Auto merge of #41764 - scottmcm:faster-reverse, r=brson
Make [u8]::reverse() 5x faster Since LLVM doesn't vectorize the loop for us, do unaligned reads of a larger type and use LLVM's bswap intrinsic to do the reversing of the actual bytes. cfg!-restricted to x86 and x86_64, as I assume it wouldn't help on things like ARMv5. Also makes [u16]::reverse() a more modest 1.5x faster by loading/storing u32 and swapping the u16s with ROT16. Thank you ptr::*_unaligned for making this easy :) Benchmark results (from my i5-2500K): ```text # Before test slice::reverse_u8 ... bench: 273,836 ns/iter (+/- 15,592) = 3829 MB/s test slice::reverse_u16 ... bench: 139,793 ns/iter (+/- 17,748) = 7500 MB/s test slice::reverse_u32 ... bench: 74,997 ns/iter (+/- 5,130) = 13981 MB/s test slice::reverse_u64 ... bench: 47,452 ns/iter (+/- 2,213) = 22097 MB/s # After test slice::reverse_u8 ... bench: 52,170 ns/iter (+/- 3,962) = 20099 MB/s test slice::reverse_u16 ... bench: 93,330 ns/iter (+/- 4,412) = 11235 MB/s test slice::reverse_u32 ... bench: 74,731 ns/iter (+/- 1,425) = 14031 MB/s test slice::reverse_u64 ... bench: 47,556 ns/iter (+/- 3,025) = 22049 MB/s ``` If you're curious about the assembly, instead of doing this ``` movzx eax, byte ptr [rdi] movzx ecx, byte ptr [rsi] mov byte ptr [rdi], cl mov byte ptr [rsi], al ``` it does this ``` mov rax, qword ptr [rdx] mov rbx, qword ptr [r11 + rcx - 8] bswap rbx mov qword ptr [rdx], rbx bswap rax mov qword ptr [r11 + rcx - 8], rax ```
This commit is contained in:
commit
2b97174ada
@ -10,7 +10,9 @@
|
||||
|
||||
#![deny(warnings)]
|
||||
|
||||
#![feature(i128_type)]
|
||||
#![feature(rand)]
|
||||
#![feature(repr_simd)]
|
||||
#![feature(sort_unstable)]
|
||||
#![feature(test)]
|
||||
|
||||
|
@ -290,3 +290,28 @@ sort!(sort_unstable, sort_unstable_large_random, gen_random, 10000);
|
||||
sort!(sort_unstable, sort_unstable_large_big_random, gen_big_random, 10000);
|
||||
sort!(sort_unstable, sort_unstable_large_strings, gen_strings, 10000);
|
||||
sort_expensive!(sort_unstable_by, sort_unstable_large_random_expensive, gen_random, 10000);
|
||||
|
||||
macro_rules! reverse {
|
||||
($name:ident, $ty:ty, $f:expr) => {
|
||||
#[bench]
|
||||
fn $name(b: &mut Bencher) {
|
||||
// odd length and offset by 1 to be as unaligned as possible
|
||||
let n = 0xFFFFF;
|
||||
let mut v: Vec<_> =
|
||||
(0..1+(n / mem::size_of::<$ty>() as u64))
|
||||
.map($f)
|
||||
.collect();
|
||||
b.iter(|| black_box(&mut v[1..]).reverse());
|
||||
b.bytes = n;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
reverse!(reverse_u8, u8, |x| x as u8);
|
||||
reverse!(reverse_u16, u16, |x| x as u16);
|
||||
reverse!(reverse_u8x3, [u8;3], |x| [x as u8, (x>>8) as u8, (x>>16) as u8]);
|
||||
reverse!(reverse_u32, u32, |x| x as u32);
|
||||
reverse!(reverse_u64, u64, |x| x as u64);
|
||||
reverse!(reverse_u128, u128, |x| x as u128);
|
||||
#[repr(simd)] struct F64x4(f64, f64, f64, f64);
|
||||
reverse!(reverse_simd_f64x4, F64x4, |x| { let x = x as f64; F64x4(x,x,x,x) });
