Implement `iter::Sum` and `iter::Product` for `Result`

This introduces a private iterator adapter `ResultShunt`, which allows
treating an iterator of `Result<T, E>` as an iterator of `T`.
This commit is contained in:
Jake Goulding 2016-12-23 14:30:37 -05:00
parent 7bffede97c
commit 23715d344d
2 changed files with 97 additions and 0 deletions

View File

@ -670,6 +670,87 @@ macro_rules! float_sum_product {
integer_sum_product! { i8 i16 i32 i64 isize u8 u16 u32 u64 usize } integer_sum_product! { i8 i16 i32 i64 isize u8 u16 u32 u64 usize }
float_sum_product! { f32 f64 } float_sum_product! { f32 f64 }
/// An iterator adapter that produces output as long as the underlying
/// iterator produces `Result::Ok` values.
///
/// If an error is encountered, the iterator stops and the error is
/// stored. The error may be recovered later via `reconstruct`.
struct ResultShunt<I, E> {
iter: I,
error: Option<E>,
}
impl<I, T, E> ResultShunt<I, E>
where I: Iterator<Item = Result<T, E>>
{
/// Process the given iterator as if it yielded a `T` instead of a
/// `Result<T, _>`. Any errors will stop the inner iterator and
/// the overall result will be an error.
pub fn process<F, U>(iter: I, mut f: F) -> Result<U, E>
where F: FnMut(&mut Self) -> U
{
let mut shunt = ResultShunt::new(iter);
let value = f(shunt.by_ref());
shunt.reconstruct(value)
}
fn new(iter: I) -> Self {
ResultShunt {
iter: iter,
error: None,
}
}
/// Consume the adapter and rebuild a `Result` value. This should
/// *always* be called, otherwise any potential error would be
/// lost.
fn reconstruct<U>(self, val: U) -> Result<U, E> {
match self.error {
None => Ok(val),
Some(e) => Err(e),
}
}
}
impl<I, T, E> Iterator for ResultShunt<I, E>
where I: Iterator<Item = Result<T, E>>
{
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
match self.iter.next() {
Some(Ok(v)) => Some(v),
Some(Err(e)) => {
self.error = Some(e);
None
}
None => None,
}
}
}
#[stable(feature = "iter_arith_traits_result", since="1.16.0")]
impl<T, U, E> Sum<Result<U, E>> for Result<T, E>
where T: Sum<U>,
{
fn sum<I>(iter: I) -> Result<T, E>
where I: Iterator<Item = Result<U, E>>,
{
ResultShunt::process(iter, |i| i.sum())
}
}
#[stable(feature = "iter_arith_traits_result", since="1.16.0")]
impl<T, U, E> Product<Result<U, E>> for Result<T, E>
where T: Product<U>,
{
fn product<I>(iter: I) -> Result<T, E>
where I: Iterator<Item = Result<U, E>>,
{
ResultShunt::process(iter, |i| i.product())
}
}
/// An iterator that always continues to yield `None` when exhausted. /// An iterator that always continues to yield `None` when exhausted.
/// ///
/// Calling next on a fused iterator that has returned `None` once is guaranteed /// Calling next on a fused iterator that has returned `None` once is guaranteed

View File

@ -614,6 +614,14 @@ fn test_iterator_sum() {
assert_eq!(v[..0].iter().cloned().sum::<i32>(), 0); assert_eq!(v[..0].iter().cloned().sum::<i32>(), 0);
} }
#[test]
fn test_iterator_sum_result() {
let v: &[Result<i32, ()>] = &[Ok(1), Ok(2), Ok(3), Ok(4)];
assert_eq!(v.iter().cloned().sum::<Result<i32, _>>(), Ok(10));
let v: &[Result<i32, ()>] = &[Ok(1), Err(()), Ok(3), Ok(4)];
assert_eq!(v.iter().cloned().sum::<Result<i32, _>>(), Err(()));
}
#[test] #[test]
fn test_iterator_product() { fn test_iterator_product() {
let v: &[i32] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; let v: &[i32] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
@ -622,6 +630,14 @@ fn test_iterator_product() {
assert_eq!(v[..0].iter().cloned().product::<i32>(), 1); assert_eq!(v[..0].iter().cloned().product::<i32>(), 1);
} }
#[test]
fn test_iterator_product_result() {
let v: &[Result<i32, ()>] = &[Ok(1), Ok(2), Ok(3), Ok(4)];
assert_eq!(v.iter().cloned().product::<Result<i32, _>>(), Ok(24));
let v: &[Result<i32, ()>] = &[Ok(1), Err(()), Ok(3), Ok(4)];
assert_eq!(v.iter().cloned().product::<Result<i32, _>>(), Err(()));
}
#[test] #[test]
fn test_iterator_max() { fn test_iterator_max() {
let v: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; let v: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];