
|
|
||||
LL | / impl<T: SpecMarker> X for T {
|
||||
LL | |
|
||||
LL | | fn f() {}
|
||||
LL | | }
|
||||
| |_^
|
||||
|
||||
error: aborting due to previous error
|
||||
|
Loading…
Reference in New Issue
Block a user