Move std::num::Integer to libnum
This commit is contained in:
parent
2fa7d6b44f
commit
3a9eca3a7b
@ -85,7 +85,7 @@ syn keyword rustTrait Iterator DoubleEndedIterator RandomAccessIterator Cloneabl
|
||||
syn keyword rustTrait OrdIterator MutableDoubleEndedIterator ExactSize
|
||||
|
||||
syn keyword rustTrait Algebraic Trigonometric Exponential Hyperbolic
|
||||
syn keyword rustTrait Bitwise Bounded Integer
|
||||
syn keyword rustTrait Bitwise Bounded Fractional
|
||||
syn keyword rustTrait Num NumCast CheckedAdd CheckedSub CheckedMul CheckedDiv
|
||||
syn keyword rustTrait Orderable Signed Unsigned Round
|
||||
syn keyword rustTrait Primitive Int Float ToStrRadix ToPrimitive FromPrimitive
|
||||
|
@ -16,6 +16,8 @@ A `BigUint` is represented as an array of `BigDigit`s.
|
||||
A `BigInt` is a combination of `BigUint` and `Sign`.
|
||||
*/
|
||||
|
||||
use Integer;
|
||||
|
||||
use std::cmp;
|
||||
use std::cmp::{Eq, Ord, TotalEq, TotalOrd, Ordering, Less, Equal, Greater};
|
||||
use std::num::{Zero, One, ToStrRadix, FromStrRadix};
|
||||
@ -461,7 +463,7 @@ impl Integer for BigUint {
|
||||
|
||||
/// Returns `true` if the number can be divided by `other` without leaving a remainder
|
||||
#[inline]
|
||||
fn is_multiple_of(&self, other: &BigUint) -> bool { (*self % *other).is_zero() }
|
||||
fn divides(&self, other: &BigUint) -> bool { (*self % *other).is_zero() }
|
||||
|
||||
/// Returns `true` if the number is divisible by `2`
|
||||
#[inline]
|
||||
@ -1118,7 +1120,7 @@ impl Integer for BigInt {
|
||||
|
||||
/// Returns `true` if the number can be divided by `other` without leaving a remainder
|
||||
#[inline]
|
||||
fn is_multiple_of(&self, other: &BigInt) -> bool { self.data.is_multiple_of(&other.data) }
|
||||
fn divides(&self, other: &BigInt) -> bool { self.data.divides(&other.data) }
|
||||
|
||||
/// Returns `true` if the number is divisible by `2`
|
||||
#[inline]
|
||||
@ -1388,6 +1390,7 @@ impl BigInt {
|
||||
|
||||
#[cfg(test)]
|
||||
mod biguint_tests {
|
||||
use Integer;
|
||||
use super::{BigDigit, BigUint, ToBigUint};
|
||||
use super::{Plus, BigInt, RandBigInt, ToBigInt};
|
||||
|
||||
@ -2045,6 +2048,7 @@ mod biguint_tests {
|
||||
|
||||
#[cfg(test)]
|
||||
mod bigint_tests {
|
||||
use Integer;
|
||||
use super::{BigDigit, BigUint, ToBigUint};
|
||||
use super::{Sign, Minus, Zero, Plus, BigInt, RandBigInt, ToBigInt};
|
||||
|
||||
|
@ -20,3 +20,403 @@ extern crate extra;
|
||||
pub mod bigint;
|
||||
pub mod rational;
|
||||
pub mod complex;
|
||||
|
||||
pub trait Integer: Num + Ord
|
||||
+ Div<Self, Self>
|
||||
+ Rem<Self, Self> {
|
||||
/// Simultaneous truncated integer division and modulus
|
||||
#[inline]
|
||||
fn div_rem(&self, other: &Self) -> (Self, Self) {
|
||||
(*self / *other, *self % *other)
|
||||
}
|
||||
|
||||
/// Floored integer division
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ~~~
|
||||
/// # use num::Integer;
|
||||
/// assert!(( 8i).div_floor(& 3) == 2);
|
||||
/// assert!(( 8i).div_floor(&-3) == -3);
|
||||
/// assert!((-8i).div_floor(& 3) == -3);
|
||||
/// assert!((-8i).div_floor(&-3) == 2);
|
||||
///
|
||||
/// assert!(( 1i).div_floor(& 2) == 0);
|
||||
/// assert!(( 1i).div_floor(&-2) == -1);
|
||||
/// assert!((-1i).div_floor(& 2) == -1);
|
||||
/// assert!((-1i).div_floor(&-2) == 0);
|
||||
/// ~~~
|
||||
fn div_floor(&self, other: &Self) -> Self;
|
||||
|
||||
/// Floored integer modulo, satisfying:
|
||||
///
|
||||
/// ~~~
|
||||
/// # use num::Integer;
|
||||
/// # let n = 1i; let d = 1i;
|
||||
