Runtime removal: refactor process

This patch continues the runtime removal by moving and refactoring the
process implementation into the new `sys` module.

Because this eliminates APIs in `libnative` and `librustrt`, it is a:

[breaking-change]

This functionality is likely to be available publicly, in some form,
from `std` in the future.
This commit is contained in:
Aaron Turon 2014-10-09 16:27:28 -07:00
parent 3d195482a4
commit 0f98e75b69
10 changed files with 1250 additions and 176 deletions

View File

@ -29,13 +29,6 @@ use std::os;
use std::rt::rtio::{mod, IoResult, IoError};
use std::num;
// Local re-exports
pub use self::process::Process;
// Native I/O implementations
pub mod process;
mod util;
#[cfg(any(target_os = "macos",
target_os = "ios",
target_os = "freebsd",
@ -123,19 +116,6 @@ impl rtio::IoFactory for IoFactory {
fn timer_init(&mut self) -> IoResult<Box<rtio::RtioTimer + Send>> {
timer::Timer::new().map(|t| box t as Box<rtio::RtioTimer + Send>)
}
fn spawn(&mut self, cfg: rtio::ProcessConfig)
-> IoResult<(Box<rtio::RtioProcess + Send>,
Vec<Option<Box<rtio::RtioPipe + Send>>>)> {
process::Process::spawn(cfg).map(|(p, io)| {
(box p as Box<rtio::RtioProcess + Send>,
io.into_iter().map(|p| p.map(|p| {
box p as Box<rtio::RtioPipe + Send>
})).collect())
})
}
fn kill(&mut self, pid: libc::pid_t, signum: int) -> IoResult<()> {
process::Process::kill(pid, signum)
}
#[cfg(unix)]
fn tty_open(&mut self, fd: c_int, _readable: bool)
-> IoResult<Box<rtio::RtioTTY + Send>> {

View File

@ -46,61 +46,6 @@ pub trait RemoteCallback {
fn fire(&mut self);
}
/// Data needed to spawn a process. Serializes the `std::io::process::Command`
/// builder.
pub struct ProcessConfig<'a> {
/// Path to the program to run.
pub program: &'a CString,
/// Arguments to pass to the program (doesn't include the program itself).
pub args: &'a [CString],
/// Optional environment to specify for the program. If this is None, then
/// it will inherit the current process's environment.
pub env: Option<&'a [(&'a CString, &'a CString)]>,
/// Optional working directory for the new process. If this is None, then
/// the current directory of the running process is inherited.
pub cwd: Option<&'a CString>,
/// Configuration for the child process's stdin handle (file descriptor 0).
/// This field defaults to `CreatePipe(true, false)` so the input can be
/// written to.
pub stdin: StdioContainer,
/// Configuration for the child process's stdout handle (file descriptor 1).
/// This field defaults to `CreatePipe(false, true)` so the output can be
/// collected.
pub stdout: StdioContainer,
/// Configuration for the child process's stdout handle (file descriptor 2).
/// This field defaults to `CreatePipe(false, true)` so the output can be
/// collected.
pub stderr: StdioContainer,
/// Any number of streams/file descriptors/pipes may be attached to this
/// process. This list enumerates the file descriptors and such for the
/// process to be spawned, and the file descriptors inherited will start at
/// 3 and go to the length of this array. The first three file descriptors
/// (stdin/stdout/stderr) are configured with the `stdin`, `stdout`, and
/// `stderr` fields.
pub extra_io: &'a [StdioContainer],
/// Sets the child process's user id. This translates to a `setuid` call in
/// the child process. Setting this value on windows will cause the spawn to
/// fail. Failure in the `setuid` call on unix will also cause the spawn to
/// fail.
pub uid: Option<uint>,
/// Similar to `uid`, but sets the group id of the child process. This has
/// the same semantics as the `uid` field.
pub gid: Option<uint>,
/// If true, the child process is spawned in a detached state. On unix, this
/// means that the child is the leader of a new process group.
pub detach: bool,
}
pub struct LocalIo<'a> {
factory: &'a mut IoFactory+'a,
}
@ -170,10 +115,6 @@ impl<'a> LocalIo<'a> {
pub trait IoFactory {
fn timer_init(&mut self) -> IoResult<Box<RtioTimer + Send>>;
fn spawn(&mut self, cfg: ProcessConfig)
-> IoResult<(Box<RtioProcess + Send>,
Vec<Option<Box<RtioPipe + Send>>>)>;
fn kill(&mut self, pid: libc::pid_t, signal: int) -> IoResult<()>;
fn tty_open(&mut self, fd: c_int, readable: bool)
-> IoResult<Box<RtioTTY + Send>>;
}
@ -184,13 +125,6 @@ pub trait RtioTimer {
fn period(&mut self, msecs: u64, cb: Box<Callback + Send>);
}
pub trait RtioProcess {
fn id(&self) -> libc::pid_t;
fn kill(&mut self, signal: int) -> IoResult<()>;
fn wait(&mut self) -> IoResult<ProcessExit>;
fn set_timeout(&mut self, timeout: Option<u64>);
}
pub trait RtioPipe {
fn read(&mut self, buf: &mut [u8]) -> IoResult<uint>;
fn write(&mut self, buf: &[u8]) -> IoResult<()>;

