Auto merge of #61201 - Centril:rollup-975knrk, r=Centril

Rollup of 9 pull requests

Successful merges:

 - #61087 (Tweak `self` arg not as first argument of a method diagnostic)
 - #61114 (Vec: avoid creating slices to the elements)
 - #61144 (Suggest borrowing for loop head on move error)
 - #61149 (Fix spelling in release notes)
 - #61161 (MaybeUninit doctest: remove unnecessary type ascription)
 - #61173 (Auto-derive Encode and Decode implementations of DefPathTable)
 - #61184 (Add additional trace statements to the const propagator)
 - #61189 (Turn turbo 🐟 🍨 into an error)
 - #61193 (Add comment to explain why we change the layout for Projection)

Failed merges:

r? @ghost
This commit is contained in:
bors 2019-05-26 06:09:08 +00:00
commit 2268d9923b
24 changed files with 870 additions and 654 deletions

View File

@ -157,7 +157,7 @@ Libraries
produce a warning if their returning type is unused.
- [The methods `checked_pow`, `saturating_pow`, `wrapping_pow`, and
`overflowing_pow` are now available for all numeric types.][57873] These are
equivalvent to methods such as `wrapping_add` for the `pow` operation.
equivalent to methods such as `wrapping_add` for the `pow` operation.
Stabilized APIs

View File

@ -1152,3 +1152,24 @@ fn test_try_reserve_exact() {
}
}
#[test]
fn test_stable_push_pop() {
// Test that, if we reserved enough space, adding and removing elements does not
// invalidate references into the vector (such as `v0`). This test also
// runs in Miri, which would detect such problems.
let mut v = Vec::with_capacity(10);
v.push(13);
// laundering the lifetime -- we take care that `v` does not reallocate, so that's okay.
let v0 = unsafe { &*(&v[0] as *const _) };
// Now do a bunch of things and occasionally use `v0` again to assert it is still valid.
v.push(1);
v.push(2);
v.insert(1, 1);
assert_eq!(*v0, 13);
v.remove(1);
v.pop().unwrap();
assert_eq!(*v0, 13);
}

View File

@ -735,6 +735,75 @@ impl<T> Vec<T> {
self
}
/// Returns a raw pointer to the vector's buffer.
///
/// The caller must ensure that the vector outlives the pointer this
/// function returns, or else it will end up pointing to garbage.
/// Modifying the vector may cause its buffer to be reallocated,
/// which would also make any pointers to it invalid.
///
/// The caller must also ensure that the memory the pointer (non-transitively) points to
/// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
/// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
///
/// # Examples
///
/// ```
/// let x = vec![1, 2, 4];
/// let x_ptr = x.as_ptr();
///
/// unsafe {
/// for i in 0..x.len() {
/// assert_eq!(*x_ptr.add(i), 1 << i);
/// }
/// }
/// ```
///
/// [`as_mut_ptr`]: #method.as_mut_ptr
#[stable(feature = "vec_as_ptr", since = "1.37.0")]
#[inline]
pub fn as_ptr(&self) -> *const T {
// We shadow the slice method of the same name to avoid going through
// `deref`, which creates an intermediate reference.
let ptr = self.buf.ptr();
unsafe { assume(!ptr.is_null()); }
ptr
}
/// Returns an unsafe mutable pointer to the vector's buffer.
///
/// The caller must ensure that the vector outlives the pointer this
/// function returns, or else it will end up pointing to garbage.
/// Modifying the vector may cause its buffer to be reallocated,
/// which would also make any pointers to it invalid.
///
/// # Examples
///
/// ```
/// // Allocate vector big enough for 4 elements.
/// let size = 4;
/// let mut x: Vec<i32> = Vec::with_capacity(size);
/// let x_ptr = x.as_mut_ptr();
///
/// // Initialize elements via raw pointer writes, then set length.
/// unsafe {
/// for i in 0..size {
/// *x_ptr.add(i) = i as i32;
/// }
/// x.set_len(size);
/// }
/// assert_eq!(&*x, &[0,1,2,3]);
/// ```
#[stable(feature = "vec_as_ptr", since = "1.37.0")]
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut T {
// We shadow the slice method of the same name to avoid going through
// `deref_mut`, which creates an intermediate reference.
let ptr = self.buf.ptr();
unsafe { assume(!ptr.is_null()); }
ptr
}
/// Forces the length of the vector to `new_len`.
///
/// This is a low-level operation that maintains none of the normal
@ -1706,9 +1775,7 @@ impl<T> ops::Deref for Vec<T> {
fn deref(&self) -> &[T] {
unsafe {
let p = self.buf.ptr();
assume(!p.is_null());
slice::from_raw_parts(p, self.len)
slice::from_raw_parts(self.as_ptr(), self.len)
}
}
}
@ -1717,9 +1784,7 @@ impl<T> ops::Deref for Vec<T> {
impl<T> ops::DerefMut for Vec<T> {
fn deref_mut(&mut self) -> &mut [T] {
unsafe {
let ptr = self.buf.ptr();
assume(!ptr.is_null());
slice::from_raw_parts_mut(ptr, self.len)
slice::from_raw_parts_mut(self.as_mut_ptr(), self.len)
}
}
}
@ -1754,7 +1819,6 @@ impl<T> IntoIterator for Vec<T> {
fn into_iter(mut self) -> IntoIter<T> {
unsafe {
let begin = self.as_mut_ptr();
assume(!begin.is_null());
let end = if mem::size_of::<T>() == 0 {
arith_offset(begin as *const i8, self.len() as isize) as *const T
} else {

View File

@ -982,7 +982,7 @@ impl<T: ?Sized> DerefMut for ManuallyDrop<T> {
/// out.write(vec![1, 2, 3]);
/// }
///
/// let mut v: MaybeUninit<Vec<i32>> = MaybeUninit::uninit();
/// let mut v = MaybeUninit::uninit();
/// unsafe { make_vec(v.as_mut_ptr()); }
/// // Now we know `v` is initialized! This also makes sure the vector gets
/// // properly dropped.
@ -1071,7 +1071,7 @@ impl<T: ?Sized> DerefMut for ManuallyDrop<T> {
/// optimizations, potentially resulting in a larger size:
///
/// ```rust
/// # use std::mem::{MaybeUninit, size_of, align_of};
/// # use std::mem::{MaybeUninit, size_of};
/// assert_eq!(size_of::<Option<bool>>(), 1);
/// assert_eq!(size_of::<Option<MaybeUninit<bool>>>(), 2);
/// ```

View File

@ -10,7 +10,6 @@ use crate::ich::Fingerprint;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::indexed_vec::{IndexVec};
use rustc_data_structures::stable_hasher::StableHasher;
use serialize::{Encodable, Decodable, Encoder, Decoder};
use crate::session::CrateDisambiguator;
use std::borrow::Borrow;
use std::fmt::Write;
@ -25,14 +24,13 @@ use crate::util::nodemap::NodeMap;
/// Internally the DefPathTable holds a tree of DefKeys, where each DefKey
/// stores the DefIndex of its parent.
/// There is one DefPathTable for each crate.
#[derive(Clone, Default)]
#[derive(Clone, Default, RustcDecodable, RustcEncodable)]
pub struct DefPathTable {
index_to_key: Vec<DefKey>,
def_path_hashes: Vec<DefPathHash>,
}
impl DefPathTable {
fn allocate(&mut self,
key: DefKey,
def_path_hash: DefPathHash)
@ -86,28 +84,6 @@ impl DefPathTable {
}
}
impl Encodable for DefPathTable {
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
// Index to key
self.index_to_key.encode(s)?;
// DefPath hashes
self.def_path_hashes.encode(s)?;
Ok(())
}
}
impl Decodable for DefPathTable {
fn decode<D: Decoder>(d: &mut D) -> Result<DefPathTable, D::Error> {
Ok(DefPathTable {
index_to_key: Decodable::decode(d)?,
def_path_hashes : Decodable::decode(d)?,
})
}
}
/// The definition table containing node definitions.
/// It holds the `DefPathTable` for local `DefId`s/`DefPath`s and it also stores a
/// mapping from `NodeId`s to local `DefId`s.

