Rearrange tests to be in the same order as implementation

I was having trouble figuring out which functions had tests and which
didn't. This commit is just moving tests around and does not change
anything.
This commit is contained in:
Carol Nichols 2015-02-14 18:14:52 -05:00
parent b0746ff19b
commit 33d8a4efea
2 changed files with 345 additions and 345 deletions

View File

@ -1,4 +1,4 @@
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
@ -468,6 +468,11 @@ mod tests {
use num::*;
use num::FpCategory as Fp;
#[test]
fn test_num_f32() {
test_num(10f32, 2f32);
}
#[test]
fn test_min_nan() {
assert_eq!(NAN.min(2.0), 2.0);
@ -481,8 +486,49 @@ mod tests {
}
#[test]
fn test_num_f32() {
test_num(10f32, 2f32);
fn test_is_normal() {
let nan: f32 = Float::nan();
let inf: f32 = Float::infinity();
let neg_inf: f32 = Float::neg_infinity();
let zero: f32 = Float::zero();
let neg_zero: f32 = Float::neg_zero();
assert!(!nan.is_normal());
assert!(!inf.is_normal());
assert!(!neg_inf.is_normal());
assert!(!zero.is_normal());
assert!(!neg_zero.is_normal());
assert!(1f32.is_normal());
assert!(1e-37f32.is_normal());
assert!(!1e-38f32.is_normal());
}
#[test]
fn test_classify() {
let nan: f32 = Float::nan();
let inf: f32 = Float::infinity();
let neg_inf: f32 = Float::neg_infinity();
let zero: f32 = Float::zero();
let neg_zero: f32 = Float::neg_zero();
assert_eq!(nan.classify(), Fp::Nan);
assert_eq!(inf.classify(), Fp::Infinite);
assert_eq!(neg_inf.classify(), Fp::Infinite);
assert_eq!(zero.classify(), Fp::Zero);
assert_eq!(neg_zero.classify(), Fp::Zero);
assert_eq!(1f32.classify(), Fp::Normal);
assert_eq!(1e-37f32.classify(), Fp::Normal);
assert_eq!(1e-38f32.classify(), Fp::Subnormal);
}
#[test]
fn test_integer_decode() {
assert_eq!(3.14159265359f32.integer_decode(), (13176795, -22, 1));
assert_eq!((-8573.5918555f32).integer_decode(), (8779358, -10, -1));
assert_eq!(2f32.powf(100.0).integer_decode(), (8388608, 77, 1));
assert_eq!(0f32.integer_decode(), (0, -150, 1));
assert_eq!((-0f32).integer_decode(), (0, -150, -1));
assert_eq!(INFINITY.integer_decode(), (8388608, 105, 1));
assert_eq!(NEG_INFINITY.integer_decode(), (8388608, 105, -1));
assert_eq!(NAN.integer_decode(), (12582912, 105, 1));
}
#[test]
@ -555,6 +601,65 @@ mod tests {
assert_approx_eq!((-1.7f32).fract(), -0.7f32);
}
#[test]
pub fn test_abs() {
assert_eq!(INFINITY.abs(), INFINITY);
assert_eq!(1f32.abs(), 1f32);
assert_eq!(0f32.abs(), 0f32);
assert_eq!((-0f32).abs(), 0f32);
assert_eq!((-1f32).abs(), 1f32);
assert_eq!(NEG_INFINITY.abs(), INFINITY);
assert_eq!((1f32/NEG_INFINITY).abs(), 0f32);
assert!(NAN.abs().is_nan());
}
#[test]
fn test_signum() {
assert_eq!(INFINITY.signum(), 1f32);
assert_eq!(1f32.signum(), 1f32);
assert_eq!(0f32.signum(), 1f32);
assert_eq!((-0f32).signum(), -1f32);