View File

@ -20,14 +20,17 @@ use os;
use io::{IoResult, IoError};
use io;
use libc;
use mem;
use rt::rtio::{RtioProcess, ProcessConfig, IoFactory, LocalIo};
use rt::rtio;
use c_str::CString;
use collections::HashMap;
use hash::Hash;
#[cfg(windows)]
use std::hash::sip::SipState;
use io::pipe::{PipeStream, PipePair};
use path::BytesContainer;
use sys;
use sys::fs::FileDesc;
use sys::process::Process as ProcessImp;
/// Signal a process to exit, without forcibly killing it. Corresponds to
/// SIGTERM on unix platforms.
@ -62,24 +65,29 @@ use std::hash::sip::SipState;
/// assert!(child.wait().unwrap().success());
/// ```
pub struct Process {
handle: Box<RtioProcess + Send>,
handle: ProcessImp,
forget: bool,
/// None until wait() is called.
exit_code: Option<ProcessExit>,
/// Manually delivered signal
exit_signal: Option<int>,
/// Deadline after which wait() will return
deadline: u64,
/// Handle to the child's stdin, if the `stdin` field of this process's
/// `ProcessConfig` was `CreatePipe`. By default, this handle is `Some`.
pub stdin: Option<io::PipeStream>,
pub stdin: Option<PipeStream>,
/// Handle to the child's stdout, if the `stdout` field of this process's
/// `ProcessConfig` was `CreatePipe`. By default, this handle is `Some`.
pub stdout: Option<io::PipeStream>,
pub stdout: Option<PipeStream>,
/// Handle to the child's stderr, if the `stderr` field of this process's
/// `ProcessConfig` was `CreatePipe`. By default, this handle is `Some`.
pub stderr: Option<io::PipeStream>,
/// Extra I/O handles as configured by the original `ProcessConfig` when
/// this process was created. This is by default empty.
pub extra_io: Vec<Option<io::PipeStream>>,
pub stderr: Option<PipeStream>,
}
/// A representation of environment variable name
@ -130,6 +138,13 @@ impl PartialEq for EnvKey {
}
}
impl BytesContainer for EnvKey {
fn container_as_bytes<'a>(&'a self) -> &'a [u8] {
let &EnvKey(ref k) = self;
k.container_as_bytes()
}
}
/// A HashMap representation of environment variables.
pub type EnvMap = HashMap<EnvKey, CString>;
@ -160,7 +175,6 @@ pub struct Command {
stdin: StdioContainer,
stdout: StdioContainer,
stderr: StdioContainer,
extra_io: Vec<StdioContainer>,
uid: Option<uint>,
gid: Option<uint>,
detach: bool,
@ -194,7 +208,6 @@ impl Command {
stdin: CreatePipe(true, false),
stdout: CreatePipe(false, true),
stderr: CreatePipe(false, true),
extra_io: Vec::new(),
uid: None,
gid: None,
detach: false,
@ -281,14 +294,6 @@ impl Command {
self.stderr = cfg;
self
}
/// Attaches a stream/file descriptor/pipe to the child process. Inherited
/// file descriptors are numbered consecutively, starting at 3; the first
/// three file descriptors (stdin/stdout/stderr) are configured with the
/// `stdin`, `stdout`, and `stderr` methods.
pub fn extra_io<'a>(&'a mut self, cfg: StdioContainer) -> &'a mut Command {
self.extra_io.push(cfg);
self
}
/// Sets the child process's user id. This translates to a `setuid` call in
/// the child process. Setting this value on windows will cause the spawn to
@ -315,50 +320,23 @@ impl Command {
/// Executes the command as a child process, which is returned.
pub fn spawn(&self) -> IoResult<Process> {
fn to_rtio(p: StdioContainer) -> rtio::StdioContainer {
match p {
Ignored => rtio::Ignored,
InheritFd(fd) => rtio::InheritFd(fd),
CreatePipe(a, b) => rtio::CreatePipe(a, b),
}
}
let extra_io: Vec<rtio::StdioContainer> =
self.extra_io.iter().map(|x| to_rtio(*x)).collect();
LocalIo::maybe_raise(|io| {
let env = match self.env {
None => None,
Some(ref env_map) =>
Some(env_map.iter()
.map(|(&EnvKey(ref key), val)| (key, val))
.collect::<Vec<_>>())
};
let cfg = ProcessConfig {
program: &self.program,
args: self.args.as_slice(),
env: env.as_ref().map(|e| e.as_slice()),
cwd: self.cwd.as_ref(),
stdin: to_rtio(self.stdin),
stdout: to_rtio(self.stdout),
stderr: to_rtio(self.stderr),
extra_io: extra_io.as_slice(),
uid: self.uid,
gid: self.gid,
detach: self.detach,
};
io.spawn(cfg).map(|(p, io)| {
let mut io = io.into_iter().map(|p| {
p.map(|p| io::PipeStream::new(p))
});
Process {
handle: p,
forget: false,
stdin: io.next().unwrap(),
stdout: io.next().unwrap(),
stderr: io.next().unwrap(),
extra_io: io.collect(),
}
let (their_stdin, our_stdin) = try!(setup_io(self.stdin));
let (their_stdout, our_stdout) = try!(setup_io(self.stdout));
let (their_stderr, our_stderr) = try!(setup_io(self.stderr));
match ProcessImp::spawn(self, their_stdin, their_stdout, their_stderr) {
Err(e) => Err(e),
Ok(handle) => Ok(Process {
handle: handle,
forget: false,
exit_code: None,
exit_signal: None,
deadline: 0,
stdin: our_stdin,
stdout: our_stdout,
stderr: our_stderr,
})
}).map_err(IoError::from_rtio_error)
}
}
/// Executes the command as a child process, waiting for it to finish and
@ -415,6 +393,58 @@ impl fmt::Show for Command {
}
}
fn setup_io(io: StdioContainer) -> IoResult<(Option<PipeStream>, Option<PipeStream>)> {
let ours;
let theirs;
match io {
Ignored => {
theirs = None;
ours = None;
}
InheritFd(fd) => {
theirs = Some(PipeStream::from_filedesc(FileDesc::new(fd, false)));
ours = None;
}
CreatePipe(readable, _writable) => {
let PipePair { reader, writer } = try!(PipeStream::pair());
if readable {
theirs = Some(reader);
ours = Some(writer);
} else {
theirs = Some(writer);
ours = Some(reader);
}
}
}
Ok((theirs, ours))
}
// Allow the sys module to get access to the Command state
impl sys::process::ProcessConfig<EnvKey, CString> for Command {
fn program(&self) -> &CString {
&self.program
}
fn args(&self) -> &[CString] {
self.args.as_slice()
}
fn env(&self) -> Option<&EnvMap> {
self.env.as_ref()
}
fn cwd(&self) -> Option<&CString> {
self.cwd.as_ref()
}
fn uid(&self) -> Option<uint> {
self.uid.clone()
}
fn gid(&self) -> Option<uint> {
self.gid.clone()
}
fn detach(&self) -> bool {
self.detach
}
}
/// The output of a finished process.
#[deriving(PartialEq, Eq, Clone)]
pub struct ProcessOutput {
@ -494,9 +524,7 @@ impl Process {
/// be successfully delivered if the child has exited, but not yet been
/// reaped.
pub fn kill(id: libc::pid_t, signal: int) -> IoResult<()> {
LocalIo::maybe_raise(|io| {
io.kill(id, signal)
}).map_err(IoError::from_rtio_error)
unsafe { ProcessImp::killpid(id, signal) }
}
/// Returns the process id of this child process
@ -518,7 +546,42 @@ impl Process {
///
/// If the signal delivery fails, the corresponding error is returned.
pub fn signal(&mut self, signal: int) -> IoResult<()> {
self.handle.kill(signal).map_err(IoError::from_rtio_error)
#[cfg(unix)] fn collect_status(p: &mut Process) {
// On Linux (and possibly other unices), a process that has exited will
// continue to accept signals because it is "defunct". The delivery of
// signals will only fail once the child has been reaped. For this
// reason, if the process hasn't exited yet, then we attempt to collect
// their status with WNOHANG.
if p.exit_code.is_none() {
match p.handle.try_wait() {
Some(code) => { p.exit_code = Some(code); }
None => {}
}
}
}
#[cfg(windows)] fn collect_status(_p: &mut Process) {}
collect_status(self);
// if the process has finished, and therefore had waitpid called,
// and we kill it, then on unix we might ending up killing a
// newer process that happens to have the same (re-used) id
if self.exit_code.is_some() {
return Err(IoError {
kind: io::InvalidInput,
desc: "invalid argument: can't kill an exited process",
detail: None,
})
}
// A successfully delivered signal that isn't 0 (just a poll for being
// alive) is recorded for windows (see wait())
match unsafe { self.handle.kill(signal) } {
Ok(()) if signal == 0 => Ok(()),
Ok(()) => { self.exit_signal = Some(signal); Ok(()) }
Err(e) => Err(e),
}
}
/// Sends a signal to this child requesting that it exits. This is
@ -545,10 +608,21 @@ impl Process {
/// `set_timeout` and the timeout expires before the child exits.
pub fn wait(&mut self) -> IoResult<ProcessExit> {
drop(self.stdin.take());
match self.handle.wait() {
Ok(rtio::ExitSignal(s)) => Ok(ExitSignal(s)),
Ok(rtio::ExitStatus(s)) => Ok(ExitStatus(s)),
Err(e) => Err(IoError::from_rtio_error(e)),
match self.exit_code {
Some(code) => Ok(code),
None => {
let code = try!(self.handle.wait(self.deadline));
// On windows, waitpid will never return a signal. If a signal
// was successfully delivered to the process, however, we can
// consider it as having died via a signal.
let code = match self.exit_signal {
None => code,
Some(signal) if cfg!(windows) => ExitSignal(signal),
Some(..) => code,
};
self.exit_code = Some(code);
Ok(code)
}
}
}
@ -594,7 +668,7 @@ impl Process {
/// ```
#[experimental = "the type of the timeout is likely to change"]
pub fn set_timeout(&mut self, timeout_ms: Option<u64>) {
self.handle.set_timeout(timeout_ms)
self.deadline = timeout_ms.map(|i| i + sys::timer::now()).unwrap_or(0);
}
/// Simultaneously wait for the child to exit and collect all remaining
@ -653,7 +727,6 @@ impl Drop for Process {
drop(self.stdin.take());
drop(self.stdout.take());
drop(self.stderr.take());
drop(mem::replace(&mut self.extra_io, Vec::new()));
self.set_timeout(None);
let _ = self.wait().unwrap();
@ -1109,8 +1182,7 @@ mod tests {
#[test]
fn dont_close_fd_on_command_spawn() {
use std::rt::rtio::{Truncate, Write};
use self::native::io::file;
use sys::fs;
let path = if cfg!(windows) {
Path::new("NUL")
@ -1118,7 +1190,7 @@ mod tests {
Path::new("/dev/null")
};
let mut fdes = match file::open(&path.to_c_str(), Truncate, Write) {
let mut fdes = match fs::open(&path, Truncate, Write) {
Ok(f) => f,
Err(_) => panic!("failed to open file descriptor"),
};
@ -1126,7 +1198,7 @@ mod tests {
let mut cmd = pwd_cmd();
let _ = cmd.stdout(InheritFd(fdes.fd()));
assert!(cmd.status().unwrap().success());
assert!(fdes.inner_write("extra write\n".as_bytes()).is_ok());
assert!(fdes.write("extra write\n".as_bytes()).is_ok());
}
#[test]