View File

@ -158,18 +158,6 @@ impl<'cx, 'gcx, 'tcx> MirBorrowckCtxt<'cx, 'gcx, 'tcx> {
span,
format!("value moved{} here, in previous iteration of loop", move_msg),
);
if Some(CompilerDesugaringKind::ForLoop) == span.compiler_desugaring_kind() {
if let Ok(snippet) = self.infcx.tcx.sess.source_map()
.span_to_snippet(span)
{
err.span_suggestion(
move_span,
"consider borrowing this to avoid moving it into the for loop",
format!("&{}", snippet),
Applicability::MaybeIncorrect,
);
}
}
is_loop_move = true;
} else if move_site.traversed_back_edge {
err.span_label(
@ -185,7 +173,17 @@ impl<'cx, 'gcx, 'tcx> MirBorrowckCtxt<'cx, 'gcx, 'tcx> {
&mut err,
format!("variable moved due to use{}", move_spans.describe()),
);
};
}
if Some(CompilerDesugaringKind::ForLoop) == move_span.compiler_desugaring_kind() {
if let Ok(snippet) = self.infcx.tcx.sess.source_map().span_to_snippet(span) {
err.span_suggestion(
move_span,
"consider borrowing to avoid moving into the for loop",
format!("&{}", snippet),
Applicability::MaybeIncorrect,
);
}
}
}
use_spans.var_span_label(

View File

@ -475,6 +475,8 @@ impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> InterpretCx<'a, 'mir, 'tcx, M>
PlaceBase::Local(mir::RETURN_PLACE) => return err!(ReadFromReturnPointer),
PlaceBase::Local(local) => {
// FIXME use place_projection.is_empty() when is available
// Do not use the layout passed in as argument if the base we are looking at
// here is not the entire place.
let layout = if let Place::Base(_) = mir_place {
layout
} else {

View File

@ -295,6 +295,7 @@ impl<'a, 'mir, 'tcx> ConstPropagator<'a, 'mir, 'tcx> {
}
fn eval_place(&mut self, place: &Place<'tcx>, source_info: SourceInfo) -> Option<Const<'tcx>> {
trace!("eval_place(place={:?})", place);
match *place {
Place::Base(PlaceBase::Local(loc)) => self.places[loc].clone(),
Place::Projection(ref proj) => match proj.elem {
@ -516,6 +517,7 @@ impl<'a, 'mir, 'tcx> ConstPropagator<'a, 'mir, 'tcx> {
}
fn replace_with_const(&self, rval: &mut Rvalue<'tcx>, value: Const<'tcx>, span: Span) {
trace!("attepting to replace {:?} with {:?}", rval, value);
self.ecx.validate_operand(
value,
vec![],
@ -579,6 +581,10 @@ impl CanConstProp {
// FIXME(oli-obk): lint variables until they are used in a condition
// FIXME(oli-obk): lint if return value is constant
*val = mir.local_kind(local) == LocalKind::Temp;
if !*val {
trace!("local {:?} can't be propagated because it's not a temporary", local);
}
}
cpv.visit_mir(mir);
cpv.can_const_prop
@ -598,6 +604,7 @@ impl<'tcx> Visitor<'tcx> for CanConstProp {
// FIXME(oli-obk): we could be more powerful here, if the multiple writes
// only occur in independent execution paths
MutatingUse(MutatingUseContext::Store) => if self.found_assignment[local] {
trace!("local {:?} can't be propagated because of multiple assignments", local);
self.can_const_prop[local] = false;
} else {
self.found_assignment[local] = true
@ -609,7 +616,10 @@ impl<'tcx> Visitor<'tcx> for CanConstProp {
NonMutatingUse(NonMutatingUseContext::Projection) |
MutatingUse(MutatingUseContext::Projection) |
NonUse(_) => {},
_ => self.can_const_prop[local] = false,
_ => {
trace!("local {:?} can't be propagaged because it's used: {:?}", local, context);
self.can_const_prop[local] = false;
},
}
}
}

View File

@ -5194,7 +5194,7 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
&self,
res: Res,
span: Span,
) -> Result<(DefKind, DefId, Ty<'tcx>), ErrorReported> {
) -> Result<Res, ErrorReported> {
let tcx = self.tcx;
if let Res::SelfCtor(impl_def_id) = res {
let ty = self.impl_self_ty(span, impl_def_id).ty;
@ -5204,11 +5204,7 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
Some(adt_def) if adt_def.has_ctor() => {
let variant = adt_def.non_enum_variant();
let ctor_def_id = variant.ctor_def_id.unwrap();
Ok((
DefKind::Ctor(CtorOf::Struct, variant.ctor_kind),
ctor_def_id,
tcx.type_of(ctor_def_id),
))
Ok(Res::Def(DefKind::Ctor(CtorOf::Struct, variant.ctor_kind), ctor_def_id))
}
_ => {
let mut err = tcx.sess.struct_span_err(span,
@ -5235,15 +5231,7 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
}
}
} else {
match res {
Res::Def(kind, def_id) => {
// The things we are substituting into the type should not contain
// escaping late-bound regions, and nor should the base type scheme.
let ty = tcx.type_of(def_id);
Ok((kind, def_id, ty))
}
_ => span_bug!(span, "unexpected res in rewrite_self_ctor: {:?}", res),
}
Ok(res)
}
}
@ -5266,27 +5254,21 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
let tcx = self.tcx;
match res {
Res::Local(hid) | Res::Upvar(hid, ..) => {
let ty = self.local_ty(span, hid).decl_ty;
let ty = self.normalize_associated_types_in(span, &ty);
self.write_ty(hir_id, ty);
return (ty, res);
}
_ => {}
}
let (kind, def_id, ty) = match self.rewrite_self_ctor(res, span) {
Ok(result) => result,
let res = match self.rewrite_self_ctor(res, span) {
Ok(res) => res,
Err(ErrorReported) => return (tcx.types.err, res),
};
let path_segs =
AstConv::def_ids_for_value_path_segments(self, segments, self_ty, kind, def_id);
let path_segs = match res {
Res::Local(_) | Res::Upvar(..) => Vec::new(),
Res::Def(kind, def_id) =>
AstConv::def_ids_for_value_path_segments(self, segments, self_ty, kind, def_id),
_ => bug!("instantiate_value_path on {:?}", res),
};
let mut user_self_ty = None;
let mut is_alias_variant_ctor = false;
match kind {
DefKind::Ctor(CtorOf::Variant, _) => {
match res {
Res::Def(DefKind::Ctor(CtorOf::Variant, _), _) => {
if let Some(self_ty) = self_ty {
let adt_def = self_ty.ty_adt_def().unwrap();
user_self_ty = Some(UserSelfTy {
@ -5296,8 +5278,8 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
is_alias_variant_ctor = true;
}
}
DefKind::Method
| DefKind::AssociatedConst => {
Res::Def(DefKind::Method, def_id)
| Res::Def(DefKind::AssociatedConst, def_id) => {
let container = tcx.associated_item(def_id).container;
debug!("instantiate_value_path: def_id={:?} container={:?}", def_id, container);
match container {
@ -5337,6 +5319,17 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
None
}
}));
match res {
Res::Local(hid) | Res::Upvar(hid, ..) => {
let ty = self.local_ty(span, hid).decl_ty;
let ty = self.normalize_associated_types_in(span, &ty);
self.write_ty(hir_id, ty);
return (ty, res);
}
_ => {}
}
if generics_has_err {
// Don't try to infer type parameters when prohibited generic arguments were given.
user_self_ty = None;
@ -5374,6 +5367,12 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
tcx.generics_of(*def_id).has_self
}).unwrap_or(false);
let def_id = res.def_id();
// The things we are substituting into the type should not contain
// escaping late-bound regions, and nor should the base type scheme.
let ty = tcx.type_of(def_id);
let substs = AstConv::create_substs_for_generic_args(
tcx,
def_id,
@ -5490,7 +5489,7 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
ty_substituted);
self.write_substs(hir_id, substs);
(ty_substituted, Res::Def(kind, def_id))
(ty_substituted, res)
}
fn check_rustc_args_require_const(&self,