assert_eq!((-1f32).signum(), -1f32);
assert_eq!(NEG_INFINITY.signum(), -1f32);
assert_eq!((1f32/NEG_INFINITY).signum(), -1f32);
assert!(NAN.signum().is_nan());
}
#[test]
fn test_is_positive() {
assert!(INFINITY.is_positive());
assert!(1f32.is_positive());
assert!(0f32.is_positive());
assert!(!(-0f32).is_positive());
assert!(!(-1f32).is_positive());
assert!(!NEG_INFINITY.is_positive());
assert!(!(1f32/NEG_INFINITY).is_positive());
assert!(!NAN.is_positive());
}
#[test]
fn test_is_negative() {
assert!(!INFINITY.is_negative());
assert!(!1f32.is_negative());
assert!(!0f32.is_negative());
assert!((-0f32).is_negative());
assert!((-1f32).is_negative());
assert!(NEG_INFINITY.is_negative());
assert!((1f32/NEG_INFINITY).is_negative());
assert!(!NAN.is_negative());
}
#[test]
fn test_sqrt_domain() {
assert!(NAN.sqrt().is_nan());
assert!(NEG_INFINITY.sqrt().is_nan());
assert!((-1.0f32).sqrt().is_nan());
assert_eq!((-0.0f32).sqrt(), -0.0);
assert_eq!(0.0f32.sqrt(), 0.0);
assert_eq!(1.0f32.sqrt(), 1.0);
assert_eq!(INFINITY.sqrt(), INFINITY);
}
#[test]
fn test_exp() {
assert_eq!(1.0, 0.0f32.exp());
@ -582,6 +687,71 @@ mod tests {
assert!(nan.exp2().is_nan());
}
#[test]
fn test_ldexp() {
// We have to use from_str until base-2 exponents
// are supported in floating-point literals
let f1: f32 = FromStrRadix::from_str_radix("1p-123", 16).unwrap();
let f2: f32 = FromStrRadix::from_str_radix("1p-111", 16).unwrap();
assert_eq!(Float::ldexp(1f32, -123), f1);
assert_eq!(Float::ldexp(1f32, -111), f2);
assert_eq!(Float::ldexp(0f32, -123), 0f32);
assert_eq!(Float::ldexp(-0f32, -123), -0f32);
let inf: f32 = Float::infinity();
let neg_inf: f32 = Float::neg_infinity();
let nan: f32 = Float::nan();
assert_eq!(Float::ldexp(inf, -123), inf);
assert_eq!(Float::ldexp(neg_inf, -123), neg_inf);
assert!(Float::ldexp(nan, -123).is_nan());
}
#[test]
fn test_frexp() {
// We have to use from_str until base-2 exponents
// are supported in floating-point literals
let f1: f32 = FromStrRadix::from_str_radix("1p-123", 16).unwrap();
let f2: f32 = FromStrRadix::from_str_radix("1p-111", 16).unwrap();
let (x1, exp1) = f1.frexp();
let (x2, exp2) = f2.frexp();
assert_eq!((x1, exp1), (0.5f32, -122));
assert_eq!((x2, exp2), (0.5f32, -110));
assert_eq!(Float::ldexp(x1, exp1), f1);
assert_eq!(Float::ldexp(x2, exp2), f2);
assert_eq!(0f32.frexp(), (0f32, 0));
assert_eq!((-0f32).frexp(), (-0f32, 0));
}
#[test] #[cfg_attr(windows, ignore)] // FIXME #8755
fn test_frexp_nowin() {
let inf: f32 = Float::infinity();
let neg_inf: f32 = Float::neg_infinity();
let nan: f32 = Float::nan();
assert_eq!(match inf.frexp() { (x, _) => x }, inf);
assert_eq!(match neg_inf.frexp() { (x, _) => x }, neg_inf);
assert!(match nan.frexp() { (x, _) => x.is_nan() })
}
#[test]
fn test_abs_sub() {
