Make the macro parser theory description more accurate

This commit is contained in:
Piotr Czarnecki 2017-07-23 11:55:52 +02:00
parent 6270257f4e
commit 346717686b

View File

@ -1,4 +1,4 @@
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// Copyright 2012-2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
@ -8,18 +8,19 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! This is an Earley-like parser, without support for in-grammar nonterminals,
//! only by calling out to the main rust parser for named nonterminals (which it
//! commits to fully when it hits one in a grammar). This means that there are no
//! completer or predictor rules, and therefore no need to store one column per
//! token: instead, there's a set of current Earley items and a set of next
//! ones. Instead of NTs, we have a special case for Kleene star. The big-O, in
//! pathological cases, is worse than traditional Earley parsing, but it's an
//! easier fit for Macro-by-Example-style rules, and I think the overhead is
//! lower. (In order to prevent the pathological case, we'd need to lazily
//! construct the resulting `NamedMatch`es at the very end. It'd be a pain,
//! and require more memory to keep around old items, but it would also save
//! overhead)
//! This is an NFA-based parser, which calls out to the main rust parser for named nonterminals
//! (which it commits to fully when it hits one in a grammar). There's a set of current NFA threads
//! and a set of next ones. Instead of NTs, we have a special case for Kleene star. The big-O, in
//! pathological cases, is worse than traditional use of NFA or Earley parsing, but it's an easier
//! fit for Macro-by-Example-style rules.
//!
//! (In order to prevent the pathological case, we'd need to lazily construct the resulting
//! `NamedMatch`es at the very end. It'd be a pain, and require more memory to keep around old
//! items, but it would also save overhead)
//!
//! We don't say this parser uses the Earley algorithm, because it's unnecessarily innacurate.
//! The macro parser restricts itself to the features of finite state automata. Earley parsers
//! can be described as an extension of NFAs with completion rules, prediction rules, and recursion.
//!
//! Quick intro to how the parser works:
//!
@ -27,14 +28,15 @@
//! dot. For example `· a $( a )* a b` is a position, as is `a $( · a )* a b`.
//!
//! The parser walks through the input a character at a time, maintaining a list
//! of items consistent with the current position in the input string: `cur_eis`.
//! of threads consistent with the current position in the input string: `cur_items`.
//!
//! As it processes them, it fills up `eof_eis` with items that would be valid if
//! the macro invocation is now over, `bb_eis` with items that are waiting on
//! a Rust nonterminal like `$e:expr`, and `next_eis` with items that are waiting
//! As it processes them, it fills up `eof_items` with threads that would be valid if
//! the macro invocation is now over, `bb_items` with threads that are waiting on
//! a Rust nonterminal like `$e:expr`, and `next_items` with threads that are waiting
//! on a particular token. Most of the logic concerns moving the · through the
//! repetitions indicated by Kleene stars. It only advances or calls out to the
//! real Rust parser when no `cur_eis` items remain
//! repetitions indicated by Kleene stars. The rules for moving the · without
//! consuming any input are called epsilon transitions. It only advances or calls
//! out to the real Rust parser when no `cur_items` threads remain.
//!
//! Example:
//!
@ -42,7 +44,7 @@
//! Start parsing a a a a b against [· a $( a )* a b].
//!
//! Remaining input: a a a a b
//! next_eis: [· a $( a )* a b]
//! next: [· a $( a )* a b]
//!
//! - - - Advance over an a. - - -
//!
@ -54,23 +56,23 @@
//! - - - Advance over an a. - - -
//!
//! Remaining input: a a b
//! cur: [a $( a · )* a b] next: [a $( a )* a · b]
//! Finish/Repeat (first item)
//! cur: [a $( a · )* a b] [a $( a )* a · b]
//! Follow epsilon transition: Finish/Repeat (first item)
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
//!
//! - - - Advance over an a. - - - (this looks exactly like the last step)
//!
//! Remaining input: a b
//! cur: [a $( a · )* a b] next: [a $( a )* a · b]
//! Finish/Repeat (first item)
//! cur: [a $( a · )* a b] [a $( a )* a · b]
//! Follow epsilon transition: Finish/Repeat (first item)
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
//!
//! - - - Advance over an a. - - - (this looks exactly like the last step)
//!
//! Remaining input: b
//! cur: [a $( a · )* a b] next: [a $( a )* a · b]
//! Finish/Repeat (first item)
//! next: [a $( a )* · a b] [a $( · a )* a b]
//! cur: [a $( a · )* a b] [a $( a )* a · b]
//! Follow epsilon transition: Finish/Repeat (first item)
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
//!
//! - - - Advance over a b. - - -
//!