/// assert!(n.div_floor(&d) * d + n.mod_floor(&d) == n)
|
||||
/// ~~~
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ~~~
|
||||
/// # use num::Integer;
|
||||
/// assert!(( 8i).mod_floor(& 3) == 2);
|
||||
/// assert!(( 8i).mod_floor(&-3) == -1);
|
||||
/// assert!((-8i).mod_floor(& 3) == 1);
|
||||
/// assert!((-8i).mod_floor(&-3) == -2);
|
||||
///
|
||||
/// assert!(( 1i).mod_floor(& 2) == 1);
|
||||
/// assert!(( 1i).mod_floor(&-2) == -1);
|
||||
/// assert!((-1i).mod_floor(& 2) == 1);
|
||||
/// assert!((-1i).mod_floor(&-2) == -1);
|
||||
/// ~~~
|
||||
fn mod_floor(&self, other: &Self) -> Self;
|
||||
|
||||
/// Simultaneous floored integer division and modulus
|
||||
fn div_mod_floor(&self, other: &Self) -> (Self, Self) {
|
||||
(self.div_floor(other), self.mod_floor(other))
|
||||
}
|
||||
|
||||
/// Greatest Common Divisor (GCD)
|
||||
fn gcd(&self, other: &Self) -> Self;
|
||||
|
||||
/// Lowest Common Multiple (LCM)
|
||||
fn lcm(&self, other: &Self) -> Self;
|
||||
|
||||
/// Returns `true` if `other` divides evenly into `self`
|
||||
fn divides(&self, other: &Self) -> bool;
|
||||
|
||||
/// Returns `true` if the number is even
|
||||
fn is_even(&self) -> bool;
|
||||
|
||||
/// Returns `true` if the number is odd
|
||||
fn is_odd(&self) -> bool;
|
||||
}
|
||||
|
||||
/// Simultaneous integer division and modulus
|
||||
#[inline] pub fn div_rem<T: Integer>(x: T, y: T) -> (T, T) { x.div_rem(&y) }
|
||||
/// Floored integer division
|
||||
#[inline] pub fn div_floor<T: Integer>(x: T, y: T) -> T { x.div_floor(&y) }
|
||||
/// Floored integer modulus
|
||||
#[inline] pub fn mod_floor<T: Integer>(x: T, y: T) -> T { x.mod_floor(&y) }
|
||||
/// Simultaneous floored integer division and modulus
|
||||
#[inline] pub fn div_mod_floor<T: Integer>(x: T, y: T) -> (T, T) { x.div_mod_floor(&y) }
|
||||
|
||||
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`. The
|
||||
/// result is always positive.
|
||||
#[inline(always)] pub fn gcd<T: Integer>(x: T, y: T) -> T { x.gcd(&y) }
|
||||
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
|
||||
#[inline(always)] pub fn lcm<T: Integer>(x: T, y: T) -> T { x.lcm(&y) }
|
||||
|
||||
macro_rules! impl_integer_for_int {
|
||||
($T:ty, $test_mod:ident) => (
|
||||
impl Integer for $T {
|
||||
/// Floored integer division
|
||||
#[inline]
|
||||
fn div_floor(&self, other: &$T) -> $T {
|
||||
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
||||
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
||||
match self.div_rem(other) {
|
||||
(d, r) if (r > 0 && *other < 0)
|
||||
|| (r < 0 && *other > 0) => d - 1,
|
||||
(d, _) => d,
|
||||
}
|
||||
}
|
||||
|
||||
/// Floored integer modulo
|
||||
#[inline]
|
||||
fn mod_floor(&self, other: &$T) -> $T {
|
||||
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
||||
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
||||
match *self % *other {
|
||||
r if (r > 0 && *other < 0)
|
||||
|| (r < 0 && *other > 0) => r + *other,
|
||||
r => r,
|
||||
}
|
||||
}
|
||||
|
||||
/// Calculates `div_floor` and `mod_floor` simultaneously
|
||||
#[inline]
|
||||
fn div_mod_floor(&self, other: &$T) -> ($T,$T) {
|
||||
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
||||
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
||||
match self.div_rem(other) {
|
||||
(d, r) if (r > 0 && *other < 0)
|
||||
|| (r < 0 && *other > 0) => (d - 1, r + *other),
|
||||
(d, r) => (d, r),
|
||||
}
|
||||
}
|
||||
|
||||
/// Calculates the Greatest Common Divisor (GCD) of the number and
|
||||
/// `other`. The result is always positive.