assert_eq!((-1f32).abs_sub(1f32), 0f32);
assert_eq!(1f32.abs_sub(1f32), 0f32);
assert_eq!(1f32.abs_sub(0f32), 1f32);
assert_eq!(1f32.abs_sub(-1f32), 2f32);
assert_eq!(NEG_INFINITY.abs_sub(0f32), 0f32);
assert_eq!(INFINITY.abs_sub(1f32), INFINITY);
assert_eq!(0f32.abs_sub(NEG_INFINITY), INFINITY);
assert_eq!(0f32.abs_sub(INFINITY), 0f32);
}
#[test]
fn test_abs_sub_nowin() {
assert!(NAN.abs_sub(-1f32).is_nan());
assert!(1f32.abs_sub(NAN).is_nan());
}
#[test]
fn test_asinh() {
assert_eq!(0.0f32.asinh(), 0.0f32);
@ -674,174 +844,4 @@ mod tests {
assert_approx_eq!(ln_2, 2f32.ln());
assert_approx_eq!(ln_10, 10f32.ln());
}
#[test]
pub fn test_abs() {
assert_eq!(INFINITY.abs(), INFINITY);
assert_eq!(1f32.abs(), 1f32);
assert_eq!(0f32.abs(), 0f32);
assert_eq!((-0f32).abs(), 0f32);
assert_eq!((-1f32).abs(), 1f32);
assert_eq!(NEG_INFINITY.abs(), INFINITY);
assert_eq!((1f32/NEG_INFINITY).abs(), 0f32);
assert!(NAN.abs().is_nan());
}
#[test]
fn test_abs_sub() {
assert_eq!((-1f32).abs_sub(1f32), 0f32);
assert_eq!(1f32.abs_sub(1f32), 0f32);
assert_eq!(1f32.abs_sub(0f32), 1f32);
assert_eq!(1f32.abs_sub(-1f32), 2f32);
assert_eq!(NEG_INFINITY.abs_sub(0f32), 0f32);
assert_eq!(INFINITY.abs_sub(1f32), INFINITY);
assert_eq!(0f32.abs_sub(NEG_INFINITY), INFINITY);
assert_eq!(0f32.abs_sub(INFINITY), 0f32);
}
#[test]
fn test_abs_sub_nowin() {
assert!(NAN.abs_sub(-1f32).is_nan());
assert!(1f32.abs_sub(NAN).is_nan());
}
#[test]
fn test_signum() {
assert_eq!(INFINITY.signum(), 1f32);
assert_eq!(1f32.signum(), 1f32);
assert_eq!(0f32.signum(), 1f32);
assert_eq!((-0f32).signum(), -1f32);
assert_eq!((-1f32).signum(), -1f32);
assert_eq!(NEG_INFINITY.signum(), -1f32);
assert_eq!((1f32/NEG_INFINITY).signum(), -1f32);
assert!(NAN.signum().is_nan());
}
#[test]
fn test_is_positive() {
assert!(INFINITY.is_positive());
assert!(1f32.is_positive());
assert!(0f32.is_positive());
assert!(!(-0f32).is_positive());
assert!(!(-1f32).is_positive());
assert!(!NEG_INFINITY.is_positive());
assert!(!(1f32/NEG_INFINITY).is_positive());
assert!(!NAN.is_positive());
}
#[test]
fn test_is_negative() {
assert!(!INFINITY.is_negative());
assert!(!1f32.is_negative());
assert!(!0f32.is_negative());
assert!((-0f32).is_negative());
assert!((-1f32).is_negative());
assert!(NEG_INFINITY.is_negative());
assert!((1f32/NEG_INFINITY).is_negative());
assert!(!NAN.is_negative());
}
#[test]
fn test_is_normal() {
let nan: f32 = Float::nan();
let inf: f32 = Float::infinity();
let neg_inf: f32 = Float::neg_infinity();
let zero: f32 = Float::zero();
let neg_zero: f32 = Float::neg_zero();
assert!(!nan.is_normal());
assert!(!inf.is_normal());
assert!(!neg_inf.is_normal());
assert!(!zero.is_normal());
assert!(!neg_zero.is_normal());
assert!(1f32.is_normal());
assert!(1e-37f32.is_normal());