@ -289,94 +291,94 @@ fn create_matches(len: usize) -> Vec<Rc<Vec<NamedMatch>>> {
}
fn inner_parse_loop(sess: &ParseSess,
cur_eis: &mut SmallVector<Box<MatcherPos>>,
next_eis: &mut Vec<Box<MatcherPos>>,
eof_eis: &mut SmallVector<Box<MatcherPos>>,
bb_eis: &mut SmallVector<Box<MatcherPos>>,
cur_items: &mut SmallVector<Box<MatcherPos>>,
next_items: &mut Vec<Box<MatcherPos>>,
eof_items: &mut SmallVector<Box<MatcherPos>>,
bb_items: &mut SmallVector<Box<MatcherPos>>,
token: &Token,
span: syntax_pos::Span)
-> ParseResult<()> {
while let Some(mut ei) = cur_eis.pop() {
while let Some(mut item) = cur_items.pop() {
// When unzipped trees end, remove them
while ei.idx >= ei.top_elts.len() {
match ei.stack.pop() {
while item.idx >= item.top_elts.len() {
match item.stack.pop() {
Some(MatcherTtFrame { elts, idx }) => {
ei.top_elts = elts;
ei.idx = idx + 1;
item.top_elts = elts;
item.idx = idx + 1;
}
None => break
}
}
let idx = ei.idx;
let len = ei.top_elts.len();
let idx = item.idx;
let len = item.top_elts.len();
// at end of sequence
if idx >= len {
// We are repeating iff there is a parent
if ei.up.is_some() {
if item.up.is_some() {
// Disregarding the separator, add the "up" case to the tokens that should be
// examined.
// (remove this condition to make trailing seps ok)
if idx == len {
let mut new_pos = ei.up.clone().unwrap();
let mut new_pos = item.up.clone().unwrap();
// update matches (the MBE "parse tree") by appending
// each tree as a subtree.
// Only touch the binders we have actually bound
for idx in ei.match_lo..ei.match_hi {
let sub = ei.matches[idx].clone();
new_pos.push_match(idx, MatchedSeq(sub, Span { lo: ei.sp_lo, ..span }));
for idx in item.match_lo..item.match_hi {
let sub = item.matches[idx].clone();
new_pos.push_match(idx, MatchedSeq(sub, Span { lo: item.sp_lo, ..span }));
}
new_pos.match_cur = ei.match_hi;
new_pos.match_cur = item.match_hi;
new_pos.idx += 1;
cur_eis.push(new_pos);
cur_items.push(new_pos);
}
// Check if we need a separator
if idx == len && ei.sep.is_some() {
if idx == len && item.sep.is_some() {
// We have a separator, and it is the current token.
if ei.sep.as_ref().map(|sep| token_name_eq(token, sep)).unwrap_or(false) {
ei.idx += 1;
next_eis.push(ei);
if item.sep.as_ref().map(|sep| token_name_eq(token, sep)).unwrap_or(false) {
item.idx += 1;
next_items.push(item);
}
} else { // we don't need a separator
ei.match_cur = ei.match_lo;
ei.idx = 0;
cur_eis.push(ei);
item.match_cur = item.match_lo;
item.idx = 0;
cur_items.push(item);
}
} else {
// We aren't repeating, so we must be potentially at the end of the input.
eof_eis.push(ei);
eof_items.push(item);
}
} else {
match ei.top_elts.get_tt(idx) {
match item.top_elts.get_tt(idx) {
/* need to descend into sequence */
TokenTree::Sequence(sp, seq) => {
if seq.op == quoted::KleeneOp::ZeroOrMore {
// Examine the case where there are 0 matches of this sequence
let mut new_ei = ei.clone();
new_ei.match_cur += seq.num_captures;
new_ei.idx += 1;
for idx in ei.match_cur..ei.match_cur + seq.num_captures {
new_ei.push_match(idx, MatchedSeq(Rc::new(vec![]), sp));
let mut new_item = item.clone();
new_item.match_cur += seq.num_captures;
new_item.idx += 1;
for idx in item.match_cur..item.match_cur + seq.num_captures {
new_item.push_match(idx, MatchedSeq(Rc::new(vec![]), sp));
}
cur_eis.push(new_ei);
cur_items.push(new_item);
}
// Examine the case where there is at least one match of this sequence
let matches = create_matches(ei.matches.len());
cur_eis.push(Box::new(MatcherPos {
let matches = create_matches(item.matches.len());
cur_items.push(Box::new(MatcherPos {
stack: vec![],
sep: seq.separator.clone(),
idx: 0,
matches: matches,
match_lo: ei.match_cur,
match_cur: ei.match_cur,
match_hi: ei.match_cur + seq.num_captures,
up: Some(ei),
match_lo: item.match_cur,
match_cur: item.match_cur,
match_hi: item.match_cur + seq.num_captures,
up: Some(item),
sp_lo: sp.lo,
top_elts: Tt(TokenTree::Sequence(sp, seq)),
}));
@ -390,22 +392,22 @@ fn inner_parse_loop(sess: &ParseSess,
// Built-in nonterminals never start with these tokens,
// so we can eliminate them from consideration.