|
||||
#[inline]
|
||||
fn gcd(&self, other: &$T) -> $T {
|
||||
// Use Euclid's algorithm
|
||||
let mut m = *self;
|
||||
let mut n = *other;
|
||||
while m != 0 {
|
||||
let temp = m;
|
||||
m = n % temp;
|
||||
n = temp;
|
||||
}
|
||||
n.abs()
|
||||
}
|
||||
|
||||
/// Calculates the Lowest Common Multiple (LCM) of the number and
|
||||
/// `other`.
|
||||
#[inline]
|
||||
fn lcm(&self, other: &$T) -> $T {
|
||||
// should not have to recaluculate abs
|
||||
((*self * *other) / self.gcd(other)).abs()
|
||||
}
|
||||
|
||||
/// Returns `true` if the number can be divided by `other` without
|
||||
/// leaving a remainder
|
||||
#[inline]
|
||||
fn divides(&self, other: &$T) -> bool { *self % *other == 0 }
|
||||
|
||||
/// Returns `true` if the number is divisible by `2`
|
||||
#[inline]
|
||||
fn is_even(&self) -> bool { self & 1 == 0 }
|
||||
|
||||
/// Returns `true` if the number is not divisible by `2`
|
||||
#[inline]
|
||||
fn is_odd(&self) -> bool { !self.is_even() }
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod $test_mod {
|
||||
use Integer;
|
||||
|
||||
/// Checks that the division rule holds for:
|
||||
///
|
||||
/// - `n`: numerator (dividend)
|
||||
/// - `d`: denominator (divisor)
|
||||
/// - `qr`: quotient and remainder
|
||||
#[cfg(test)]
|
||||
fn test_division_rule((n,d): ($T,$T), (q,r): ($T,$T)) {
|
||||
assert_eq!(d * q + r, n);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_div_rem() {
|
||||
fn test_nd_dr(nd: ($T,$T), qr: ($T,$T)) {
|
||||
let (n,d) = nd;
|
||||
let separate_div_rem = (n / d, n % d);
|
||||
let combined_div_rem = n.div_rem(&d);
|
||||
|
||||
assert_eq!(separate_div_rem, qr);
|
||||
assert_eq!(combined_div_rem, qr);
|
||||
|
||||
test_division_rule(nd, separate_div_rem);
|
||||
test_division_rule(nd, combined_div_rem);
|
||||
}
|
||||
|
||||
test_nd_dr(( 8, 3), ( 2, 2));
|
||||
test_nd_dr(( 8, -3), (-2, 2));
|
||||
test_nd_dr((-8, 3), (-2, -2));
|
||||
test_nd_dr((-8, -3), ( 2, -2));
|
||||
|
||||
test_nd_dr(( 1, 2), ( 0, 1));
|
||||
test_nd_dr(( 1, -2), ( 0, 1));
|
||||
test_nd_dr((-1, 2), ( 0, -1));
|
||||
test_nd_dr((-1, -2), ( 0, -1));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_div_mod_floor() {
|
||||
fn test_nd_dm(nd: ($T,$T), dm: ($T,$T)) {
|
||||
let (n,d) = nd;
|
||||
let separate_div_mod_floor = (n.div_floor(&d), n.mod_floor(&d));
|
||||
let combined_div_mod_floor = n.div_mod_floor(&d);
|
||||
|
||||
assert_eq!(separate_div_mod_floor, dm);
|
||||
assert_eq!(combined_div_mod_floor, dm);
|
||||
|
||||
test_division_rule(nd, separate_div_mod_floor);
|
||||
test_division_rule(nd, combined_div_mod_floor);
|
||||
}
|
||||
|
||||
test_nd_dm(( 8, 3), ( 2, 2));
|
||||
test_nd_dm(( 8, -3), (-3, -1));
|
||||
test_nd_dm((-8, 3), (-3, 1));