View File

@ -20,8 +20,6 @@
//! can be created in the future and there must be no active timers at that
//! time.
#![macro_escape]
use mem;
use rt::bookkeeping;
use rt::mutex::StaticNativeMutex;
@ -57,15 +55,6 @@ pub struct Helper<M> {
pub initialized: UnsafeCell<bool>,
}
macro_rules! helper_init( (static $name:ident: Helper<$m:ty>) => (
static $name: Helper<$m> = Helper {
lock: ::std::rt::mutex::NATIVE_MUTEX_INIT,
chan: ::std::cell::UnsafeCell { value: 0 as *mut Sender<$m> },
signal: ::std::cell::UnsafeCell { value: 0 },
initialized: ::std::cell::UnsafeCell { value: false },
};
) )
impl<M: Send> Helper<M> {
/// Lazily boots a helper thread, becoming a no-op if the helper has already
/// been spawned.

View File

@ -17,7 +17,6 @@ use prelude::*;
use io::{mod, IoResult, IoError};
use sys_common::mkerr_libc;
macro_rules! helper_init( (static $name:ident: Helper<$m:ty>) => (
static $name: Helper<$m> = Helper {
lock: ::rt::mutex::NATIVE_MUTEX_INIT,
@ -34,6 +33,7 @@ pub mod tcp;
pub mod udp;
pub mod pipe;
pub mod helper_signal;
pub mod process;
pub mod addrinfo {
pub use sys_common::net::get_host_addresses;