if may_begin_with(&*id.name.as_str(), token) {
bb_eis.push(ei);
bb_items.push(item);
}
}
seq @ TokenTree::Delimited(..) | seq @ TokenTree::Token(_, DocComment(..)) => {
let lower_elts = mem::replace(&mut ei.top_elts, Tt(seq));
let idx = ei.idx;
ei.stack.push(MatcherTtFrame {
let lower_elts = mem::replace(&mut item.top_elts, Tt(seq));
let idx = item.idx;
item.stack.push(MatcherTtFrame {
elts: lower_elts,
idx: idx,
});
ei.idx = 0;
cur_eis.push(ei);
item.idx = 0;
cur_items.push(item);
}
TokenTree::Token(_, ref t) if token_name_eq(t, token) => {
ei.idx += 1;
next_eis.push(ei);
item.idx += 1;
next_items.push(item);
}
TokenTree::Token(..) | TokenTree::MetaVar(..) => {}
}
@ -422,38 +424,38 @@ pub fn parse(sess: &ParseSess,
recurse_into_modules: bool)
-> NamedParseResult {
let mut parser = Parser::new(sess, tts, directory, recurse_into_modules, true);
let mut cur_eis = SmallVector::one(initial_matcher_pos(ms.to_owned(), parser.span.lo));
let mut next_eis = Vec::new(); // or proceed normally
let mut cur_items = SmallVector::one(initial_matcher_pos(ms.to_owned(), parser.span.lo));
let mut next_items = Vec::new(); // or proceed normally
loop {
let mut bb_eis = SmallVector::new(); // black-box parsed by parser.rs
let mut eof_eis = SmallVector::new();
assert!(next_eis.is_empty());
let mut bb_items = SmallVector::new(); // black-box parsed by parser.rs
let mut eof_items = SmallVector::new();
assert!(next_items.is_empty());
match inner_parse_loop(sess, &mut cur_eis, &mut next_eis, &mut eof_eis, &mut bb_eis,
match inner_parse_loop(sess, &mut cur_items, &mut next_items, &mut eof_items, &mut bb_items,
&parser.token, parser.span) {
Success(_) => {},
Failure(sp, tok) => return Failure(sp, tok),
Error(sp, msg) => return Error(sp, msg),
}
// inner parse loop handled all cur_eis, so it's empty
assert!(cur_eis.is_empty());
// inner parse loop handled all cur_items, so it's empty
assert!(cur_items.is_empty());
/* error messages here could be improved with links to orig. rules */
if token_name_eq(&parser.token, &token::Eof) {
if eof_eis.len() == 1 {
let matches = eof_eis[0].matches.iter_mut().map(|mut dv| {
if eof_items.len() == 1 {
let matches = eof_items[0].matches.iter_mut().map(|mut dv| {
Rc::make_mut(dv).pop().unwrap()
});
return nameize(sess, ms, matches);
} else if eof_eis.len() > 1 {
} else if eof_items.len() > 1 {
return Error(parser.span, "ambiguity: multiple successful parses".to_string());
} else {
return Failure(parser.span, token::Eof);
}
} else if (!bb_eis.is_empty() && !next_eis.is_empty()) || bb_eis.len() > 1 {
let nts = bb_eis.iter().map(|ei| match ei.top_elts.get_tt(ei.idx) {
} else if (!bb_items.is_empty() && !next_items.is_empty()) || bb_items.len() > 1 {
let nts = bb_items.iter().map(|item| match item.top_elts.get_tt(item.idx) {
TokenTree::MetaVarDecl(_, bind, name) => {
format!("{} ('{}')", name, bind)
}
@ -462,33 +464,33 @@ pub fn parse(sess: &ParseSess,
return Error(parser.span, format!(
"local ambiguity: multiple parsing options: {}",
match next_eis.len() {
match next_items.len() {
0 => format!("built-in NTs {}.", nts),
1 => format!("built-in NTs {} or 1 other option.", nts),
n => format!("built-in NTs {} or {} other options.", nts, n),
}
));
} else if bb_eis.is_empty() && next_eis.is_empty() {
} else if bb_items.is_empty() && next_items.is_empty() {
return Failure(parser.span, parser.token);
} else if !next_eis.is_empty() {
} else if !next_items.is_empty() {
/* Now process the next token */
cur_eis.extend(next_eis.drain(..));
cur_items.extend(next_items.drain(..));
parser.bump();
} else /* bb_eis.len() == 1 */ {
let mut ei = bb_eis.pop().unwrap();
if let TokenTree::MetaVarDecl(span, _, ident) = ei.top_elts.get_tt(ei.idx) {
let match_cur = ei.match_cur;
ei.push_match(match_cur,
} else /* bb_items.len() == 1 */ {
let mut item = bb_items.pop().unwrap();
if let TokenTree::MetaVarDecl(span, _, ident) = item.top_elts.get_tt(item.idx) {
let match_cur = item.match_cur;
item.push_match(match_cur,
MatchedNonterminal(Rc::new(parse_nt(&mut parser, span, &ident.name.as_str()))));
ei.idx += 1;
ei.match_cur += 1;
item.idx += 1;
item.match_cur += 1;
} else {
unreachable!()
}
cur_eis.push(ei);
cur_items.push(item);
}
assert!(!cur_eis.is_empty());
assert!(!cur_items.is_empty());
}
}