assert!(!1e-38f32.is_normal());
}
#[test]
fn test_classify() {
let nan: f32 = Float::nan();
let inf: f32 = Float::infinity();
let neg_inf: f32 = Float::neg_infinity();
let zero: f32 = Float::zero();
let neg_zero: f32 = Float::neg_zero();
assert_eq!(nan.classify(), Fp::Nan);
assert_eq!(inf.classify(), Fp::Infinite);
assert_eq!(neg_inf.classify(), Fp::Infinite);
assert_eq!(zero.classify(), Fp::Zero);
assert_eq!(neg_zero.classify(), Fp::Zero);
assert_eq!(1f32.classify(), Fp::Normal);
assert_eq!(1e-37f32.classify(), Fp::Normal);
assert_eq!(1e-38f32.classify(), Fp::Subnormal);
}
#[test]
fn test_ldexp() {
// We have to use from_str until base-2 exponents
// are supported in floating-point literals
let f1: f32 = FromStrRadix::from_str_radix("1p-123", 16).unwrap();
let f2: f32 = FromStrRadix::from_str_radix("1p-111", 16).unwrap();
assert_eq!(Float::ldexp(1f32, -123), f1);
assert_eq!(Float::ldexp(1f32, -111), f2);
assert_eq!(Float::ldexp(0f32, -123), 0f32);
assert_eq!(Float::ldexp(-0f32, -123), -0f32);
let inf: f32 = Float::infinity();
let neg_inf: f32 = Float::neg_infinity();
let nan: f32 = Float::nan();
assert_eq!(Float::ldexp(inf, -123), inf);
assert_eq!(Float::ldexp(neg_inf, -123), neg_inf);
assert!(Float::ldexp(nan, -123).is_nan());
}
#[test]
fn test_frexp() {
// We have to use from_str until base-2 exponents
// are supported in floating-point literals
let f1: f32 = FromStrRadix::from_str_radix("1p-123", 16).unwrap();
let f2: f32 = FromStrRadix::from_str_radix("1p-111", 16).unwrap();
let (x1, exp1) = f1.frexp();
let (x2, exp2) = f2.frexp();
assert_eq!((x1, exp1), (0.5f32, -122));
assert_eq!((x2, exp2), (0.5f32, -110));
assert_eq!(Float::ldexp(x1, exp1), f1);
assert_eq!(Float::ldexp(x2, exp2), f2);
assert_eq!(0f32.frexp(), (0f32, 0));
assert_eq!((-0f32).frexp(), (-0f32, 0));
}
#[test] #[cfg_attr(windows, ignore)] // FIXME #8755
fn test_frexp_nowin() {
let inf: f32 = Float::infinity();
let neg_inf: f32 = Float::neg_infinity();
let nan: f32 = Float::nan();
assert_eq!(match inf.frexp() { (x, _) => x }, inf);
assert_eq!(match neg_inf.frexp() { (x, _) => x }, neg_inf);
assert!(match nan.frexp() { (x, _) => x.is_nan() })
}
#[test]
fn test_integer_decode() {
assert_eq!(3.14159265359f32.integer_decode(), (13176795, -22, 1));
assert_eq!((-8573.5918555f32).integer_decode(), (8779358, -10, -1));
assert_eq!(2f32.powf(100.0).integer_decode(), (8388608, 77, 1));
assert_eq!(0f32.integer_decode(), (0, -150, 1));
assert_eq!((-0f32).integer_decode(), (0, -150, -1));
assert_eq!(INFINITY.integer_decode(), (8388608, 105, 1));
assert_eq!(NEG_INFINITY.integer_decode(), (8388608, 105, -1));
assert_eq!(NAN.integer_decode(), (12582912, 105, 1));
}
#[test]
fn test_sqrt_domain() {
assert!(NAN.sqrt().is_nan());
assert!(NEG_INFINITY.sqrt().is_nan());