View File

@ -0,0 +1,587 @@
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use libc::{mod, pid_t, c_void, c_int};
use c_str::CString;
use io::{mod, IoResult, IoError};
use mem;
use os;
use ptr;
use prelude::*;
use io::process::{ProcessExit, ExitStatus, ExitSignal};
use collections;
use path::BytesContainer;
use hash::Hash;
use sys::{mod, retry, c, wouldblock, set_nonblocking, ms_to_timeval};
use sys::fs::FileDesc;
use sys_common::helper_thread::Helper;
use sys_common::{AsFileDesc, mkerr_libc, timeout};
pub use sys_common::ProcessConfig;
helper_init!(static HELPER: Helper<Req>)
/// The unique id of the process (this should never be negative).
pub struct Process {
pub pid: pid_t
}
enum Req {
NewChild(libc::pid_t, Sender<ProcessExit>, u64),
}
impl Process {
pub fn id(&self) -> pid_t {
self.pid
}
pub unsafe fn kill(&self, signal: int) -> IoResult<()> {
Process::killpid(self.pid, signal)
}
pub unsafe fn killpid(pid: pid_t, signal: int) -> IoResult<()> {
let r = libc::funcs::posix88::signal::kill(pid, signal as c_int);
mkerr_libc(r)
}
pub fn spawn<K, V, C, P>(cfg: &C, in_fd: Option<P>,
out_fd: Option<P>, err_fd: Option<P>)
-> IoResult<Process>
where C: ProcessConfig<K, V>, P: AsFileDesc,
K: BytesContainer + Eq + Hash, V: BytesContainer
{
use libc::funcs::posix88::unistd::{fork, dup2, close, chdir, execvp};
use libc::funcs::bsd44::getdtablesize;
mod rustrt {
extern {
pub fn rust_unset_sigprocmask();
}
}
#[cfg(target_os = "macos")]
unsafe fn set_environ(envp: *const c_void) {
extern { fn _NSGetEnviron() -> *mut *const c_void; }
*_NSGetEnviron() = envp;
}
#[cfg(not(target_os = "macos"))]
unsafe fn set_environ(envp: *const c_void) {
extern { static mut environ: *const c_void; }
environ = envp;
}
unsafe fn set_cloexec(fd: c_int) {
let ret = c::ioctl(fd, c::FIOCLEX);
assert_eq!(ret, 0);
}
let dirp = cfg.cwd().map(|c| c.as_ptr()).unwrap_or(ptr::null());
// temporary until unboxed closures land
let cfg = unsafe {
mem::transmute::<&ProcessConfig<K,V>,&'static ProcessConfig<K,V>>(cfg)
};
with_envp(cfg.env(), proc(envp) {
with_argv(cfg.program(), cfg.args(), proc(argv) unsafe {
let (input, mut output) = try!(sys::os::pipe());
// We may use this in the child, so perform allocations before the
// fork
let devnull = "/dev/null".to_c_str();
set_cloexec(output.fd());
let pid = fork();
if pid < 0 {
return Err(super::last_error())
} else if pid > 0 {
drop(output);
let mut bytes = [0, ..4];
return match input.read(bytes) {
Ok(4) => {
let errno = (bytes[0] as i32 << 24) |
(bytes[1] as i32 << 16) |
(bytes[2] as i32 << 8) |
(bytes[3] as i32 << 0);
Err(super::decode_error(errno))
}
Err(..) => Ok(Process { pid: pid }),
Ok(..) => panic!("short read on the cloexec pipe"),
};
}
// And at this point we've reached a special time in the life of the
// child. The child must now be considered hamstrung and unable to
// do anything other than syscalls really. Consider the following
// scenario:
//
// 1. Thread A of process 1 grabs the malloc() mutex
// 2. Thread B of process 1 forks(), creating thread C
// 3. Thread C of process 2 then attempts to malloc()
// 4. The memory of process 2 is the same as the memory of
// process 1, so the mutex is locked.
//
// This situation looks a lot like deadlock, right? It turns out
// that this is what pthread_atfork() takes care of, which is
// presumably implemented across platforms. The first thing that
// threads to *before* forking is to do things like grab the malloc
// mutex, and then after the fork they unlock it.
//
// Despite this information, libnative's spawn has been witnessed to
// deadlock on both OSX and FreeBSD. I'm not entirely sure why, but
// all collected backtraces point at malloc/free traffic in the
// child spawned process.
//
// For this reason, the block of code below should contain 0
// invocations of either malloc of free (or their related friends).
//
// As an example of not having malloc/free traffic, we don't close
// this file descriptor by dropping the FileDesc (which contains an
// allocation). Instead we just close it manually. This will never
// have the drop glue anyway because this code never returns (the
// child will either exec() or invoke libc::exit)
let _ = libc::close(input.fd());
fn fail(output: &mut FileDesc) -> ! {
let errno = sys::os::errno();
let bytes = [
(errno >> 24) as u8,
(errno >> 16) as u8,
(errno >> 8) as u8,
(errno >> 0) as u8,
];
assert!(output.write(bytes).is_ok());
unsafe { libc::_exit(1) }
}
rustrt::rust_unset_sigprocmask();
// If a stdio file descriptor is set to be ignored (via a -1 file
// descriptor), then we don't actually close it, but rather open
// up /dev/null into that file descriptor. Otherwise, the first file
// descriptor opened up in the child would be numbered as one of the
// stdio file descriptors, which is likely to wreak havoc.
let setup = |src: Option<P>, dst: c_int| {
let src = match src {
None => {
let flags = if dst == libc::STDIN_FILENO {
libc::O_RDONLY
} else {
libc::O_RDWR
};
libc::open(devnull.as_ptr(), flags, 0)
}
Some(obj) => {
let fd = obj.as_fd().fd();
// Leak the memory and the file descriptor. We're in the
// child now an all our resources are going to be
// cleaned up very soon
mem::forget(obj);
fd
}
};
src != -1 && retry(|| dup2(src, dst)) != -1
};
if !setup(in_fd, libc::STDIN_FILENO) { fail(&mut output) }
if !setup(out_fd, libc::STDOUT_FILENO) { fail(&mut output) }
if !setup(err_fd, libc::STDERR_FILENO) { fail(&mut output) }
// close all other fds
for fd in range(3, getdtablesize()).rev() {
if fd != output.fd() {
let _ = close(fd as c_int);
}
}
match cfg.gid() {
Some(u) => {
if libc::setgid(u as libc::gid_t) != 0 {
fail(&mut output);
}
}
None => {}
}
match cfg.uid() {
Some(u) => {
// When dropping privileges from root, the `setgroups` call
// will remove any extraneous groups. If we don't call this,
// then even though our uid has dropped, we may still have