View File

@ -1,19 +1,101 @@
use crate::ast;
use crate::ast::{
BlockCheckMode, Expr, ExprKind, Item, ItemKind, Pat, PatKind, QSelf, Ty, TyKind, VariantData,
BlockCheckMode, BinOpKind, Expr, ExprKind, Item, ItemKind, Pat, PatKind, PathSegment, QSelf,
Ty, TyKind, VariantData,
};
use crate::parse::parser::{BlockMode, PathStyle, SemiColonMode, TokenType};
use crate::parse::token;
use crate::parse::PResult;
use crate::parse::Parser;
use crate::parse::{SeqSep, token, PResult, Parser};
use crate::parse::parser::{BlockMode, PathStyle, SemiColonMode, TokenType, TokenExpectType};
use crate::print::pprust;
use crate::ptr::P;
use crate::source_map::Spanned;
use crate::symbol::kw;
use crate::ThinVec;
use errors::{Applicability, DiagnosticBuilder};
use log::debug;
use syntax_pos::{Span, DUMMY_SP};
use crate::util::parser::AssocOp;
use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
use syntax_pos::{Span, DUMMY_SP, MultiSpan};
use log::{debug, trace};
pub enum Error {
FileNotFoundForModule {
mod_name: String,
default_path: String,
secondary_path: String,
dir_path: String,
},
DuplicatePaths {
mod_name: String,
default_path: String,
secondary_path: String,
},
UselessDocComment,
InclusiveRangeWithNoEnd,
}
impl Error {
fn span_err<S: Into<MultiSpan>>(
self,
sp: S,
handler: &errors::Handler,
) -> DiagnosticBuilder<'_> {
match self {
Error::FileNotFoundForModule {
ref mod_name,
ref default_path,
ref secondary_path,
ref dir_path,
} => {
let mut err = struct_span_err!(
handler,
sp,
E0583,
"file not found for module `{}`",
mod_name,
);
err.help(&format!(
"name the file either {} or {} inside the directory \"{}\"",
default_path,
secondary_path,
dir_path,
));
err
}
Error::DuplicatePaths { ref mod_name, ref default_path, ref secondary_path } => {
let mut err = struct_span_err!(
handler,
sp,
E0584,
"file for module `{}` found at both {} and {}",
mod_name,
default_path,
secondary_path,
);
err.help("delete or rename one of them to remove the ambiguity");
err
}
Error::UselessDocComment => {
let mut err = struct_span_err!(
handler,
sp,
E0585,
"found a documentation comment that doesn't document anything",
);
err.help("doc comments must come before what they document, maybe a comment was \
intended with `//`?");
err
}
Error::InclusiveRangeWithNoEnd => {
let mut err = struct_span_err!(
handler,
sp,
E0586,
"inclusive range with no end",
);
err.help("inclusive ranges must be bounded at the end (`..=b` or `a..=b`)");
err
}
}
}
}
pub trait RecoverQPath: Sized + 'static {
const PATH_STYLE: PathStyle = PathStyle::Expr;
@ -63,6 +145,364 @@ impl RecoverQPath for Expr {
}
impl<'a> Parser<'a> {
pub fn fatal(&self, m: &str) -> DiagnosticBuilder<'a> {
self.span_fatal(self.span, m)
}
pub fn span_fatal<S: Into<MultiSpan>>(&self, sp: S, m: &str) -> DiagnosticBuilder<'a> {
self.sess.span_diagnostic.struct_span_fatal(sp, m)
}
pub fn span_fatal_err<S: Into<MultiSpan>>(&self, sp: S, err: Error) -> DiagnosticBuilder<'a> {
err.span_err(sp, self.diagnostic())
}
pub fn bug(&self, m: &str) -> ! {
self.sess.span_diagnostic.span_bug(self.span, m)
}
pub fn span_err<S: Into<MultiSpan>>(&self, sp: S, m: &str) {
self.sess.span_diagnostic.span_err(sp, m)
}
crate fn struct_span_err<S: Into<MultiSpan>>(&self, sp: S, m: &str) -> DiagnosticBuilder<'a> {
self.sess.span_diagnostic.struct_span_err(sp, m)
}
crate fn span_bug<S: Into<MultiSpan>>(&self, sp: S, m: &str) -> ! {
self.sess.span_diagnostic.span_bug(sp, m)
}
crate fn cancel(&self, err: &mut DiagnosticBuilder<'_>) {
self.sess.span_diagnostic.cancel(err)
}
crate fn diagnostic(&self) -> &'a errors::Handler {
&self.sess.span_diagnostic
}
crate fn expected_ident_found(&self) -> DiagnosticBuilder<'a> {
let mut err = self.struct_span_err(
self.span,
&format!("expected identifier, found {}", self.this_token_descr()),
);
if let token::Ident(ident, false) = &self.token {
if ident.is_raw_guess() {
err.span_suggestion(
self.span,
"you can escape reserved keywords to use them as identifiers",
format!("r#{}", ident),
Applicability::MaybeIncorrect,
);
}
}
if let Some(token_descr) = self.token_descr() {
err.span_label(self.span, format!("expected identifier, found {}", token_descr));
} else {
err.span_label(self.span, "expected identifier");
if self.token == token::Comma && self.look_ahead(1, |t| t.is_ident()) {
err.span_suggestion(
self.span,
"remove this comma",
String::new(),
Applicability::MachineApplicable,
);
}
}
err
}
pub fn expected_one_of_not_found(
&mut self,
edible: &[token::Token],
inedible: &[token::Token],
) -> PResult<'a, bool /* recovered */> {
fn tokens_to_string(tokens: &[TokenType]) -> String {
let mut i = tokens.iter();
// This might be a sign we need a connect method on Iterator.
let b = i.next()
.map_or(String::new(), |t| t.to_string());
i.enumerate().fold(b, |mut b, (i, a)| {
if tokens.len() > 2 && i == tokens.len() - 2 {
b.push_str(", or ");
} else if tokens.len() == 2 && i == tokens.len() - 2 {
b.push_str(" or ");
} else {
b.push_str(", ");
}
b.push_str(&a.to_string());
b
})
}
let mut expected = edible.iter()
.map(|x| TokenType::Token(x.clone()))
.chain(inedible.iter().map(|x| TokenType::Token(x.clone())))
.chain(self.expected_tokens.iter().cloned())
.collect::<Vec<_>>();
expected.sort_by_cached_key(|x| x.to_string());
expected.dedup();
let expect = tokens_to_string(&expected[..]);
let actual = self.this_token_to_string();
let (msg_exp, (label_sp, label_exp)) = if expected.len() > 1 {
let short_expect = if expected.len() > 6 {
format!("{} possible tokens", expected.len())
} else {
expect.clone()
};
(format!("expected one of {}, found `{}`", expect, actual),
(self.sess.source_map().next_point(self.prev_span),
format!("expected one of {} here", short_expect)))
} else if expected.is_empty() {
(format!("unexpected token: `{}`", actual),
(self.prev_span, "unexpected token after this".to_string()))
} else {
(format!("expected {}, found `{}`", expect, actual),
(self.sess.source_map().next_point(self.prev_span),
format!("expected {} here", expect)))
};
self.last_unexpected_token_span = Some(self.span);
let mut err = self.fatal(&msg_exp);
if self.token.is_ident_named("and") {
err.span_suggestion_short(
self.span,
"use `&&` instead of `and` for the boolean operator",
"&&".to_string(),
Applicability::MaybeIncorrect,
);
}
if self.token.is_ident_named("or") {
err.span_suggestion_short(
self.span,
"use `||` instead of `or` for the boolean operator",
"||".to_string(),
Applicability::MaybeIncorrect,
);
}
let sp = if self.token == token::Token::Eof {
// This is EOF, don't want to point at the following char, but rather the last token
self.prev_span
} else {
label_sp
};
match self.recover_closing_delimiter(&expected.iter().filter_map(|tt| match tt {
TokenType::Token(t) => Some(t.clone()),
_ => None,
}).collect::<Vec<_>>(), err) {
Err(e) => err = e,
Ok(recovered) => {
return Ok(recovered);
}
}
let is_semi_suggestable = expected.iter().any(|t| match t {
TokenType::Token(token::Semi) => true, // we expect a `;` here
_ => false,
}) && ( // a `;` would be expected before the current keyword
self.token.is_keyword(kw::Break) ||
self.token.is_keyword(kw::Continue) ||
self.token.is_keyword(kw::For) ||
self.token.is_keyword(kw::If) ||
self.token.is_keyword(kw::Let) ||
self.token.is_keyword(kw::Loop) ||
self.token.is_keyword(kw::Match) ||
self.token.is_keyword(kw::Return) ||
self.token.is_keyword(kw::While)
);
let cm = self.sess.source_map();
match (cm.lookup_line(self.span.lo()), cm.lookup_line(sp.lo())) {
(Ok(ref a), Ok(ref b)) if a.line != b.line && is_semi_suggestable => {
// The spans are in different lines, expected `;` and found `let` or `return`.
// High likelihood that it is only a missing `;`.
err.span_suggestion_short(
label_sp,
"a semicolon may be missing here",
";".to_string(),
Applicability::MaybeIncorrect,
);
err.emit();
return Ok(true);
}
(Ok(ref a), Ok(ref b)) if a.line == b.line => {
// When the spans are in the same line, it means that the only content between
// them is whitespace, point at the found token in that case:
//
// X | () => { syntax error };
// | ^^^^^ expected one of 8 possible tokens here
//
// instead of having:
//
// X | () => { syntax error };
// | -^^^^^ unexpected token
// | |
// | expected one of 8 possible tokens here
err.span_label(self.span, label_exp);
}
_ if self.prev_span == syntax_pos::DUMMY_SP => {
// Account for macro context where the previous span might not be
// available to avoid incorrect output (#54841).
err.span_label(self.span, "unexpected token");
}
_ => {
err.span_label(sp, label_exp);
err.span_label(self.span, "unexpected token");
}
}
Err(err)
}
/// Eats and discards tokens until one of `kets` is encountered. Respects token trees,