assert!((-1.0f32).sqrt().is_nan());
assert_eq!((-0.0f32).sqrt(), -0.0);
assert_eq!(0.0f32.sqrt(), 0.0);
assert_eq!(1.0f32.sqrt(), 1.0);
assert_eq!(INFINITY.sqrt(), INFINITY);
}
}

View File

@ -1,4 +1,4 @@
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
@ -477,6 +477,11 @@ mod tests {
use num::*;
use num::FpCategory as Fp;
#[test]
fn test_num_f64() {
test_num(10f64, 2f64);
}
#[test]
fn test_min_nan() {
assert_eq!(NAN.min(2.0), 2.0);
@ -490,8 +495,48 @@ mod tests {
}
#[test]
fn test_num_f64() {
test_num(10f64, 2f64);
fn test_is_normal() {
let nan: f64 = Float::nan();
let inf: f64 = Float::infinity();
let neg_inf: f64 = Float::neg_infinity();
let zero: f64 = Float::zero();
let neg_zero: f64 = Float::neg_zero();
assert!(!nan.is_normal());
assert!(!inf.is_normal());
assert!(!neg_inf.is_normal());
assert!(!zero.is_normal());
assert!(!neg_zero.is_normal());
assert!(1f64.is_normal());
assert!(1e-307f64.is_normal());
assert!(!1e-308f64.is_normal());
}
#[test]
fn test_classify() {
let nan: f64 = Float::nan();
let inf: f64 = Float::infinity();
let neg_inf: f64 = Float::neg_infinity();
let zero: f64 = Float::zero();
let neg_zero: f64 = Float::neg_zero();
assert_eq!(nan.classify(), Fp::Nan);
assert_eq!(inf.classify(), Fp::Infinite);
assert_eq!(neg_inf.classify(), Fp::Infinite);
assert_eq!(zero.classify(), Fp::Zero);
assert_eq!(neg_zero.classify(), Fp::Zero);
assert_eq!(1e-307f64.classify(), Fp::Normal);
assert_eq!(1e-308f64.classify(), Fp::Subnormal);
}
#[test]
fn test_integer_decode() {
assert_eq!(3.14159265359f64.integer_decode(), (7074237752028906, -51, 1));
assert_eq!((-8573.5918555f64).integer_decode(), (4713381968463931, -39, -1));
assert_eq!(2f64.powf(100.0).integer_decode(), (4503599627370496, 48, 1));
assert_eq!(0f64.integer_decode(), (0, -1075, 1));
assert_eq!((-0f64).integer_decode(), (0, -1075, -1));
assert_eq!(INFINITY.integer_decode(), (4503599627370496, 972, 1));
assert_eq!(NEG_INFINITY.integer_decode(), (4503599627370496, 972, -1));
assert_eq!(NAN.integer_decode(), (6755399441055744, 972, 1));
}
#[test]
@ -564,6 +609,65 @@ mod tests {
assert_approx_eq!((-1.7f64).fract(), -0.7f64);
}
#[test]
pub fn test_abs() {
assert_eq!(INFINITY.abs(), INFINITY);
assert_eq!(1f64.abs(), 1f64);
assert_eq!(0f64.abs(), 0f64);
assert_eq!((-0f64).abs(), 0f64);
assert_eq!((-1f64).abs(), 1f64);
assert_eq!(NEG_INFINITY.abs(), INFINITY);
assert_eq!((1f64/NEG_INFINITY).abs(), 0f64);
assert!(NAN.abs().is_nan());
}
#[test]
fn test_signum() {
assert_eq!(INFINITY.signum(), 1f64);
assert_eq!(1f64.signum(), 1f64);
assert_eq!(0f64.signum(), 1f64);
assert_eq!((-0f64).signum(), -1f64);
assert_eq!((-1f64).signum(), -1f64);
assert_eq!(NEG_INFINITY.signum(), -1f64);
assert_eq!((1f64/NEG_INFINITY).signum(), -1f64);
assert!(NAN.signum().is_nan());
}
#[test]