// groups that enable us to do super-user things. This will
// fail if we aren't root, so don't bother checking the
// return value, this is just done as an optimistic
// privilege dropping function.
extern {
fn setgroups(ngroups: libc::c_int,
ptr: *const libc::c_void) -> libc::c_int;
}
let _ = setgroups(0, 0 as *const libc::c_void);
if libc::setuid(u as libc::uid_t) != 0 {
fail(&mut output);
}
}
None => {}
}
if cfg.detach() {
// Don't check the error of setsid because it fails if we're the
// process leader already. We just forked so it shouldn't return
// error, but ignore it anyway.
let _ = libc::setsid();
}
if !dirp.is_null() && chdir(dirp) == -1 {
fail(&mut output);
}
if !envp.is_null() {
set_environ(envp);
}
let _ = execvp(*argv, argv as *mut _);
fail(&mut output);
})
})
}
pub fn wait(&self, deadline: u64) -> IoResult<ProcessExit> {
use std::cmp;
use std::comm;
static mut WRITE_FD: libc::c_int = 0;
let mut status = 0 as c_int;
if deadline == 0 {
return match retry(|| unsafe { c::waitpid(self.pid, &mut status, 0) }) {
-1 => panic!("unknown waitpid error: {}", super::last_error()),
_ => Ok(translate_status(status)),
}
}
// On unix, wait() and its friends have no timeout parameters, so there is
// no way to time out a thread in wait(). From some googling and some
// thinking, it appears that there are a few ways to handle timeouts in
// wait(), but the only real reasonable one for a multi-threaded program is
// to listen for SIGCHLD.
//
// With this in mind, the waiting mechanism with a timeout barely uses
// waitpid() at all. There are a few times that waitpid() is invoked with
// WNOHANG, but otherwise all the necessary blocking is done by waiting for
// a SIGCHLD to arrive (and that blocking has a timeout). Note, however,
// that waitpid() is still used to actually reap the child.
//
// Signal handling is super tricky in general, and this is no exception. Due
// to the async nature of SIGCHLD, we use the self-pipe trick to transmit
// data out of the signal handler to the rest of the application. The first
// idea would be to have each thread waiting with a timeout to read this
// output file descriptor, but a write() is akin to a signal(), not a
// broadcast(), so it would only wake up one thread, and possibly the wrong
// thread. Hence a helper thread is used.
//
// The helper thread here is responsible for farming requests for a
// waitpid() with a timeout, and then processing all of the wait requests.
// By guaranteeing that only this helper thread is reading half of the
// self-pipe, we're sure that we'll never lose a SIGCHLD. This helper thread
// is also responsible for select() to wait for incoming messages or
// incoming SIGCHLD messages, along with passing an appropriate timeout to
// select() to wake things up as necessary.
//
// The ordering of the following statements is also very purposeful. First,
// we must be guaranteed that the helper thread is booted and available to
// receive SIGCHLD signals, and then we must also ensure that we do a
// nonblocking waitpid() at least once before we go ask the sigchld helper.
// This prevents the race where the child exits, we boot the helper, and
// then we ask for the child's exit status (never seeing a sigchld).
//
// The actual communication between the helper thread and this thread is
// quite simple, just a channel moving data around.
unsafe { HELPER.boot(register_sigchld, waitpid_helper) }
match self.try_wait() {
Some(ret) => return Ok(ret),
None => {}
}
let (tx, rx) = channel();
unsafe { HELPER.send(NewChild(self.pid, tx, deadline)); }
return match rx.recv_opt() {
Ok(e) => Ok(e),
Err(()) => Err(timeout("wait timed out")),
};
// Register a new SIGCHLD handler, returning the reading half of the
// self-pipe plus the old handler registered (return value of sigaction).
//
// Be sure to set up the self-pipe first because as soon as we register a
// handler we're going to start receiving signals.
fn register_sigchld() -> (libc::c_int, c::sigaction) {
unsafe {
let mut pipes = [0, ..2];
assert_eq!(libc::pipe(pipes.as_mut_ptr()), 0);
set_nonblocking(pipes[0], true).ok().unwrap();
set_nonblocking(pipes[1], true).ok().unwrap();
WRITE_FD = pipes[1];
let mut old: c::sigaction = mem::zeroed();
let mut new: c::sigaction = mem::zeroed();
new.sa_handler = sigchld_handler;
new.sa_flags = c::SA_NOCLDSTOP;
assert_eq!(c::sigaction(c::SIGCHLD, &new, &mut old), 0);
(pipes[0], old)
}
}
// Helper thread for processing SIGCHLD messages
fn waitpid_helper(input: libc::c_int,
messages: Receiver<Req>,
(read_fd, old): (libc::c_int, c::sigaction)) {
set_nonblocking(input, true).ok().unwrap();
let mut set: c::fd_set = unsafe { mem::zeroed() };
let mut tv: libc::timeval;
let mut active = Vec::<(libc::pid_t, Sender<ProcessExit>, u64)>::new();
let max = cmp::max(input, read_fd) + 1;
'outer: loop {
// Figure out the timeout of our syscall-to-happen. If we're waiting
// for some processes, then they'll have a timeout, otherwise we
// wait indefinitely for a message to arrive.
//
// FIXME: sure would be nice to not have to scan the entire array
let min = active.iter().map(|a| *a.ref2()).enumerate().min_by(|p| {
p.val1()
});
let (p, idx) = match min {
Some((idx, deadline)) => {
let now = sys::timer::now();
let ms = if now < deadline {deadline - now} else {0};
tv = ms_to_timeval(ms);
(&mut tv as *mut _, idx)
}
None => (ptr::null_mut(), -1),
};
// Wait for something to happen
c::fd_set(&mut set, input);
c::fd_set(&mut set, read_fd);
match unsafe { c::select(max, &mut set, ptr::null_mut(),
ptr::null_mut(), p) } {
// interrupted, retry
-1 if os::errno() == libc::EINTR as uint => continue,
// We read something, break out and process
1 | 2 => {}
// Timeout, the pending request is removed
0 => {
drop(active.remove(idx));
continue
}
n => panic!("error in select {} ({})", os::errno(), n),
}
// Process any pending messages
if drain(input) {
loop {