/// passes through any errors encountered. Used for error recovery.
crate fn eat_to_tokens(&mut self, kets: &[&token::Token]) {
let handler = self.diagnostic();
if let Err(ref mut err) = self.parse_seq_to_before_tokens(
kets,
SeqSep::none(),
TokenExpectType::Expect,
|p| Ok(p.parse_token_tree()),
) {
handler.cancel(err);
}
}
/// This function checks if there are trailing angle brackets and produces
/// a diagnostic to suggest removing them.
///
/// ```ignore (diagnostic)
/// let _ = vec![1, 2, 3].into_iter().collect::<Vec<usize>>>>();
/// ^^ help: remove extra angle brackets
/// ```
crate fn check_trailing_angle_brackets(&mut self, segment: &PathSegment, end: token::Token) {
// This function is intended to be invoked after parsing a path segment where there are two
// cases:
//
// 1. A specific token is expected after the path segment.
// eg. `x.foo(`, `x.foo::<u32>(` (parenthesis - method call),
// `Foo::`, or `Foo::<Bar>::` (mod sep - continued path).
// 2. No specific token is expected after the path segment.
// eg. `x.foo` (field access)
//
// This function is called after parsing `.foo` and before parsing the token `end` (if
// present). This includes any angle bracket arguments, such as `.foo::<u32>` or
// `Foo::<Bar>`.
// We only care about trailing angle brackets if we previously parsed angle bracket
// arguments. This helps stop us incorrectly suggesting that extra angle brackets be
// removed in this case:
//
// `x.foo >> (3)` (where `x.foo` is a `u32` for example)
//
// This case is particularly tricky as we won't notice it just looking at the tokens -
// it will appear the same (in terms of upcoming tokens) as below (since the `::<u32>` will
// have already been parsed):
//
// `x.foo::<u32>>>(3)`
let parsed_angle_bracket_args = segment.args
.as_ref()
.map(|args| args.is_angle_bracketed())
.unwrap_or(false);
debug!(
"check_trailing_angle_brackets: parsed_angle_bracket_args={:?}",
parsed_angle_bracket_args,
);
if !parsed_angle_bracket_args {
return;
}
// Keep the span at the start so we can highlight the sequence of `>` characters to be
// removed.
let lo = self.span;
// We need to look-ahead to see if we have `>` characters without moving the cursor forward
// (since we might have the field access case and the characters we're eating are
// actual operators and not trailing characters - ie `x.foo >> 3`).
let mut position = 0;
// We can encounter `>` or `>>` tokens in any order, so we need to keep track of how
// many of each (so we can correctly pluralize our error messages) and continue to
// advance.
let mut number_of_shr = 0;
let mut number_of_gt = 0;
while self.look_ahead(position, |t| {
trace!("check_trailing_angle_brackets: t={:?}", t);
if *t == token::BinOp(token::BinOpToken::Shr) {
number_of_shr += 1;
true
} else if *t == token::Gt {
number_of_gt += 1;
true
} else {
false
}
}) {
position += 1;
}
// If we didn't find any trailing `>` characters, then we have nothing to error about.
debug!(
"check_trailing_angle_brackets: number_of_gt={:?} number_of_shr={:?}",
number_of_gt, number_of_shr,
);
if number_of_gt < 1 && number_of_shr < 1 {
return;
}
// Finally, double check that we have our end token as otherwise this is the
// second case.
if self.look_ahead(position, |t| {
trace!("check_trailing_angle_brackets: t={:?}", t);
*t == end
}) {
// Eat from where we started until the end token so that parsing can continue
// as if we didn't have those extra angle brackets.
self.eat_to_tokens(&[&end]);
let span = lo.until(self.span);
let plural = number_of_gt > 1 || number_of_shr >= 1;
self.diagnostic()
.struct_span_err(
span,
&format!("unmatched angle bracket{}", if plural { "s" } else { "" }),
)
.span_suggestion(
span,
&format!("remove extra angle bracket{}", if plural { "s" } else { "" }),
String::new(),
Applicability::MachineApplicable,
)
.emit();
}
}
/// Produce an error if comparison operators are chained (RFC #558).
/// We only need to check lhs, not rhs, because all comparison ops
/// have same precedence and are left-associative
crate fn check_no_chained_comparison(&self, lhs: &Expr, outer_op: &AssocOp) {
debug_assert!(outer_op.is_comparison(),
"check_no_chained_comparison: {:?} is not comparison",
outer_op);
match lhs.node {
ExprKind::Binary(op, _, _) if op.node.is_comparison() => {
// respan to include both operators
let op_span = op.span.to(self.span);
let mut err = self.diagnostic().struct_span_err(op_span,
"chained comparison operators require parentheses");
if op.node == BinOpKind::Lt &&
*outer_op == AssocOp::Less || // Include `<` to provide this recommendation
*outer_op == AssocOp::Greater // even in a case like the following:
{ // Foo<Bar<Baz<Qux, ()>>>
err.help(
"use `::<...>` instead of `<...>` if you meant to specify type arguments");
err.help("or use `(...)` if you meant to specify fn arguments");
}
err.emit();
}
_ => {}
}
}
crate fn maybe_report_ambiguous_plus(
&mut self,
allow_plus: bool,
@ -594,6 +1034,138 @@ impl<'a> Parser<'a> {
}
}
crate fn check_for_for_in_in_typo(&mut self, in_span: Span) {
if self.eat_keyword(kw::In) {
// a common typo: `for _ in in bar {}`
let mut err = self.sess.span_diagnostic.struct_span_err(
self.prev_span,
"expected iterable, found keyword `in`",
);
err.span_suggestion_short(
in_span.until(self.prev_span),
"remove the duplicated `in`",
String::new(),
Applicability::MachineApplicable,
);
err.emit();
}
}
crate fn expected_semi_or_open_brace(&mut self) -> PResult<'a, ast::TraitItem> {
let token_str = self.this_token_descr();
let mut err = self.fatal(&format!("expected `;` or `{{`, found {}", token_str));
err.span_label(self.span, "expected `;` or `{`");
Err(err)
}
crate fn eat_incorrect_doc_comment(&mut self, applied_to: &str) {
if let token::DocComment(_) = self.token {
let mut err = self.diagnostic().struct_span_err(
self.span,
&format!("documentation comments cannot be applied to {}", applied_to),
);
err.span_label(self.span, "doc comments are not allowed here");
err.emit();
self.bump();
} else if self.token == token::Pound && self.look_ahead(1, |t| {
*t == token::OpenDelim(token::Bracket)
}) {
let lo = self.span;
// Skip every token until next possible arg.
while self.token != token::CloseDelim(token::Bracket) {
self.bump();
}
let sp = lo.to(self.span);
self.bump();
let mut err = self.diagnostic().struct_span_err(
sp,
&format!("attributes cannot be applied to {}", applied_to),
);
err.span_label(sp, "attributes are not allowed here");
err.emit();
}
}
crate fn argument_without_type(
&mut self,
err: &mut DiagnosticBuilder<'_>,
pat: P<ast::Pat>,
require_name: bool,
is_trait_item: bool,
) {
// If we find a pattern followed by an identifier, it could be an (incorrect)
// C-style parameter declaration.
if self.check_ident() && self.look_ahead(1, |t| {
*t == token::Comma || *t == token::CloseDelim(token::Paren)
}) {
let ident = self.parse_ident().unwrap();
let span = pat.span.with_hi(ident.span.hi());
err.span_suggestion(
span,
"declare the type after the parameter binding",
String::from("<identifier>: <type>"),
Applicability::HasPlaceholders,
);
} else if require_name && is_trait_item {
if let PatKind::Ident(_, ident, _) = pat.node {
err.span_suggestion(
pat.span,
"explicitly ignore parameter",
format!("_: {}", ident),
Applicability::MachineApplicable,
);
}
err.note("anonymous parameters are removed in the 2018 edition (see RFC 1685)");
}
}
crate fn recover_arg_parse(&mut self) -> PResult<'a, (P<ast::Pat>, P<ast::Ty>)> {
let pat = self.parse_pat(Some("argument name"))?;
self.expect(&token::Colon)?;
let ty = self.parse_ty()?;
let mut err = self.diagnostic().struct_span_err_with_code(
pat.span,
"patterns aren't allowed in methods without bodies",
DiagnosticId::Error("E0642".into()),
);
err.span_suggestion_short(
pat.span,
"give this argument a name or use an underscore to ignore it",
"_".to_owned(),
Applicability::MachineApplicable,
);
err.emit();
// Pretend the pattern is `_`, to avoid duplicate errors from AST validation.
let pat = P(Pat {
node: PatKind::Wild,
span: pat.span,
id: ast::DUMMY_NODE_ID
});
Ok((pat, ty))
}
crate fn recover_bad_self_arg(
&mut self,
mut arg: ast::Arg,
is_trait_item: bool,
) -> PResult<'a, ast::Arg> {
let sp = arg.pat.span;
arg.ty.node = TyKind::Err;
let mut err = self.struct_span_err(sp, "unexpected `self` parameter in function");
if is_trait_item {
err.span_label(sp, "must be the first associated function parameter");
} else {
err.span_label(sp, "not valid as function parameter");
err.note("`self` is only valid as the first parameter of an associated function");
}
err.emit();
Ok(arg)
}
crate fn consume_block(&mut self, delim: token::DelimToken) {
let mut brace_depth = 0;
loop {