|
||||
test_nd_dm((-8, -3), ( 2, -2));
|
||||
|
||||
test_nd_dm(( 1, 2), ( 0, 1));
|
||||
test_nd_dm(( 1, -2), (-1, -1));
|
||||
test_nd_dm((-1, 2), (-1, 1));
|
||||
test_nd_dm((-1, -2), ( 0, -1));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_gcd() {
|
||||
assert_eq!((10 as $T).gcd(&2), 2 as $T);
|
||||
assert_eq!((10 as $T).gcd(&3), 1 as $T);
|
||||
assert_eq!((0 as $T).gcd(&3), 3 as $T);
|
||||
assert_eq!((3 as $T).gcd(&3), 3 as $T);
|
||||
assert_eq!((56 as $T).gcd(&42), 14 as $T);
|
||||
assert_eq!((3 as $T).gcd(&-3), 3 as $T);
|
||||
assert_eq!((-6 as $T).gcd(&3), 3 as $T);
|
||||
assert_eq!((-4 as $T).gcd(&-2), 2 as $T);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_lcm() {
|
||||
assert_eq!((1 as $T).lcm(&0), 0 as $T);
|
||||
assert_eq!((0 as $T).lcm(&1), 0 as $T);
|
||||
assert_eq!((1 as $T).lcm(&1), 1 as $T);
|
||||
assert_eq!((-1 as $T).lcm(&1), 1 as $T);
|
||||
assert_eq!((1 as $T).lcm(&-1), 1 as $T);
|
||||
assert_eq!((-1 as $T).lcm(&-1), 1 as $T);
|
||||
assert_eq!((8 as $T).lcm(&9), 72 as $T);
|
||||
assert_eq!((11 as $T).lcm(&5), 55 as $T);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_even() {
|
||||
assert_eq!((-4 as $T).is_even(), true);
|
||||
assert_eq!((-3 as $T).is_even(), false);
|
||||
assert_eq!((-2 as $T).is_even(), true);
|
||||
assert_eq!((-1 as $T).is_even(), false);
|
||||
assert_eq!((0 as $T).is_even(), true);
|
||||
assert_eq!((1 as $T).is_even(), false);
|
||||
assert_eq!((2 as $T).is_even(), true);
|
||||
assert_eq!((3 as $T).is_even(), false);
|
||||
assert_eq!((4 as $T).is_even(), true);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_odd() {
|
||||
assert_eq!((-4 as $T).is_odd(), false);
|
||||
assert_eq!((-3 as $T).is_odd(), true);
|
||||
assert_eq!((-2 as $T).is_odd(), false);
|
||||
assert_eq!((-1 as $T).is_odd(), true);
|
||||
assert_eq!((0 as $T).is_odd(), false);
|
||||
assert_eq!((1 as $T).is_odd(), true);
|
||||
assert_eq!((2 as $T).is_odd(), false);
|
||||
assert_eq!((3 as $T).is_odd(), true);
|
||||
assert_eq!((4 as $T).is_odd(), false);
|
||||
}
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
impl_integer_for_int!(i8, test_integer_i8)
|
||||
impl_integer_for_int!(i16, test_integer_i16)
|
||||
impl_integer_for_int!(i32, test_integer_i32)
|
||||
impl_integer_for_int!(i64, test_integer_i64)
|
||||
impl_integer_for_int!(int, test_integer_int)
|
||||
|
||||
macro_rules! impl_integer_for_uint {
|
||||
($T:ty, $test_mod:ident) => (
|
||||
impl Integer for $T {
|
||||
/// Unsigned integer division. Returns the same result as `div` (`/`).
|
||||
#[inline]
|
||||
fn div_floor(&self, other: &$T) -> $T { *self / *other }
|
||||
|
||||
/// Unsigned integer modulo operation. Returns the same result as `rem` (`%`).