match messages.try_recv() {
Ok(NewChild(pid, tx, deadline)) => {
active.push((pid, tx, deadline));
}
Err(comm::Disconnected) => {
assert!(active.len() == 0);
break 'outer;
}
Err(comm::Empty) => break,
}
}
}
// If a child exited (somehow received SIGCHLD), then poll all
// children to see if any of them exited.
//
// We also attempt to be responsible netizens when dealing with
// SIGCHLD by invoking any previous SIGCHLD handler instead of just
// ignoring any previous SIGCHLD handler. Note that we don't provide
// a 1:1 mapping of our handler invocations to the previous handler
// invocations because we drain the `read_fd` entirely. This is
// probably OK because the kernel is already allowed to coalesce
// simultaneous signals, we're just doing some extra coalescing.
//
// Another point of note is that this likely runs the signal handler
// on a different thread than the one that received the signal. I
// *think* this is ok at this time.
//
// The main reason for doing this is to allow stdtest to run native
// tests as well. Both libgreen and libnative are running around
// with process timeouts, but libgreen should get there first
// (currently libuv doesn't handle old signal handlers).
if drain(read_fd) {
let i: uint = unsafe { mem::transmute(old.sa_handler) };
if i != 0 {
assert!(old.sa_flags & c::SA_SIGINFO == 0);
(old.sa_handler)(c::SIGCHLD);
}
// FIXME: sure would be nice to not have to scan the entire
// array...
active.retain(|&(pid, ref tx, _)| {
let pr = Process { pid: pid };
match pr.try_wait() {
Some(msg) => { tx.send(msg); false }
None => true,
}
});
}
}
// Once this helper thread is done, we re-register the old sigchld
// handler and close our intermediate file descriptors.
unsafe {
assert_eq!(c::sigaction(c::SIGCHLD, &old, ptr::null_mut()), 0);
let _ = libc::close(read_fd);
let _ = libc::close(WRITE_FD);
WRITE_FD = -1;
}
}
// Drain all pending data from the file descriptor, returning if any data
// could be drained. This requires that the file descriptor is in
// nonblocking mode.
fn drain(fd: libc::c_int) -> bool {
let mut ret = false;
loop {
let mut buf = [0u8, ..1];
match unsafe {
libc::read(fd, buf.as_mut_ptr() as *mut libc::c_void,
buf.len() as libc::size_t)
} {
n if n > 0 => { ret = true; }
0 => return true,
-1 if wouldblock() => return ret,
n => panic!("bad read {} ({})", os::last_os_error(), n),
}
}
}
// Signal handler for SIGCHLD signals, must be async-signal-safe!
//
// This function will write to the writing half of the "self pipe" to wake
// up the helper thread if it's waiting. Note that this write must be
// nonblocking because if it blocks and the reader is the thread we
// interrupted, then we'll deadlock.
//
// When writing, if the write returns EWOULDBLOCK then we choose to ignore
// it. At that point we're guaranteed that there's something in the pipe
// which will wake up the other end at some point, so we just allow this
// signal to be coalesced with the pending signals on the pipe.
extern fn sigchld_handler(_signum: libc::c_int) {
let msg = 1i;
match unsafe {
libc::write(WRITE_FD, &msg as *const _ as *const libc::c_void, 1)
} {
1 => {}
-1 if wouldblock() => {} // see above comments
n => panic!("bad error on write fd: {} {}", n, os::errno()),
}
}
}
pub fn try_wait(&self) -> Option<ProcessExit> {
let mut status = 0 as c_int;
match retry(|| unsafe {
c::waitpid(self.pid, &mut status, c::WNOHANG)
}) {
n if n == self.pid => Some(translate_status(status)),
0 => None,
n => panic!("unknown waitpid error `{}`: {}", n,
super::last_error()),
}
}
}
fn with_argv<T>(prog: &CString, args: &[CString],
cb: proc(*const *const libc::c_char) -> T) -> T {
let mut ptrs: Vec<*const libc::c_char> = Vec::with_capacity(args.len()+1);
// Convert the CStrings into an array of pointers. Note: the
// lifetime of the various CStrings involved is guaranteed to be
// larger than the lifetime of our invocation of cb, but this is
// technically unsafe as the callback could leak these pointers
// out of our scope.
ptrs.push(prog.as_ptr());
ptrs.extend(args.iter().map(|tmp| tmp.as_ptr()));
// Add a terminating null pointer (required by libc).
ptrs.push(ptr::null());
cb(ptrs.as_ptr())
}
fn with_envp<K, V, T>(env: Option<&collections::HashMap<K, V>>,
cb: proc(*const c_void) -> T) -> T
where K: BytesContainer + Eq + Hash, V: BytesContainer
{
// On posixy systems we can pass a char** for envp, which is a
// null-terminated array of "k=v\0" strings. Since we must create
// these strings locally, yet expose a raw pointer to them, we
// create a temporary vector to own the CStrings that outlives the
// call to cb.
match env {
Some(env) => {
let mut tmps = Vec::with_capacity(env.len());
for pair in env.iter() {
let mut kv = Vec::new();
kv.push_all(pair.ref0().container_as_bytes());
kv.push('=' as u8);
kv.push_all(pair.ref1().container_as_bytes());
kv.push(0); // terminating null
tmps.push(kv);
}
// As with `with_argv`, this is unsafe, since cb could leak the pointers.
let mut ptrs: Vec<*const libc::c_char> =
tmps.iter()
.map(|tmp| tmp.as_ptr() as *const libc::c_char)
.collect();
ptrs.push(ptr::null());
cb(ptrs.as_ptr() as *const c_void)
}
_ => cb(ptr::null())
}
}
fn translate_status(status: c_int) -> ProcessExit {
#![allow(non_snake_case)]
#[cfg(any(target_os = "linux", target_os = "android"))]
mod imp {
pub fn WIFEXITED(status: i32) -> bool { (status & 0xff) == 0 }
pub fn WEXITSTATUS(status: i32) -> i32 { (status >> 8) & 0xff }
pub fn WTERMSIG(status: i32) -> i32 { status & 0x7f }
}
#[cfg(any(target_os = "macos",
target_os = "ios",
target_os = "freebsd",
target_os = "dragonfly"))]
mod imp {
pub fn WIFEXITED(status: i32) -> bool { (status & 0x7f) == 0 }
pub fn WEXITSTATUS(status: i32) -> i32 { status >> 8 }
pub fn WTERMSIG(status: i32) -> i32 { status & 0o177 }
}
if imp::WIFEXITED(status) {
ExitStatus(imp::WEXITSTATUS(status) as int)
} else {
ExitSignal(imp::WTERMSIG(status) as int)
}
}