View File

@ -47,14 +47,12 @@ use crate::parse::PResult;
use crate::ThinVec;
use crate::tokenstream::{self, DelimSpan, TokenTree, TokenStream, TreeAndJoint};
use crate::symbol::{kw, sym, Symbol};
use crate::parse::diagnostics::Error;
use errors::{Applicability, DiagnosticBuilder, DiagnosticId, FatalError};
use rustc_target::spec::abi::{self, Abi};
use syntax_pos::{
BytePos, DUMMY_SP, FileName, MultiSpan, Span,
hygiene::CompilerDesugaringKind,
};
use log::{debug, trace};
use syntax_pos::{Span, BytePos, DUMMY_SP, FileName, hygiene::CompilerDesugaringKind};
use log::debug;
use std::borrow::Cow;
use std::cmp;
@ -217,7 +215,7 @@ pub struct Parser<'a> {
/// into modules, and sub-parsers have new values for this name.
pub root_module_name: Option<String>,
crate expected_tokens: Vec<TokenType>,
token_cursor: TokenCursor,
crate token_cursor: TokenCursor,
desugar_doc_comments: bool,
/// Whether we should configure out of line modules as we parse.
pub cfg_mods: bool,
@ -232,7 +230,7 @@ pub struct Parser<'a> {
/// it gets removed from here. Every entry left at the end gets emitted as an independent
/// error.
crate unclosed_delims: Vec<UnmatchedBrace>,
last_unexpected_token_span: Option<Span>,
crate last_unexpected_token_span: Option<Span>,
/// If present, this `Parser` is not parsing Rust code but rather a macro call.
crate subparser_name: Option<&'static str>,
}
@ -245,19 +243,19 @@ impl<'a> Drop for Parser<'a> {
}
#[derive(Clone)]
struct TokenCursor {
frame: TokenCursorFrame,
stack: Vec<TokenCursorFrame>,
crate struct TokenCursor {
crate frame: TokenCursorFrame,
crate stack: Vec<TokenCursorFrame>,
}
#[derive(Clone)]
struct TokenCursorFrame {
delim: token::DelimToken,
span: DelimSpan,
open_delim: bool,
tree_cursor: tokenstream::Cursor,
close_delim: bool,
last_token: LastToken,
crate struct TokenCursorFrame {
crate delim: token::DelimToken,
crate span: DelimSpan,
crate open_delim: bool,
crate tree_cursor: tokenstream::Cursor,
crate close_delim: bool,
crate last_token: LastToken,
}
/// This is used in `TokenCursorFrame` above to track tokens that are consumed
@ -278,7 +276,7 @@ struct TokenCursorFrame {
/// You can find some more example usage of this in the `collect_tokens` method
/// on the parser.
#[derive(Clone)]
enum LastToken {
crate enum LastToken {
Collecting(Vec<TreeAndJoint>),
Was(Option<TreeAndJoint>),
}
@ -430,65 +428,6 @@ pub struct ModulePathSuccess {
warn: bool,
}
pub enum Error {
FileNotFoundForModule {
mod_name: String,
default_path: String,
secondary_path: String,
dir_path: String,
},
DuplicatePaths {
mod_name: String,
default_path: String,
secondary_path: String,
},
UselessDocComment,
InclusiveRangeWithNoEnd,
}
impl Error {
fn span_err<S: Into<MultiSpan>>(self,
sp: S,
handler: &errors::Handler) -> DiagnosticBuilder<'_> {
match self {
Error::FileNotFoundForModule { ref mod_name,
ref default_path,
ref secondary_path,
ref dir_path } => {
let mut err = struct_span_err!(handler, sp, E0583,
"file not found for module `{}`", mod_name);
err.help(&format!("name the file either {} or {} inside the directory \"{}\"",
default_path,
secondary_path,
dir_path));
err
}
Error::DuplicatePaths { ref mod_name, ref default_path, ref secondary_path } => {
let mut err = struct_span_err!(handler, sp, E0584,
"file for module `{}` found at both {} and {}",
mod_name,
default_path,
secondary_path);
err.help("delete or rename one of them to remove the ambiguity");
err
}
Error::UselessDocComment => {
let mut err = struct_span_err!(handler, sp, E0585,
"found a documentation comment that doesn't document anything");
err.help("doc comments must come before what they document, maybe a comment was \
intended with `//`?");
err
}
Error::InclusiveRangeWithNoEnd => {
let mut err = struct_span_err!(handler, sp, E0586,
"inclusive range with no end");
err.help("inclusive ranges must be bounded at the end (`..=b` or `a..=b`)");
err
}
}
}
}
#[derive(Debug)]
enum LhsExpr {
NotYetParsed,
@ -529,7 +468,7 @@ fn dummy_arg(span: Span) -> Arg {
}
#[derive(Copy, Clone, Debug)]
enum TokenExpectType {
crate enum TokenExpectType {
Expect,
NoExpect,
}
@ -610,7 +549,7 @@ impl<'a> Parser<'a> {
pprust::token_to_string(&self.token)
}
fn token_descr(&self) -> Option<&'static str> {
crate fn token_descr(&self) -> Option<&'static str> {
Some(match &self.token {
t if t.is_special_ident() => "reserved identifier",
t if t.is_used_keyword() => "keyword",
@ -657,23 +596,6 @@ impl<'a> Parser<'a> {
edible: &[token::Token],
inedible: &[token::Token],
) -> PResult<'a, bool /* recovered */> {
fn tokens_to_string(tokens: &[TokenType]) -> String {
let mut i = tokens.iter();
// This might be a sign we need a connect method on Iterator.
let b = i.next()
.map_or(String::new(), |t| t.to_string());
i.enumerate().fold(b, |mut b, (i, a)| {
if tokens.len() > 2 && i == tokens.len() - 2 {
b.push_str(", or ");
} else if tokens.len() == 2 && i == tokens.len() - 2 {
b.push_str(" or ");
} else {
b.push_str(", ");
}
b.push_str(&a.to_string());
b
})
}
if edible.contains(&self.token) {
self.bump();
Ok(false)
@ -683,127 +605,15 @@ impl<'a> Parser<'a> {
} else if self.last_unexpected_token_span == Some(self.span) {
FatalError.raise();
} else {
let mut expected = edible.iter()
.map(|x| TokenType::Token(x.clone()))
.chain(inedible.iter().map(|x| TokenType::Token(x.clone())))
.chain(self.expected_tokens.iter().cloned())
.collect::<Vec<_>>();
expected.sort_by_cached_key(|x| x.to_string());
expected.dedup();
let expect = tokens_to_string(&expected[..]);
let actual = self.this_token_to_string();
let (msg_exp, (label_sp, label_exp)) = if expected.len() > 1 {
let short_expect = if expected.len() > 6 {
format!("{} possible tokens", expected.len())
} else {
expect.clone()
};
(format!("expected one of {}, found `{}`", expect, actual),
(self.sess.source_map().next_point(self.prev_span),
format!("expected one of {} here", short_expect)))
} else if expected.is_empty() {
(format!("unexpected token: `{}`", actual),
(self.prev_span, "unexpected token after this".to_string()))
} else {
(format!("expected {}, found `{}`", expect, actual),
(self.sess.source_map().next_point(self.prev_span),
format!("expected {} here", expect)))
};
self.last_unexpected_token_span = Some(self.span);
let mut err = self.fatal(&msg_exp);
if self.token.is_ident_named("and") {
err.span_suggestion_short(
self.span,
"use `&&` instead of `and` for the boolean operator",
"&&".to_string(),
Applicability::MaybeIncorrect,
);
}
if self.token.is_ident_named("or") {
err.span_suggestion_short(
self.span,
"use `||` instead of `or` for the boolean operator",
"||".to_string(),
Applicability::MaybeIncorrect,
);
}
let sp = if self.token == token::Token::Eof {
// This is EOF, don't want to point at the following char, but rather the last token
self.prev_span
} else {
label_sp
};
match self.recover_closing_delimiter(&expected.iter().filter_map(|tt| match tt {
TokenType::Token(t) => Some(t.clone()),
_ => None,
}).collect::<Vec<_>>(), err) {
Err(e) => err = e,
Ok(recovered) => {
return Ok(recovered);
}
}
let is_semi_suggestable = expected.iter().any(|t| match t {
TokenType::Token(token::Semi) => true, // we expect a `;` here
_ => false,
}) && ( // a `;` would be expected before the current keyword
self.token.is_keyword(kw::Break) ||
self.token.is_keyword(kw::Continue) ||
self.token.is_keyword(kw::For) ||
self.token.is_keyword(kw::If) ||
self.token.is_keyword(kw::Let) ||
self.token.is_keyword(kw::Loop) ||
self.token.is_keyword(kw::Match) ||
self.token.is_keyword(kw::Return) ||
self.token.is_keyword(kw::While)
);
let cm = self.sess.source_map();
match (cm.lookup_line(self.span.lo()), cm.lookup_line(sp.lo())) {
(Ok(ref a), Ok(ref b)) if a.line != b.line && is_semi_suggestable => {