|
||||
#[inline]
|
||||
fn mod_floor(&self, other: &$T) -> $T { *self % *other }
|
||||
|
||||
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`
|
||||
#[inline]
|
||||
fn gcd(&self, other: &$T) -> $T {
|
||||
// Use Euclid's algorithm
|
||||
let mut m = *self;
|
||||
let mut n = *other;
|
||||
while m != 0 {
|
||||
let temp = m;
|
||||
m = n % temp;
|
||||
n = temp;
|
||||
}
|
||||
n
|
||||
}
|
||||
|
||||
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`
|
||||
#[inline]
|
||||
fn lcm(&self, other: &$T) -> $T {
|
||||
(*self * *other) / self.gcd(other)
|
||||
}
|
||||
|
||||
/// Returns `true` if the number can be divided by `other` without leaving a remainder
|
||||
#[inline]
|
||||
fn divides(&self, other: &$T) -> bool { *self % *other == 0 }
|
||||
|
||||
/// Returns `true` if the number is divisible by `2`
|
||||
#[inline]
|
||||
fn is_even(&self) -> bool { self & 1 == 0 }
|
||||
|
||||
/// Returns `true` if the number is not divisible by `2`
|
||||
#[inline]
|
||||
fn is_odd(&self) -> bool { !self.is_even() }
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod $test_mod {
|
||||
use Integer;
|
||||
|
||||
#[test]
|
||||
fn test_div_mod_floor() {
|
||||
assert_eq!((10 as $T).div_floor(&(3 as $T)), 3 as $T);
|
||||
assert_eq!((10 as $T).mod_floor(&(3 as $T)), 1 as $T);
|
||||
assert_eq!((10 as $T).div_mod_floor(&(3 as $T)), (3 as $T, 1 as $T));
|
||||
assert_eq!((5 as $T).div_floor(&(5 as $T)), 1 as $T);
|
||||
assert_eq!((5 as $T).mod_floor(&(5 as $T)), 0 as $T);
|
||||
assert_eq!((5 as $T).div_mod_floor(&(5 as $T)), (1 as $T, 0 as $T));
|
||||
assert_eq!((3 as $T).div_floor(&(7 as $T)), 0 as $T);
|
||||
assert_eq!((3 as $T).mod_floor(&(7 as $T)), 3 as $T);
|
||||
assert_eq!((3 as $T).div_mod_floor(&(7 as $T)), (0 as $T, 3 as $T));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_gcd() {
|
||||
assert_eq!((10 as $T).gcd(&2), 2 as $T);
|
||||
assert_eq!((10 as $T).gcd(&3), 1 as $T);
|
||||
assert_eq!((0 as $T).gcd(&3), 3 as $T);
|
||||
assert_eq!((3 as $T).gcd(&3), 3 as $T);
|
||||
assert_eq!((56 as $T).gcd(&42), 14 as $T);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_lcm() {
|
||||
assert_eq!((1 as $T).lcm(&0), 0 as $T);
|
||||
assert_eq!((0 as $T).lcm(&1), 0 as $T);
|
||||
assert_eq!((1 as $T).lcm(&1), 1 as $T);
|
||||
assert_eq!((8 as $T).lcm(&9), 72 as $T);
|
||||
assert_eq!((11 as $T).lcm(&5), 55 as $T);
|
||||
assert_eq!((99 as $T).lcm(&17), 1683 as $T);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_divides() {
|
||||
assert!((6 as $T).divides(&(6 as $T)));
|
||||
assert!((6 as $T).divides(&(3 as $T)));
|
||||
assert!((6 as $T).divides(&(1 as $T)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_even() {
|
||||
assert_eq!((0 as $T).is_even(), true);
|
||||
assert_eq!((1 as $T).is_even(), false);
|
||||
assert_eq!((2 as $T).is_even(), true);
|
||||
assert_eq!((3 as $T).is_even(), false);
|
||||
assert_eq!((4 as $T).is_even(), true);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_odd() {
|
||||
assert_eq!((0 as $T).is_odd(), false);
|
||||
assert_eq!((1 as $T).is_odd(), true);
|
||||
assert_eq!((2 as $T).is_odd(), false);
|
||||
assert_eq!((3 as $T).is_odd(), true);
|
||||
assert_eq!((4 as $T).is_odd(), false);
|
||||
}
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
impl_integer_for_uint!(u8, test_integer_u8)
|
||||
impl_integer_for_uint!(u16, test_integer_u16)
|
||||
impl_integer_for_uint!(u32, test_integer_u32)
|
||||
impl_integer_for_uint!(u64, test_integer_u64)
|
||||
impl_integer_for_uint!(uint, test_integer_uint)
|
||||
|
@ -10,6 +10,8 @@
|
||||
|
||||
//! Rational numbers
|
||||
|
||||
use Integer;
|
||||
|
||||
use std::cmp;
|
||||
use std::from_str::FromStr;
|
||||
use std::num::{Zero,One,ToStrRadix,FromStrRadix,Round};
|
||||
|
@ -65,7 +65,7 @@ the rest of the rust manuals.