View File

@ -40,6 +40,7 @@ pub mod tcp;
pub mod udp;
pub mod pipe;
pub mod helper_signal;
pub mod process;
pub mod addrinfo {
pub use sys_common::net::get_host_addresses;

View File

@ -0,0 +1,511 @@
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use libc::{pid_t, c_void, c_int};
use libc;
use c_str::CString;
use io;
use mem;
use os;
use ptr;
use prelude::*;
use io::process::{ProcessExit, ExitStatus, ExitSignal};
use collections;
use path::BytesContainer;
use hash::Hash;
use io::{IoResult, IoError};
use sys::fs;
use sys::{mod, retry, c, wouldblock, set_nonblocking, ms_to_timeval, timer};
use sys::fs::FileDesc;
use sys_common::helper_thread::Helper;
use sys_common::{AsFileDesc, mkerr_libc, timeout};
use io::fs::PathExtensions;
use string::String;
pub use sys_common::ProcessConfig;
/**
* A value representing a child process.
*
* The lifetime of this value is linked to the lifetime of the actual
* process - the Process destructor calls self.finish() which waits
* for the process to terminate.
*/
pub struct Process {
/// The unique id of the process (this should never be negative).
pid: pid_t,
/// A HANDLE to the process, which will prevent the pid being
/// re-used until the handle is closed.
handle: *mut (),
}
impl Drop for Process {
fn drop(&mut self) {
free_handle(self.handle);
}
}
impl Process {
pub fn id(&self) -> pid_t {
self.pid
}
pub unsafe fn kill(&self, signal: int) -> IoResult<()> {
Process::killpid(self.pid, signal)
}
pub unsafe fn killpid(pid: pid_t, signal: int) -> IoResult<()> {
let handle = libc::OpenProcess(libc::PROCESS_TERMINATE |
libc::PROCESS_QUERY_INFORMATION,
libc::FALSE, pid as libc::DWORD);
if handle.is_null() {
return Err(super::last_error())
}
let ret = match signal {
// test for existence on signal 0
0 => {
let mut status = 0;
let ret = libc::GetExitCodeProcess(handle, &mut status);
if ret == 0 {
Err(super::last_error())
} else if status != libc::STILL_ACTIVE {
Err(IoError {
kind: io::InvalidInput,
desc: "no process to kill",
detail: None,
})
} else {
Ok(())
}
}
15 | 9 => { // sigterm or sigkill
let ret = libc::TerminateProcess(handle, 1);
super::mkerr_winbool(ret)
}
_ => Err(IoError {
kind: io::IoUnavailable,
desc: "unsupported signal on windows",
detail: None,
})
};
let _ = libc::CloseHandle(handle);
return ret;
}
pub fn spawn<K, V, C, P>(cfg: &C, in_fd: Option<P>,
out_fd: Option<P>, err_fd: Option<P>)
-> IoResult<Process>
where C: ProcessConfig<K, V>, P: AsFileDesc,
K: BytesContainer + Eq + Hash, V: BytesContainer
{
use libc::types::os::arch::extra::{DWORD, HANDLE, STARTUPINFO};
use libc::consts::os::extra::{
TRUE, FALSE,
STARTF_USESTDHANDLES,
INVALID_HANDLE_VALUE,
DUPLICATE_SAME_ACCESS
};
use libc::funcs::extra::kernel32::{
GetCurrentProcess,
DuplicateHandle,
CloseHandle,
CreateProcessW
};
use libc::funcs::extra::msvcrt::get_osfhandle;
use mem;
use iter::Iterator;
use str::StrPrelude;
if cfg.gid().is_some() || cfg.uid().is_some() {
return Err(IoError {
kind: io::IoUnavailable,
desc: "unsupported gid/uid requested on windows",
detail: None,
})
}
// To have the spawning semantics of unix/windows stay the same, we need to
// read the *child's* PATH if one is provided. See #15149 for more details.
let program = cfg.env().and_then(|env| {
for (key, v) in env.iter() {
if b"PATH" != key.container_as_bytes() { continue }
// Split the value and test each path to see if the
// program exists.
for path in os::split_paths(v.container_as_bytes()).into_iter() {
let path = path.join(cfg.program().as_bytes_no_nul())
.with_extension(os::consts::EXE_EXTENSION);
if path.exists() {
return Some(path.to_c_str())
}
}
break
}
None
});
unsafe {
let mut si = zeroed_startupinfo();
si.cb = mem::size_of::<STARTUPINFO>() as DWORD;
si.dwFlags = STARTF_USESTDHANDLES;
let cur_proc = GetCurrentProcess();
// Similarly to unix, we don't actually leave holes for the stdio file
// descriptors, but rather open up /dev/null equivalents. These
// equivalents are drawn from libuv's windows process spawning.
let set_fd = |fd: &Option<P>, slot: &mut HANDLE,
is_stdin: bool| {
match *fd {
None => {
let access = if is_stdin {
libc::FILE_GENERIC_READ
} else {
libc::FILE_GENERIC_WRITE | libc::FILE_READ_ATTRIBUTES
};
let size = mem::size_of::<libc::SECURITY_ATTRIBUTES>();
let mut sa = libc::SECURITY_ATTRIBUTES {
nLength: size as libc::DWORD,
lpSecurityDescriptor: ptr::null_mut(),
bInheritHandle: 1,
};
let mut filename: Vec<u16> = "NUL".utf16_units().collect();
filename.push(0);
*slot = libc::CreateFileW(filename.as_ptr(),
access,
libc::FILE_SHARE_READ |
libc::FILE_SHARE_WRITE,
&mut sa,
libc::OPEN_EXISTING,
0,
ptr::null_mut());
if *slot == INVALID_HANDLE_VALUE {
return Err(super::last_error())
}
}
Some(ref fd) => {
let orig = get_osfhandle(fd.as_fd().fd()) as HANDLE;
if orig == INVALID_HANDLE_VALUE {
return Err(super::last_error())
}
if DuplicateHandle(cur_proc, orig, cur_proc, slot,
0, TRUE, DUPLICATE_SAME_ACCESS) == FALSE {
return Err(super::last_error())
}
}
}
Ok(())
};
try!(set_fd(&in_fd, &mut si.hStdInput, true));
try!(set_fd(&out_fd, &mut si.hStdOutput, false));
try!(set_fd(&err_fd, &mut si.hStdError, false));
let cmd_str = make_command_line(program.as_ref().unwrap_or(cfg.program()),
cfg.args());
let mut pi = zeroed_process_information();
let mut create_err = None;
// stolen from the libuv code.
let mut flags = libc::CREATE_UNICODE_ENVIRONMENT;
if cfg.detach() {
flags |= libc::DETACHED_PROCESS | libc::CREATE_NEW_PROCESS_GROUP;
}
with_envp(cfg.env(), |envp| {
with_dirp(cfg.cwd(), |dirp| {
let mut cmd_str: Vec<u16> = cmd_str.as_slice().utf16_units().collect();
cmd_str.push(0);
let created = CreateProcessW(ptr::null(),
cmd_str.as_mut_ptr(),
ptr::null_mut(),
ptr::null_mut(),
TRUE,
flags, envp, dirp,
&mut si, &mut pi);
if created == FALSE {
create_err = Some(super::last_error());
}
})
});
assert!(CloseHandle(si.hStdInput) != 0);
assert!(CloseHandle(si.hStdOutput) != 0);
assert!(CloseHandle(si.hStdError) != 0);
match create_err {
Some(err) => return Err(err),
None => {}
}