// The spans are in different lines, expected `;` and found `let` or `return`.
// High likelihood that it is only a missing `;`.
err.span_suggestion_short(
label_sp,
"a semicolon may be missing here",
";".to_string(),
Applicability::MaybeIncorrect,
);
err.emit();
return Ok(true);
}
(Ok(ref a), Ok(ref b)) if a.line == b.line => {
// When the spans are in the same line, it means that the only content between
// them is whitespace, point at the found token in that case:
//
// X | () => { syntax error };
// | ^^^^^ expected one of 8 possible tokens here
//
// instead of having:
//
// X | () => { syntax error };
// | -^^^^^ unexpected token
// | |
// | expected one of 8 possible tokens here
err.span_label(self.span, label_exp);
}
_ if self.prev_span == DUMMY_SP => {
// Account for macro context where the previous span might not be
// available to avoid incorrect output (#54841).
err.span_label(self.span, "unexpected token");
}
_ => {
err.span_label(sp, label_exp);
err.span_label(self.span, "unexpected token");
}
}
Err(err)
self.expected_one_of_not_found(edible, inedible)
}
}
/// Returns the span of expr, if it was not interpolated or the span of the interpolated token.
fn interpolated_or_expr_span(&self,
expr: PResult<'a, P<Expr>>)
-> PResult<'a, (Span, P<Expr>)> {
fn interpolated_or_expr_span(
&self,
expr: PResult<'a, P<Expr>>,
) -> PResult<'a, (Span, P<Expr>)> {
expr.map(|e| {
if self.prev_token_kind == PrevTokenKind::Interpolated {
(self.prev_span, e)
@ -813,36 +623,6 @@ impl<'a> Parser<'a> {
})
}
fn expected_ident_found(&self) -> DiagnosticBuilder<'a> {
let mut err = self.struct_span_err(self.span,
&format!("expected identifier, found {}",
self.this_token_descr()));
if let token::Ident(ident, false) = &self.token {
if ident.is_raw_guess() {
err.span_suggestion(
self.span,
"you can escape reserved keywords to use them as identifiers",
format!("r#{}", ident),
Applicability::MaybeIncorrect,
);
}
}
if let Some(token_descr) = self.token_descr() {
err.span_label(self.span, format!("expected identifier, found {}", token_descr));
} else {
err.span_label(self.span, "expected identifier");
if self.token == token::Comma && self.look_ahead(1, |t| t.is_ident()) {
err.span_suggestion(
self.span,
"remove this comma",
String::new(),
Applicability::MachineApplicable,
);
}
}
err
}
pub fn parse_ident(&mut self) -> PResult<'a, ast::Ident> {
self.parse_ident_common(true)
}
@ -925,7 +705,7 @@ impl<'a> Parser<'a> {
}
}
fn check_ident(&mut self) -> bool {
crate fn check_ident(&mut self) -> bool {
if self.token.is_ident() {
true
} else {
@ -1115,19 +895,6 @@ impl<'a> Parser<'a> {
}
}
/// Eats and discards tokens until one of `kets` is encountered. Respects token trees,
/// passes through any errors encountered. Used for error recovery.
fn eat_to_tokens(&mut self, kets: &[&token::Token]) {
let handler = self.diagnostic();
if let Err(ref mut err) = self.parse_seq_to_before_tokens(kets,
SeqSep::none(),
TokenExpectType::Expect,
|p| Ok(p.parse_token_tree())) {
handler.cancel(err);
}
}
/// Parses a sequence, including the closing delimiter. The function
/// `f` must consume tokens until reaching the next separator or
/// closing bracket.
@ -1159,7 +926,7 @@ impl<'a> Parser<'a> {
self.parse_seq_to_before_tokens(&[ket], sep, TokenExpectType::Expect, f)
}
fn parse_seq_to_before_tokens<T, F>(
crate fn parse_seq_to_before_tokens<T, F>(
&mut self,
kets: &[&token::Token],
sep: SeqSep,
@ -1319,35 +1086,6 @@ impl<'a> Parser<'a> {
None => self.look_ahead_span(dist - 1),
}
}
pub fn fatal(&self, m: &str) -> DiagnosticBuilder<'a> {
self.sess.span_diagnostic.struct_span_fatal(self.span, m)
}
pub fn span_fatal<S: Into<MultiSpan>>(&self, sp: S, m: &str) -> DiagnosticBuilder<'a> {
self.sess.span_diagnostic.struct_span_fatal(sp, m)
}
fn span_fatal_err<S: Into<MultiSpan>>(&self, sp: S, err: Error) -> DiagnosticBuilder<'a> {
err.span_err(sp, self.diagnostic())
}
fn bug(&self, m: &str) -> ! {
self.sess.span_diagnostic.span_bug(self.span, m)
}
fn span_err<S: Into<MultiSpan>>(&self, sp: S, m: &str) {
self.sess.span_diagnostic.span_err(sp, m)
}
crate fn struct_span_err<S: Into<MultiSpan>>(&self, sp: S, m: &str) -> DiagnosticBuilder<'a> {
self.sess.span_diagnostic.struct_span_err(sp, m)
}
crate fn span_bug<S: Into<MultiSpan>>(&self, sp: S, m: &str) -> ! {
self.sess.span_diagnostic.span_bug(sp, m)
}
fn cancel(&self, err: &mut DiagnosticBuilder<'_>) {
self.sess.span_diagnostic.cancel(err)
}
crate fn diagnostic(&self) -> &'a errors::Handler {
&self.sess.span_diagnostic
}
/// Is the current token one of the keywords that signals a bare function type?
fn token_is_bare_fn_keyword(&mut self) -> bool {
@ -1507,20 +1245,12 @@ impl<'a> Parser<'a> {
Some(body)
}
_ => {
let token_str = self.this_token_descr();
let mut err = self.fatal(&format!("expected `;` or `{{`, found {}",
token_str));
err.span_label(self.span, "expected `;` or `{`");
return Err(err);
return self.expected_semi_or_open_brace();
}
}
}
_ => {
let token_str = self.this_token_descr();
let mut err = self.fatal(&format!("expected `;` or `{{`, found {}",
token_str));
err.span_label(self.span, "expected `;` or `{`");
return Err(err);
return self.expected_semi_or_open_brace();
}
};
(ident, ast::TraitItemKind::Method(sig, body), generics)
@ -1776,79 +1506,24 @@ impl<'a> Parser<'a> {
/// Skips unexpected attributes and doc comments in this position and emits an appropriate
/// error.
fn eat_incorrect_doc_comment(&mut self, applied_to: &str) {
if let token::DocComment(_) = self.token {
let mut err = self.diagnostic().struct_span_err(
self.span,
&format!("documentation comments cannot be applied to {}", applied_to),
);
err.span_label(self.span, "doc comments are not allowed here");
err.emit();
self.bump();
} else if self.token == token::Pound && self.look_ahead(1, |t| {
*t == token::OpenDelim(token::Bracket)
}) {
let lo = self.span;
// Skip every token until next possible arg.
while self.token != token::CloseDelim(token::Bracket) {
self.bump();
}
let sp = lo.to(self.span);
self.bump();
let mut err = self.diagnostic().struct_span_err(
sp,
&format!("attributes cannot be applied to {}", applied_to),
);
err.span_label(sp, "attributes are not allowed here");
err.emit();
}
}
/// This version of parse arg doesn't necessarily require identifier names.
fn parse_arg_general(&mut self, require_name: bool, is_trait_item: bool,
allow_c_variadic: bool) -> PResult<'a, Arg> {
if let Ok(Some(_)) = self.parse_self_arg() {
let mut err = self.struct_span_err(self.prev_span,
"unexpected `self` argument in function");
err.span_label(self.prev_span,
"`self` is only valid as the first argument of an associated function");
return Err(err);
fn parse_arg_general(
&mut self,
require_name: bool,
is_trait_item: bool,
allow_c_variadic: bool,
) -> PResult<'a, Arg> {
if let Ok(Some(arg)) = self.parse_self_arg() {
return self.recover_bad_self_arg(arg, is_trait_item);
}
let (pat, ty) = if require_name || self.is_named_argument() {
debug!("parse_arg_general parse_pat (require_name:{})",
require_name);
debug!("parse_arg_general parse_pat (require_name:{})", require_name);
self.eat_incorrect_doc_comment("method arguments");
let pat = self.parse_pat(Some("argument name"))?;
if let Err(mut err) = self.expect(&token::Colon) {
// If we find a pattern followed by an identifier, it could be an (incorrect)
// C-style parameter declaration.
if self.check_ident() && self.look_ahead(1, |t| {
*t == token::Comma || *t == token::CloseDelim(token::Paren)
}) {
let ident = self.parse_ident().unwrap();
let span = pat.span.with_hi(ident.span.hi());
err.span_suggestion(
span,
"declare the type after the parameter binding",
String::from("<identifier>: <type>"),
Applicability::HasPlaceholders,
);
} else if require_name && is_trait_item {