|
||||
|
@ -379,6 +379,16 @@ fn test_reverse() {
|
||||
let mut v3 = Vec::<i32>::new();
|
||||
v3.reverse();
|
||||
assert!(v3.is_empty());
|
||||
|
||||
// check the 1-byte-types path
|
||||
let mut v = (-50..51i8).collect::<Vec<_>>();
|
||||
v.reverse();
|
||||
assert_eq!(v, (-50..51i8).rev().collect::<Vec<_>>());
|
||||
|
||||
// check the 2-byte-types path
|
||||
let mut v = (-50..51i16).collect::<Vec<_>>();
|
||||
v.reverse();
|
||||
assert_eq!(v, (-50..51i16).rev().collect::<Vec<_>>());
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
@ -539,6 +539,55 @@ impl<T> SliceExt for [T] {
|
||||
fn reverse(&mut self) {
|
||||
let mut i: usize = 0;
|
||||
let ln = self.len();
|
||||
|
||||
// For very small types, all the individual reads in the normal
|
||||
// path perform poorly. We can do better, given efficient unaligned
|
||||
// load/store, by loading a larger chunk and reversing a register.
|
||||
|
||||
// Ideally LLVM would do this for us, as it knows better than we do
|
||||
// whether unaligned reads are efficient (since that changes between
|
||||
// different ARM versions, for example) and what the best chunk size
|
||||
// would be. Unfortunately, as of LLVM 4.0 (2017-05) it only unrolls
|
||||
// the loop, so we need to do this ourselves. (Hypothesis: reverse
|
||||
// is troublesome because the sides can be aligned differently --
|
||||
// will be, when the length is odd -- so there's no way of emitting
|
||||
// pre- and postludes to use fully-aligned SIMD in the middle.)
|
||||
|
||||
let fast_unaligned =
|
||||
cfg!(any(target_arch = "x86", target_arch = "x86_64"));
|
||||
|
||||
if fast_unaligned && mem::size_of::<T>() == 1 {
|
||||
// Use the llvm.bswap intrinsic to reverse u8s in a usize
|
||||
let chunk = mem::size_of::<usize>();
|
||||
while i + chunk - 1 < ln / 2 {
|
||||
unsafe {
|
||||
let pa: *mut T = self.get_unchecked_mut(i);
|
||||
let pb: *mut T = self.get_unchecked_mut(ln - i - chunk);
|
||||
let va = ptr::read_unaligned(pa as *mut usize);
|
||||
let vb = ptr::read_unaligned(pb as *mut usize);
|
||||
ptr::write_unaligned(pa as *mut usize, vb.swap_bytes());
|
||||
ptr::write_unaligned(pb as *mut usize, va.swap_bytes());
|
||||
}
|
||||
i += chunk;
|
||||
}
|
||||
}
|
||||
|
||||
if fast_unaligned && mem::size_of::<T>() == 2 {
|
||||
// Use rotate-by-16 to reverse u16s in a u32
|
||||
let chunk = mem::size_of::<u32>() / 2;
|
||||
while i + chunk - 1 < ln / 2 {
|
||||
unsafe {
|
||||
let pa: *mut T = self.get_unchecked_mut(i);
|
||||
let pb: *mut T = self.get_unchecked_mut(ln - i - chunk);
|
||||
let va = ptr::read_unaligned(pa as *mut u32);
|
||||
let vb = ptr::read_unaligned(pb as *mut u32);
|
||||
ptr::write_unaligned(pa as *mut u32, vb.rotate_left(16));
|
||||
ptr::write_unaligned(pb as *mut u32, va.rotate_left(16));
|
||||
}
|
||||
i += chunk;
|
||||
}
|
||||
}
|
||||
|
||||
while i < ln / 2 {
|
||||
// Unsafe swap to avoid the bounds check in safe swap.
|
||||
unsafe {
|
||||
|
Loading…
Reference in New Issue
Block a user