fn test_is_positive() {
assert!(INFINITY.is_positive());
assert!(1f64.is_positive());
assert!(0f64.is_positive());
assert!(!(-0f64).is_positive());
assert!(!(-1f64).is_positive());
assert!(!NEG_INFINITY.is_positive());
assert!(!(1f64/NEG_INFINITY).is_positive());
assert!(!NAN.is_positive());
}
#[test]
fn test_is_negative() {
assert!(!INFINITY.is_negative());
assert!(!1f64.is_negative());
assert!(!0f64.is_negative());
assert!((-0f64).is_negative());
assert!((-1f64).is_negative());
assert!(NEG_INFINITY.is_negative());
assert!((1f64/NEG_INFINITY).is_negative());
assert!(!NAN.is_negative());
}
#[test]
fn test_sqrt_domain() {
assert!(NAN.sqrt().is_nan());
assert!(NEG_INFINITY.sqrt().is_nan());
assert!((-1.0f64).sqrt().is_nan());
assert_eq!((-0.0f64).sqrt(), -0.0);
assert_eq!(0.0f64.sqrt(), 0.0);
assert_eq!(1.0f64.sqrt(), 1.0);
assert_eq!(INFINITY.sqrt(), INFINITY);
}
#[test]
fn test_exp() {
assert_eq!(1.0, 0.0f64.exp());
@ -591,6 +695,71 @@ mod tests {
assert!(nan.exp2().is_nan());
}
#[test]
fn test_ldexp() {
// We have to use from_str until base-2 exponents
// are supported in floating-point literals
let f1: f64 = FromStrRadix::from_str_radix("1p-123", 16).unwrap();
let f2: f64 = FromStrRadix::from_str_radix("1p-111", 16).unwrap();
assert_eq!(Float::ldexp(1f64, -123), f1);
assert_eq!(Float::ldexp(1f64, -111), f2);
assert_eq!(Float::ldexp(0f64, -123), 0f64);
assert_eq!(Float::ldexp(-0f64, -123), -0f64);
let inf: f64 = Float::infinity();
let neg_inf: f64 = Float::neg_infinity();
let nan: f64 = Float::nan();
assert_eq!(Float::ldexp(inf, -123), inf);
assert_eq!(Float::ldexp(neg_inf, -123), neg_inf);
assert!(Float::ldexp(nan, -123).is_nan());
}
#[test]
fn test_frexp() {
// We have to use from_str until base-2 exponents
// are supported in floating-point literals
let f1: f64 = FromStrRadix::from_str_radix("1p-123", 16).unwrap();
let f2: f64 = FromStrRadix::from_str_radix("1p-111", 16).unwrap();
let (x1, exp1) = f1.frexp();
let (x2, exp2) = f2.frexp();
assert_eq!((x1, exp1), (0.5f64, -122));
assert_eq!((x2, exp2), (0.5f64, -110));
assert_eq!(Float::ldexp(x1, exp1), f1);
assert_eq!(Float::ldexp(x2, exp2), f2);
assert_eq!(0f64.frexp(), (0f64, 0));
assert_eq!((-0f64).frexp(), (-0f64, 0));
}
#[test] #[cfg_attr(windows, ignore)] // FIXME #8755
fn test_frexp_nowin() {
let inf: f64 = Float::infinity();
let neg_inf: f64 = Float::neg_infinity();
let nan: f64 = Float::nan();
assert_eq!(match inf.frexp() { (x, _) => x }, inf);
assert_eq!(match neg_inf.frexp() { (x, _) => x }, neg_inf);
assert!(match nan.frexp() { (x, _) => x.is_nan() })
}
#[test]
fn test_abs_sub() {
assert_eq!((-1f64).abs_sub(1f64), 0f64);
assert_eq!(1f64.abs_sub(1f64), 0f64);
assert_eq!(1f64.abs_sub(0f64), 1f64);
assert_eq!(1f64.abs_sub(-1f64), 2f64);
assert_eq!(NEG_INFINITY.abs_sub(0f64), 0f64);