if let PatKind::Ident(_, ident, _) = pat.node {
err.span_suggestion(
pat.span,
"explicitly ignore parameter",
format!("_: {}", ident),
Applicability::MachineApplicable,
);
}
err.note("anonymous parameters are removed in the 2018 edition (see RFC 1685)");
}
self.argument_without_type(&mut err, pat, require_name, is_trait_item);
return Err(err);
}
@ -1885,30 +1560,7 @@ impl<'a> Parser<'a> {
// Recover from attempting to parse the argument as a type without pattern.
err.cancel();
mem::replace(self, parser_snapshot_before_ty);
let pat = self.parse_pat(Some("argument name"))?;
self.expect(&token::Colon)?;
let ty = self.parse_ty()?;
let mut err = self.diagnostic().struct_span_err_with_code(
pat.span,
"patterns aren't allowed in methods without bodies",
DiagnosticId::Error("E0642".into()),
);
err.span_suggestion_short(
pat.span,
"give this argument a name or use an underscore to ignore it",
"_".to_owned(),
Applicability::MachineApplicable,
);
err.emit();
// Pretend the pattern is `_`, to avoid duplicate errors from AST validation.
let pat = P(Pat {
node: PatKind::Wild,
span: pat.span,
id: ast::DUMMY_NODE_ID
});
(pat, ty)
self.recover_arg_parse()?
}
}
};
@ -1916,11 +1568,6 @@ impl<'a> Parser<'a> {
Ok(Arg { ty, pat, id: ast::DUMMY_NODE_ID, source: ast::ArgSource::Normal })
}
/// Parses a single function argument.
crate fn parse_arg(&mut self) -> PResult<'a, Arg> {
self.parse_arg_general(true, false, false)
}
/// Parses an argument in a lambda header (e.g., `|arg, arg|`).
fn parse_fn_block_arg(&mut self) -> PResult<'a, Arg> {
let pat = self.parse_pat(Some("argument name"))?;
@ -2885,116 +2532,6 @@ impl<'a> Parser<'a> {
})
}
/// This function checks if there are trailing angle brackets and produces
/// a diagnostic to suggest removing them.
///
/// ```ignore (diagnostic)
/// let _ = vec![1, 2, 3].into_iter().collect::<Vec<usize>>>>();
/// ^^ help: remove extra angle brackets
/// ```
fn check_trailing_angle_brackets(&mut self, segment: &PathSegment, end: token::Token) {
// This function is intended to be invoked after parsing a path segment where there are two
// cases:
//
// 1. A specific token is expected after the path segment.
// eg. `x.foo(`, `x.foo::<u32>(` (parenthesis - method call),
// `Foo::`, or `Foo::<Bar>::` (mod sep - continued path).
// 2. No specific token is expected after the path segment.
// eg. `x.foo` (field access)
//
// This function is called after parsing `.foo` and before parsing the token `end` (if
// present). This includes any angle bracket arguments, such as `.foo::<u32>` or
// `Foo::<Bar>`.
// We only care about trailing angle brackets if we previously parsed angle bracket
// arguments. This helps stop us incorrectly suggesting that extra angle brackets be
// removed in this case:
//
// `x.foo >> (3)` (where `x.foo` is a `u32` for example)
//
// This case is particularly tricky as we won't notice it just looking at the tokens -
// it will appear the same (in terms of upcoming tokens) as below (since the `::<u32>` will
// have already been parsed):
//
// `x.foo::<u32>>>(3)`
let parsed_angle_bracket_args = segment.args
.as_ref()
.map(|args| args.is_angle_bracketed())
.unwrap_or(false);
debug!(
"check_trailing_angle_brackets: parsed_angle_bracket_args={:?}",
parsed_angle_bracket_args,
);
if !parsed_angle_bracket_args {
return;
}
// Keep the span at the start so we can highlight the sequence of `>` characters to be
// removed.
let lo = self.span;
// We need to look-ahead to see if we have `>` characters without moving the cursor forward
// (since we might have the field access case and the characters we're eating are
// actual operators and not trailing characters - ie `x.foo >> 3`).
let mut position = 0;
// We can encounter `>` or `>>` tokens in any order, so we need to keep track of how
// many of each (so we can correctly pluralize our error messages) and continue to
// advance.
let mut number_of_shr = 0;
let mut number_of_gt = 0;
while self.look_ahead(position, |t| {
trace!("check_trailing_angle_brackets: t={:?}", t);
if *t == token::BinOp(token::BinOpToken::Shr) {
number_of_shr += 1;
true
} else if *t == token::Gt {
number_of_gt += 1;
true
} else {
false
}
}) {
position += 1;
}
// If we didn't find any trailing `>` characters, then we have nothing to error about.
debug!(
"check_trailing_angle_brackets: number_of_gt={:?} number_of_shr={:?}",
number_of_gt, number_of_shr,
);
if number_of_gt < 1 && number_of_shr < 1 {
return;
}
// Finally, double check that we have our end token as otherwise this is the
// second case.
if self.look_ahead(position, |t| {
trace!("check_trailing_angle_brackets: t={:?}", t);
*t == end
}) {
// Eat from where we started until the end token so that parsing can continue
// as if we didn't have those extra angle brackets.
self.eat_to_tokens(&[&end]);
let span = lo.until(self.span);
let plural = number_of_gt > 1 || number_of_shr >= 1;
self.diagnostic()
.struct_span_err(
span,
&format!("unmatched angle bracket{}", if plural { "s" } else { "" }),
)
.span_suggestion(
span,
&format!("remove extra angle bracket{}", if plural { "s" } else { "" }),
String::new(),
Applicability::MachineApplicable,
)
.emit();
}
}
fn parse_dot_or_call_expr_with_(&mut self, e0: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
let mut e = e0;
let mut hi;
@ -3556,33 +3093,6 @@ impl<'a> Parser<'a> {
}
}
/// Produce an error if comparison operators are chained (RFC #558).
/// We only need to check lhs, not rhs, because all comparison ops
/// have same precedence and are left-associative
fn check_no_chained_comparison(&self, lhs: &Expr, outer_op: &AssocOp) {
debug_assert!(outer_op.is_comparison(),
"check_no_chained_comparison: {:?} is not comparison",
outer_op);
match lhs.node {
ExprKind::Binary(op, _, _) if op.node.is_comparison() => {
// respan to include both operators
let op_span = op.span.to(self.span);
let mut err = self.diagnostic().struct_span_err(op_span,
"chained comparison operators require parentheses");
if op.node == BinOpKind::Lt &&
*outer_op == AssocOp::Less || // Include `<` to provide this recommendation
*outer_op == AssocOp::Greater // even in a case like the following:
{ // Foo<Bar<Baz<Qux, ()>>>
err.help(
"use `::<...>` instead of `<...>` if you meant to specify type arguments");
err.help("or use `(...)` if you meant to specify fn arguments");
}
err.emit();
}
_ => {}
}
}
/// Parse prefix-forms of range notation: `..expr`, `..`, `..=expr`
fn parse_prefix_range_expr(&mut self,
already_parsed_attrs: Option<ThinVec<Attribute>>)
@ -3609,7 +3119,7 @@ impl<'a> Parser<'a> {
hi = x.span;
x
})?)
} else {
} else {
None
};
let limits = if tok == token::DotDot {
@ -3759,20 +3269,7 @@ impl<'a> Parser<'a> {
err.emit();
}
let in_span = self.prev_span;
if self.eat_keyword(kw::In) {
// a common typo: `for _ in in bar {}`
let mut err = self.sess.span_diagnostic.struct_span_err(
self.prev_span,
"expected iterable, found keyword `in`",
);
err.span_suggestion_short(
in_span.until(self.prev_span),
"remove the duplicated `in`",
String::new(),
Applicability::MachineApplicable,
);
err.emit();
}
self.check_for_for_in_in_typo(in_span);
let expr = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
let (iattrs, loop_block) = self.parse_inner_attrs_and_block()?;
attrs.extend(iattrs);
@ -6354,7 +5851,9 @@ impl<'a> Parser<'a> {
let (constness, unsafety, mut asyncness, abi) = self.parse_fn_front_matter()?;
let ident = self.parse_ident()?;
let mut generics = self.parse_generics()?;
let mut decl = self.parse_fn_decl_with_self(|p| p.parse_arg())?;
let mut decl = self.parse_fn_decl_with_self(|p| {
p.parse_arg_general(true, true, false)
})?;
generics.where_clause = self.parse_where_clause()?;
self.construct_async_arguments(&mut asyncness, &mut decl);
*at_end = true;

