Optimize core::ptr::align_offset

- When calculating the inverse, it's enough to work `mod a/g` instead
  of `mod a`.
This commit is contained in:
Amos Onn 2020-01-28 22:14:04 +01:00
parent e835d0d761
commit 3173cd1473

View File

@ -1115,26 +1115,33 @@ pub(crate) unsafe fn align_offset<T: Sized>(p: *const T, a: usize) -> usize {
let gcdpow = intrinsics::cttz_nonzero(stride).min(intrinsics::cttz_nonzero(a));
let gcd = 1usize << gcdpow;
if p as usize & (gcd - 1) == 0 {
if p as usize & (gcd.wrapping_sub(1)) == 0 {
// This branch solves for the following linear congruence equation:
//
// $$ p + so ≡ 0 mod a $$
// ` p + so = 0 mod a `
//
// $p$ here is the pointer value, $s$ stride of `T`, $o$ offset in `T`s, and $a$ the
// `p` here is the pointer value, `s` - stride of `T`, `o` offset in `T`s, and `a` - the
// requested alignment.
//
// g = gcd(a, s)
// o = (a - (p mod a))/g * ((s/g)⁻¹ mod a)
// With `g = gcd(a, s)`, and the above asserting that `p` is also divisible by `g`, we can
// denote `a' = a/g`, `s' = s/g`, `p' = p/g`, then this becomes equivalent to:
//
// The first term is “the relative alignment of p to a”, the second term is “how does
// incrementing p by s bytes change the relative alignment of p”. Division by `g` is
// necessary to make this equation well formed if $a$ and $s$ are not co-prime.
// ` p' + s'o = 0 mod a' `
// ` o = (a' - (p' mod a')) * (s'^-1 mod a') `
//
// Furthermore, the result produced by this solution is not “minimal”, so it is necessary
// to take the result $o mod lcm(s, a)$. We can replace $lcm(s, a)$ with just a $a / g$.
let j = a.wrapping_sub(pmoda) >> gcdpow;
let k = smoda >> gcdpow;
return (j.wrapping_mul(mod_inv(k, a))) & ((a >> gcdpow).wrapping_sub(1));
// The first term is "the relative alignment of `p` to `a`" (divided by the `g`), the second
// term is "how does incrementing `p` by `s` bytes change the relative alignment of `p`" (again
// divided by `g`).
// Division by `g` is necessary to make the inverse well formed if `a` and `s` are not
// co-prime.
//
// Furthermore, the result produced by this solution is not "minimal", so it is necessary
// to take the result `o mod lcm(s, a)`. We can replace `lcm(s, a)` with just a `a'`.
let a2 = a >> gcdpow;
let a2minus1 = a2.wrapping_sub(1);
let s2 = smoda >> gcdpow;
let minusp2 = a2.wrapping_sub(pmoda >> gcdpow);
return (minusp2.wrapping_mul(mod_inv(s2, a2))) & a2minus1;
}
// Cannot be aligned at all.