|
||||
*/
|
||||
|
||||
use cmp;
|
||||
use num::{Zero, One, Integer, CheckedAdd, CheckedSub, Saturating, ToPrimitive};
|
||||
use num::{Zero, One, CheckedAdd, CheckedSub, Saturating, ToPrimitive, Int};
|
||||
use option::{Option, Some, None};
|
||||
use ops::{Add, Mul, Sub};
|
||||
use cmp::{Eq, Ord};
|
||||
@ -2005,9 +2005,9 @@ impl<A: Add<A, A> + Ord + Clone + ToPrimitive> Iterator<A> for Range<A> {
|
||||
}
|
||||
}
|
||||
|
||||
/// `Integer` is required to ensure the range will be the same regardless of
|
||||
/// `Int` is required to ensure the range will be the same regardless of
|
||||
/// the direction it is consumed.
|
||||
impl<A: Integer + Ord + Clone + ToPrimitive> DoubleEndedIterator<A> for Range<A> {
|
||||
impl<A: Int + Ord + Clone + ToPrimitive> DoubleEndedIterator<A> for Range<A> {
|
||||
#[inline]
|
||||
fn next_back(&mut self) -> Option<A> {
|
||||
if self.stop > self.state {
|
||||
@ -2065,7 +2065,7 @@ impl<A: Add<A, A> + Eq + Ord + Clone + ToPrimitive> Iterator<A> for RangeInclusi
|
||||
}
|
||||
}
|
||||
|
||||
impl<A: Sub<A, A> + Integer + Ord + Clone + ToPrimitive> DoubleEndedIterator<A>
|
||||
impl<A: Sub<A, A> + Int + Ord + Clone + ToPrimitive> DoubleEndedIterator<A>
|
||||
for RangeInclusive<A> {
|
||||
#[inline]
|
||||
fn next_back(&mut self) -> Option<A> {
|
||||
@ -2381,7 +2381,7 @@ mod tests {
|
||||
#[test]
|
||||
fn test_filter_map() {
|
||||
let mut it = count(0u, 1u).take(10)
|
||||
.filter_map(|x| if x.is_even() { Some(x*x) } else { None });
|
||||
.filter_map(|x| if x % 2 == 0 { Some(x*x) } else { None });
|
||||
assert_eq!(it.collect::<~[uint]>(), ~[0*0, 2*2, 4*4, 6*6, 8*8]);
|
||||
}
|
||||
|
||||
@ -2648,7 +2648,7 @@ mod tests {
|
||||
fn test_all() {
|
||||
let v: ~&[int] = ~&[1, 2, 3, 4, 5];
|
||||
assert!(v.iter().all(|&x| x < 10));
|
||||
assert!(!v.iter().all(|&x| x.is_even()));
|
||||
assert!(!v.iter().all(|&x| x % 2 == 0));
|
||||
assert!(!v.iter().all(|&x| x > 100));
|
||||
assert!(v.slice(0, 0).iter().all(|_| fail!()));
|
||||
}
|
||||
@ -2657,7 +2657,7 @@ mod tests {
|
||||
fn test_any() {
|
||||
let v: ~&[int] = ~&[1, 2, 3, 4, 5];
|
||||
assert!(v.iter().any(|&x| x < 10));
|
||||
assert!(v.iter().any(|&x| x.is_even()));
|
||||
assert!(v.iter().any(|&x| x % 2 == 0));
|
||||
assert!(!v.iter().any(|&x| x > 100));
|
||||
assert!(!v.slice(0, 0).iter().any(|_| fail!()));
|
||||
}
|
||||
|
@ -91,53 +91,48 @@ impl Mul<$T,$T> for $T {
|
||||
|
||||
#[cfg(not(test))]
|
||||
impl Div<$T,$T> for $T {
|
||||
///
|
||||
/// Integer division, truncated towards 0. As this behaviour reflects the underlying
|
||||
/// machine implementation it is more efficient than `Integer::div_floor`.