View File

@ -1,5 +1,6 @@
fn a(&self) { }
//~^ ERROR unexpected `self` argument in function
//~| NOTE `self` is only valid as the first argument of an associated function
//~^ ERROR unexpected `self` parameter in function
//~| NOTE not valid as function parameter
//~| NOTE `self` is only valid as the first parameter of an associated function
fn main() { }

View File

@ -1,8 +1,10 @@
error: unexpected `self` argument in function
--> $DIR/bare-fn-start.rs:1:7
error: unexpected `self` parameter in function
--> $DIR/bare-fn-start.rs:1:6
|
LL | fn a(&self) { }
| ^^^^ `self` is only valid as the first argument of an associated function
| ^^^^^ not valid as function parameter
|
= note: `self` is only valid as the first parameter of an associated function
error: aborting due to previous error

View File

@ -1,5 +1,6 @@
fn b(foo: u32, &mut self) { }
//~^ ERROR unexpected `self` argument in function
//~| NOTE `self` is only valid as the first argument of an associated function
//~^ ERROR unexpected `self` parameter in function
//~| NOTE not valid as function parameter
//~| NOTE `self` is only valid as the first parameter of an associated function
fn main() { }

View File

@ -1,8 +1,10 @@
error: unexpected `self` argument in function
--> $DIR/bare-fn.rs:1:21
error: unexpected `self` parameter in function
--> $DIR/bare-fn.rs:1:16
|
LL | fn b(foo: u32, &mut self) { }
| ^^^^ `self` is only valid as the first argument of an associated function
| ^^^^^^^^^ not valid as function parameter
|
= note: `self` is only valid as the first parameter of an associated function
error: aborting due to previous error

View File

@ -2,8 +2,8 @@ struct Foo {}
impl Foo {
fn c(foo: u32, self) {}
//~^ ERROR unexpected `self` argument in function
//~| NOTE `self` is only valid as the first argument of an associated function
//~^ ERROR unexpected `self` parameter in function
//~| NOTE must be the first associated function parameter
fn good(&mut self, foo: u32) {}
}

View File

@ -1,8 +1,8 @@
error: unexpected `self` argument in function
error: unexpected `self` parameter in function
--> $DIR/trait-fn.rs:4:20
|
LL | fn c(foo: u32, self) {}
| ^^^^ `self` is only valid as the first argument of an associated function
| ^^^^ must be the first associated function parameter
error: aborting due to previous error

View File

@ -0,0 +1,18 @@
struct A {}
struct B {}
impl From<A> for B {
fn from(a: A) -> B {
B{}
}
}
fn main() {
let c1 = ();
c1::<()>;
//~^ ERROR type arguments are not allowed for this type
let c1 = A {};
c1::<Into<B>>;
//~^ ERROR type arguments are not allowed for this type
}

View File

@ -0,0 +1,15 @@
error[E0109]: type arguments are not allowed for this type
--> $DIR/issue-60989.rs:12:10
|
LL | c1::<()>;
| ^^ type argument not allowed
error[E0109]: type arguments are not allowed for this type
--> $DIR/issue-60989.rs:16:10
|
LL | c1::<Into<B>>;
| ^^^^^^^ type argument not allowed
error: aborting due to 2 previous errors
For more information about this error, try `rustc --explain E0109`.

View File

@ -0,0 +1,7 @@
fn main() {
let mut bad_letters = vec!['e', 't', 'o', 'i'];
for l in bad_letters {
// something here
}
bad_letters.push('s'); //~ ERROR borrow of moved value: `bad_letters`
}

View File

@ -0,0 +1,17 @@
error[E0382]: borrow of moved value: `bad_letters`
--> $DIR/issue-61108.rs:6:5
|
LL | let mut bad_letters = vec!['e', 't', 'o', 'i'];
| --------------- move occurs because `bad_letters` has type `std::vec::Vec<char>`, which does not implement the `Copy` trait
LL | for l in bad_letters {
| -----------
| |
| value moved here
| help: consider borrowing to avoid moving into the for loop: `&bad_letters`
...
LL | bad_letters.push('s');
| ^^^^^^^^^^^ value borrowed here after move
error: aborting due to previous error
For more information about this error, try `rustc --explain E0382`.

View File

@ -0,0 +1,3 @@
fn foo(x:i32, self: i32) -> i32 { self } //~ ERROR unexpected `self` parameter in function
fn main() {}

View File

@ -0,0 +1,10 @@
error: unexpected `self` parameter in function
--> $DIR/self-in-function-arg.rs:1:15
|
LL | fn foo(x:i32, self: i32) -> i32 { self }
| ^^^^ not valid as function parameter
|
= note: `self` is only valid as the first parameter of an associated function
error: aborting due to previous error

View File

@ -13,11 +13,10 @@ LL | let a = vec![1, 2, 3];
| - move occurs because `a` has type `std::vec::Vec<i32>`, which does not implement the `Copy` trait
LL | for i in &a {
LL | for j in a {
| ^ value moved here, in previous iteration of loop
help: consider borrowing this to avoid moving it into the for loop
|
LL | for j in &a {
| ^^
| ^
| |
| value moved here, in previous iteration of loop
| help: consider borrowing to avoid moving into the for loop: `&a`
error: aborting due to 2 previous errors