Auto merge of #41764 - scottmcm:faster-reverse, r=brson

Make [u8]::reverse() 5x faster

Since LLVM doesn't vectorize the loop for us, do unaligned reads of a larger type and use LLVM's bswap intrinsic to do the reversing of the actual bytes.  cfg!-restricted to x86 and x86_64, as I assume it wouldn't help on things like ARMv5.

Also makes [u16]::reverse() a more modest 1.5x faster by loading/storing u32 and swapping the u16s with ROT16.

Thank you ptr::*_unaligned for making this easy :)

Benchmark results (from my i5-2500K):
```text
# Before
test slice::reverse_u8      ... bench:  273,836 ns/iter (+/- 15,592) =  3829 MB/s
test slice::reverse_u16     ... bench:  139,793 ns/iter (+/- 17,748) =  7500 MB/s
test slice::reverse_u32     ... bench:   74,997 ns/iter  (+/- 5,130) = 13981 MB/s
test slice::reverse_u64     ... bench:   47,452 ns/iter  (+/- 2,213) = 22097 MB/s

# After
test slice::reverse_u8      ... bench:   52,170 ns/iter (+/- 3,962) = 20099 MB/s
test slice::reverse_u16     ... bench:   93,330 ns/iter (+/- 4,412) = 11235 MB/s
test slice::reverse_u32     ... bench:   74,731 ns/iter (+/- 1,425) = 14031 MB/s
test slice::reverse_u64     ... bench:   47,556 ns/iter (+/- 3,025) = 22049 MB/s
```

If you're curious about the assembly, instead of doing this
```
movzx	eax, byte ptr [rdi]
movzx	ecx, byte ptr [rsi]
mov	byte ptr [rdi], cl
mov	byte ptr [rsi], al
```
it does this
```
mov	rax, qword ptr [rdx]
mov	rbx, qword ptr [r11 + rcx - 8]
bswap	rbx
mov	qword ptr [rdx], rbx
bswap	rax
mov	qword ptr [r11 + rcx - 8], rax
```
This commit is contained in:
bors 2017-05-10 08:54:50 +00:00
commit 2b97174ada
4 changed files with 86 additions and 0 deletions

View File

@ -10,7 +10,9 @@
#![deny(warnings)]
#![feature(i128_type)]
#![feature(rand)]
#![feature(repr_simd)]
#![feature(sort_unstable)]
#![feature(test)]

View File

@ -290,3 +290,28 @@ sort!(sort_unstable, sort_unstable_large_random, gen_random, 10000);
sort!(sort_unstable, sort_unstable_large_big_random, gen_big_random, 10000);
sort!(sort_unstable, sort_unstable_large_strings, gen_strings, 10000);
sort_expensive!(sort_unstable_by, sort_unstable_large_random_expensive, gen_random, 10000);
macro_rules! reverse {
($name:ident, $ty:ty, $f:expr) => {
#[bench]
fn $name(b: &mut Bencher) {
// odd length and offset by 1 to be as unaligned as possible
let n = 0xFFFFF;
let mut v: Vec<_> =
(0..1+(n / mem::size_of::<$ty>() as u64))
.map($f)
.collect();
b.iter(|| black_box(&mut v[1..]).reverse());
b.bytes = n;
}
}
}
reverse!(reverse_u8, u8, |x| x as u8);
reverse!(reverse_u16, u16, |x| x as u16);
reverse!(reverse_u8x3, [u8;3], |x| [x as u8, (x>>8) as u8, (x>>16) as u8]);
reverse!(reverse_u32, u32, |x| x as u32);
reverse!(reverse_u64, u64, |x| x as u64);
reverse!(reverse_u128, u128, |x| x as u128);
#[repr(simd)] struct F64x4(f64, f64, f64, f64);
reverse!(reverse_simd_f64x4, F64x4, |x| { let x = x as f64; F64x4(x,x,x,x) });

View File

@ -379,6 +379,16 @@ fn test_reverse() {
let mut v3 = Vec::<i32>::new();
v3.reverse();
assert!(v3.is_empty());
// check the 1-byte-types path
let mut v = (-50..51i8).collect::<Vec<_>>();
v.reverse();
assert_eq!(v, (-50..51i8).rev().collect::<Vec<_>>());
// check the 2-byte-types path
let mut v = (-50..51i16).collect::<Vec<_>>();
v.reverse();
assert_eq!(v, (-50..51i16).rev().collect::<Vec<_>>());
}
#[test]

View File

@ -539,6 +539,55 @@ impl<T> SliceExt for [T] {
fn reverse(&mut self) {
let mut i: usize = 0;
let ln = self.len();
// For very small types, all the individual reads in the normal
// path perform poorly. We can do better, given efficient unaligned
// load/store, by loading a larger chunk and reversing a register.
// Ideally LLVM would do this for us, as it knows better than we do
// whether unaligned reads are efficient (since that changes between
// different ARM versions, for example) and what the best chunk size
// would be. Unfortunately, as of LLVM 4.0 (2017-05) it only unrolls
// the loop, so we need to do this ourselves. (Hypothesis: reverse
// is troublesome because the sides can be aligned differently --
// will be, when the length is odd -- so there's no way of emitting
// pre- and postludes to use fully-aligned SIMD in the middle.)
let fast_unaligned =
cfg!(any(target_arch = "x86", target_arch = "x86_64"));
if fast_unaligned && mem::size_of::<T>() == 1 {
// Use the llvm.bswap intrinsic to reverse u8s in a usize
let chunk = mem::size_of::<usize>();
while i + chunk - 1 < ln / 2 {
unsafe {
let pa: *mut T = self.get_unchecked_mut(i);
let pb: *mut T = self.get_unchecked_mut(ln - i - chunk);
let va = ptr::read_unaligned(pa as *mut usize);
let vb = ptr::read_unaligned(pb as *mut usize);
ptr::write_unaligned(pa as *mut usize, vb.swap_bytes());
ptr::write_unaligned(pb as *mut usize, va.swap_bytes());
}
i += chunk;
}
}
if fast_unaligned && mem::size_of::<T>() == 2 {
// Use rotate-by-16 to reverse u16s in a u32
let chunk = mem::size_of::<u32>() / 2;
while i + chunk - 1 < ln / 2 {
unsafe {
let pa: *mut T = self.get_unchecked_mut(i);
let pb: *mut T = self.get_unchecked_mut(ln - i - chunk);
let va = ptr::read_unaligned(pa as *mut u32);
let vb = ptr::read_unaligned(pb as *mut u32);
ptr::write_unaligned(pa as *mut u32, vb.rotate_left(16));
ptr::write_unaligned(pb as *mut u32, va.rotate_left(16));
}
i += chunk;
}
}
while i < ln / 2 {
// Unsafe swap to avoid the bounds check in safe swap.
unsafe {