assert_eq!(INFINITY.abs_sub(1f64), INFINITY);
assert_eq!(0f64.abs_sub(NEG_INFINITY), INFINITY);
assert_eq!(0f64.abs_sub(INFINITY), 0f64);
}
#[test]
fn test_abs_sub_nowin() {
assert!(NAN.abs_sub(-1f64).is_nan());
assert!(1f64.abs_sub(NAN).is_nan());
}
#[test]
fn test_asinh() {
assert_eq!(0.0f64.asinh(), 0.0f64);
@ -677,173 +846,4 @@ mod tests {
assert_approx_eq!(ln_2, 2f64.ln());
assert_approx_eq!(ln_10, 10f64.ln());
}
#[test]
pub fn test_abs() {
assert_eq!(INFINITY.abs(), INFINITY);
assert_eq!(1f64.abs(), 1f64);
assert_eq!(0f64.abs(), 0f64);
assert_eq!((-0f64).abs(), 0f64);
assert_eq!((-1f64).abs(), 1f64);
assert_eq!(NEG_INFINITY.abs(), INFINITY);
assert_eq!((1f64/NEG_INFINITY).abs(), 0f64);
assert!(NAN.abs().is_nan());
}
#[test]
fn test_abs_sub() {
assert_eq!((-1f64).abs_sub(1f64), 0f64);
assert_eq!(1f64.abs_sub(1f64), 0f64);
assert_eq!(1f64.abs_sub(0f64), 1f64);
assert_eq!(1f64.abs_sub(-1f64), 2f64);
assert_eq!(NEG_INFINITY.abs_sub(0f64), 0f64);
assert_eq!(INFINITY.abs_sub(1f64), INFINITY);
assert_eq!(0f64.abs_sub(NEG_INFINITY), INFINITY);
assert_eq!(0f64.abs_sub(INFINITY), 0f64);
}
#[test]
fn test_abs_sub_nowin() {
assert!(NAN.abs_sub(-1f64).is_nan());
assert!(1f64.abs_sub(NAN).is_nan());
}
#[test]
fn test_signum() {
assert_eq!(INFINITY.signum(), 1f64);
assert_eq!(1f64.signum(), 1f64);
assert_eq!(0f64.signum(), 1f64);
assert_eq!((-0f64).signum(), -1f64);
assert_eq!((-1f64).signum(), -1f64);
assert_eq!(NEG_INFINITY.signum(), -1f64);
assert_eq!((1f64/NEG_INFINITY).signum(), -1f64);
assert!(NAN.signum().is_nan());
}
#[test]
fn test_is_positive() {
assert!(INFINITY.is_positive());
assert!(1f64.is_positive());
assert!(0f64.is_positive());
assert!(!(-0f64).is_positive());
assert!(!(-1f64).is_positive());
assert!(!NEG_INFINITY.is_positive());
assert!(!(1f64/NEG_INFINITY).is_positive());
assert!(!NAN.is_positive());
}
#[test]
fn test_is_negative() {
assert!(!INFINITY.is_negative());
assert!(!1f64.is_negative());
assert!(!0f64.is_negative());
assert!((-0f64).is_negative());
assert!((-1f64).is_negative());
assert!(NEG_INFINITY.is_negative());
assert!((1f64/NEG_INFINITY).is_negative());
assert!(!NAN.is_negative());
}
#[test]
fn test_is_normal() {
let nan: f64 = Float::nan();
let inf: f64 = Float::infinity();
let neg_inf: f64 = Float::neg_infinity();
let zero: f64 = Float::zero();
let neg_zero: f64 = Float::neg_zero();
assert!(!nan.is_normal());
assert!(!inf.is_normal());
assert!(!neg_inf.is_normal());
assert!(!zero.is_normal());
assert!(!neg_zero.is_normal());
assert!(1f64.is_normal());
assert!(1e-307f64.is_normal());
assert!(!1e-308f64.is_normal());
}
#[test]
fn test_classify() {
let nan: f64 = Float::nan();
let inf: f64 = Float::infinity();
let neg_inf: f64 = Float::neg_infinity();
let zero: f64 = Float::zero();