// We close the thread handle because we don't care about keeping the
// thread id valid, and we aren't keeping the thread handle around to be
// able to close it later. We don't close the process handle however
// because std::we want the process id to stay valid at least until the
// calling code closes the process handle.
assert!(CloseHandle(pi.hThread) != 0);
Ok(Process {
pid: pi.dwProcessId as pid_t,
handle: pi.hProcess as *mut ()
})
}
}
/**
* Waits for a process to exit and returns the exit code, failing
* if there is no process with the specified id.
*
* Note that this is private to avoid race conditions on unix where if
* a user calls waitpid(some_process.get_id()) then some_process.finish()
* and some_process.destroy() and some_process.finalize() will then either
* operate on a none-existent process or, even worse, on a newer process
* with the same id.
*/
pub fn wait(&self, deadline: u64) -> IoResult<ProcessExit> {
use libc::types::os::arch::extra::DWORD;
use libc::consts::os::extra::{
SYNCHRONIZE,
PROCESS_QUERY_INFORMATION,
FALSE,
STILL_ACTIVE,
INFINITE,
WAIT_TIMEOUT,
WAIT_OBJECT_0,
};
use libc::funcs::extra::kernel32::{
OpenProcess,
GetExitCodeProcess,
CloseHandle,
WaitForSingleObject,
};
unsafe {
let process = OpenProcess(SYNCHRONIZE | PROCESS_QUERY_INFORMATION,
FALSE,
self.pid as DWORD);
if process.is_null() {
return Err(super::last_error())
}
loop {
let mut status = 0;
if GetExitCodeProcess(process, &mut status) == FALSE {
let err = Err(super::last_error());
assert!(CloseHandle(process) != 0);
return err;
}
if status != STILL_ACTIVE {
assert!(CloseHandle(process) != 0);
return Ok(ExitStatus(status as int));
}
let interval = if deadline == 0 {
INFINITE
} else {
let now = timer::now();
if deadline < now {0} else {(deadline - now) as u32}
};
match WaitForSingleObject(process, interval) {
WAIT_OBJECT_0 => {}
WAIT_TIMEOUT => {
assert!(CloseHandle(process) != 0);
return Err(timeout("process wait timed out"))
}
_ => {
let err = Err(super::last_error());
assert!(CloseHandle(process) != 0);
return err
}
}
}
}
}
}
fn zeroed_startupinfo() -> libc::types::os::arch::extra::STARTUPINFO {
libc::types::os::arch::extra::STARTUPINFO {
cb: 0,
lpReserved: ptr::null_mut(),
lpDesktop: ptr::null_mut(),
lpTitle: ptr::null_mut(),
dwX: 0,
dwY: 0,
dwXSize: 0,
dwYSize: 0,
dwXCountChars: 0,
dwYCountCharts: 0,
dwFillAttribute: 0,
dwFlags: 0,
wShowWindow: 0,
cbReserved2: 0,
lpReserved2: ptr::null_mut(),
hStdInput: libc::INVALID_HANDLE_VALUE,
hStdOutput: libc::INVALID_HANDLE_VALUE,
hStdError: libc::INVALID_HANDLE_VALUE,
}
}
fn zeroed_process_information() -> libc::types::os::arch::extra::PROCESS_INFORMATION {
libc::types::os::arch::extra::PROCESS_INFORMATION {
hProcess: ptr::null_mut(),
hThread: ptr::null_mut(),
dwProcessId: 0,
dwThreadId: 0
}
}
fn make_command_line(prog: &CString, args: &[CString]) -> String {
let mut cmd = String::new();
append_arg(&mut cmd, prog.as_str()
.expect("expected program name to be utf-8 encoded"));
for arg in args.iter() {
cmd.push(' ');
append_arg(&mut cmd, arg.as_str()
.expect("expected argument to be utf-8 encoded"));
}
return cmd;
fn append_arg(cmd: &mut String, arg: &str) {
// If an argument has 0 characters then we need to quote it to ensure
// that it actually gets passed through on the command line or otherwise
// it will be dropped entirely when parsed on the other end.
let quote = arg.chars().any(|c| c == ' ' || c == '\t') || arg.len() == 0;
if quote {
cmd.push('"');
}
let argvec: Vec<char> = arg.chars().collect();
for i in range(0u, argvec.len()) {
append_char_at(cmd, argvec.as_slice(), i);
}
if quote {
cmd.push('"');
}
}
fn append_char_at(cmd: &mut String, arg: &[char], i: uint) {
match arg[i] {
'"' => {
// Escape quotes.
cmd.push_str("\\\"");
}
'\\' => {
if backslash_run_ends_in_quote(arg, i) {
// Double all backslashes that are in runs before quotes.
cmd.push_str("\\\\");
} else {
// Pass other backslashes through unescaped.
cmd.push('\\');
}
}
c => {
cmd.push(c);
}
}
}
fn backslash_run_ends_in_quote(s: &[char], mut i: uint) -> bool {
while i < s.len() && s[i] == '\\' {
i += 1;
}
return i < s.len() && s[i] == '"';
}
}
fn with_envp<K, V, T>(env: Option<&collections::HashMap<K, V>>,
cb: |*mut c_void| -> T) -> T
where K: BytesContainer + Eq + Hash, V: BytesContainer
{
// On Windows we pass an "environment block" which is not a char**, but
// rather a concatenation of null-terminated k=v\0 sequences, with a final
// \0 to terminate.
match env {
Some(env) => {
let mut blk = Vec::new();
for pair in env.iter() {
let kv = format!("{}={}",
pair.ref0().container_as_str().unwrap(),
pair.ref1().container_as_str().unwrap());
blk.extend(kv.as_slice().utf16_units());
blk.push(0);
}
blk.push(0);
cb(blk.as_mut_ptr() as *mut c_void)
}
_ => cb(ptr::null_mut())
}
}
fn with_dirp<T>(d: Option<&CString>, cb: |*const u16| -> T) -> T {
match d {
Some(dir) => {
let dir_str = dir.as_str()
.expect("expected workingdirectory to be utf-8 encoded");
let mut dir_str: Vec<u16> = dir_str.utf16_units().collect();
dir_str.push(0);
cb(dir_str.as_ptr())
},
None => cb(ptr::null())
}
}
fn free_handle(handle: *mut ()) {
assert!(unsafe {
libc::CloseHandle(mem::transmute(handle)) != 0
})
}
#[cfg(test)]
mod tests {
#[test]
fn test_make_command_line() {
use prelude::*;
use str;
use c_str::CString;
use super::make_command_line;
fn test_wrapper(prog: &str, args: &[&str]) -> String {
make_command_line(&prog.to_c_str(),
args.iter()
.map(|a| a.to_c_str())
.collect::<Vec<CString>>()
.as_slice())
}
assert_eq!(
test_wrapper("prog", ["aaa", "bbb", "ccc"]),
"prog aaa bbb ccc".to_string()
);
assert_eq!(
test_wrapper("C:\\Program Files\\blah\\blah.exe", ["aaa"]),
"\"C:\\Program Files\\blah\\blah.exe\" aaa".to_string()
);
assert_eq!(
test_wrapper("C:\\Program Files\\test", ["aa\"bb"]),
"\"C:\\Program Files\\test\" aa\\\"bb".to_string()
);
assert_eq!(
test_wrapper("echo", ["a b c"]),
"echo \"a b c\"".to_string()
);
assert_eq!(
test_wrapper("\u03c0\u042f\u97f3\u00e6\u221e", []),
"\u03c0\u042f\u97f3\u00e6\u221e".to_string()
);
}
}