let neg_zero: f64 = Float::neg_zero();
assert_eq!(nan.classify(), Fp::Nan);
assert_eq!(inf.classify(), Fp::Infinite);
assert_eq!(neg_inf.classify(), Fp::Infinite);
assert_eq!(zero.classify(), Fp::Zero);
assert_eq!(neg_zero.classify(), Fp::Zero);
assert_eq!(1e-307f64.classify(), Fp::Normal);
assert_eq!(1e-308f64.classify(), Fp::Subnormal);
}
#[test]
fn test_ldexp() {
// We have to use from_str until base-2 exponents
// are supported in floating-point literals
let f1: f64 = FromStrRadix::from_str_radix("1p-123", 16).unwrap();
let f2: f64 = FromStrRadix::from_str_radix("1p-111", 16).unwrap();
assert_eq!(Float::ldexp(1f64, -123), f1);
assert_eq!(Float::ldexp(1f64, -111), f2);
assert_eq!(Float::ldexp(0f64, -123), 0f64);
assert_eq!(Float::ldexp(-0f64, -123), -0f64);
let inf: f64 = Float::infinity();
let neg_inf: f64 = Float::neg_infinity();
let nan: f64 = Float::nan();
assert_eq!(Float::ldexp(inf, -123), inf);
assert_eq!(Float::ldexp(neg_inf, -123), neg_inf);
assert!(Float::ldexp(nan, -123).is_nan());
}
#[test]
fn test_frexp() {
// We have to use from_str until base-2 exponents
// are supported in floating-point literals
let f1: f64 = FromStrRadix::from_str_radix("1p-123", 16).unwrap();
let f2: f64 = FromStrRadix::from_str_radix("1p-111", 16).unwrap();
let (x1, exp1) = f1.frexp();
let (x2, exp2) = f2.frexp();
assert_eq!((x1, exp1), (0.5f64, -122));
assert_eq!((x2, exp2), (0.5f64, -110));
assert_eq!(Float::ldexp(x1, exp1), f1);
assert_eq!(Float::ldexp(x2, exp2), f2);
assert_eq!(0f64.frexp(), (0f64, 0));
assert_eq!((-0f64).frexp(), (-0f64, 0));
}
#[test] #[cfg_attr(windows, ignore)] // FIXME #8755
fn test_frexp_nowin() {
let inf: f64 = Float::infinity();
let neg_inf: f64 = Float::neg_infinity();
let nan: f64 = Float::nan();
assert_eq!(match inf.frexp() { (x, _) => x }, inf);
assert_eq!(match neg_inf.frexp() { (x, _) => x }, neg_inf);
assert!(match nan.frexp() { (x, _) => x.is_nan() })
}
#[test]
fn test_integer_decode() {
assert_eq!(3.14159265359f64.integer_decode(), (7074237752028906, -51, 1));
assert_eq!((-8573.5918555f64).integer_decode(), (4713381968463931, -39, -1));
assert_eq!(2f64.powf(100.0).integer_decode(), (4503599627370496, 48, 1));
assert_eq!(0f64.integer_decode(), (0, -1075, 1));
assert_eq!((-0f64).integer_decode(), (0, -1075, -1));
assert_eq!(INFINITY.integer_decode(), (4503599627370496, 972, 1));
assert_eq!(NEG_INFINITY.integer_decode(), (4503599627370496, 972, -1));
assert_eq!(NAN.integer_decode(), (6755399441055744, 972, 1));
}
#[test]
fn test_sqrt_domain() {
assert!(NAN.sqrt().is_nan());
assert!(NEG_INFINITY.sqrt().is_nan());
assert!((-1.0f64).sqrt().is_nan());
assert_eq!((-0.0f64).sqrt(), -0.0);
assert_eq!(0.0f64.sqrt(), 0.0);
assert_eq!(1.0f64.sqrt(), 1.0);
assert_eq!(INFINITY.sqrt(), INFINITY);
}
}