|
||||
/// Integer division, truncated towards 0.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// ~~~
|
||||
/// assert!( 8 / 3 == 2);
|
||||
/// assert!( 8 / -3 == -2);
|
||||
/// assert!(-8 / 3 == -2);
|
||||
/// assert!(-8 / -3 == 2);
|
||||
|
||||
///
|
||||
/// assert!( 1 / 2 == 0);
|
||||
/// assert!( 1 / -2 == 0);
|
||||
/// assert!(-1 / 2 == 0);
|
||||
/// assert!(-1 / -2 == 0);
|
||||
/// ```
|
||||
///
|
||||
/// ~~~
|
||||
#[inline]
|
||||
fn div(&self, other: &$T) -> $T { *self / *other }
|
||||
}
|
||||
|
||||
#[cfg(not(test))]
|
||||
impl Rem<$T,$T> for $T {
|
||||
///
|
||||
/// Returns the integer remainder after division, satisfying:
|
||||
///
|
||||
/// ```
|
||||
/// ~~~
|
||||
/// # let n = 1;
|
||||
/// # let d = 2;
|
||||
/// assert!((n / d) * d + (n % d) == n)
|
||||
/// ```
|
||||
/// ~~~
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// ~~~
|
||||
/// assert!( 8 % 3 == 2);
|
||||
/// assert!( 8 % -3 == 2);
|
||||
/// assert!(-8 % 3 == -2);
|
||||
/// assert!(-8 % -3 == -2);
|
||||
|
||||
///
|
||||
/// assert!( 1 % 2 == 1);
|
||||
/// assert!( 1 % -2 == 1);
|
||||
/// assert!(-1 % 2 == -1);
|
||||
/// assert!(-1 % -2 == -1);
|
||||
/// ```
|
||||
///
|
||||
/// ~~~
|
||||
#[inline]
|
||||
fn rem(&self, other: &$T) -> $T { *self % *other }
|
||||
}
|
||||
@ -189,125 +184,6 @@ impl Signed for $T {
|
||||
fn is_negative(&self) -> bool { *self < 0 }
|
||||
}
|
||||
|
||||
impl Integer for $T {
|
||||
///
|
||||
/// Floored integer division
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// assert!(( 8i).div_floor(& 3) == 2);
|
||||
/// assert!(( 8i).div_floor(&-3) == -3);
|
||||
/// assert!((-8i).div_floor(& 3) == -3);
|
||||
/// assert!((-8i).div_floor(&-3) == 2);
|
||||
///
|
||||
/// assert!(( 1i).div_floor(& 2) == 0);
|
||||
/// assert!(( 1i).div_floor(&-2) == -1);
|
||||
/// assert!((-1i).div_floor(& 2) == -1);
|
||||
/// assert!((-1i).div_floor(&-2) == 0);
|
||||
/// ```
|
||||
///
|
||||
#[inline]
|
||||
fn div_floor(&self, other: &$T) -> $T {
|
||||
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
||||
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
||||
match self.div_rem(other) {
|
||||
(d, r) if (r > 0 && *other < 0)
|
||||
|| (r < 0 && *other > 0) => d - 1,
|
||||
(d, _) => d,
|
||||
}
|
||||
}
|
||||
|
||||
///
|
||||
/// Integer modulo, satisfying:
|
||||
///
|
||||
/// ```
|
||||
/// # let n = 1i; let d = 1i;
|
||||
/// assert!(n.div_floor(&d) * d + n.mod_floor(&d) == n)
|
||||
/// ```
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// assert!(( 8i).mod_floor(& 3) == 2);
|
||||
/// assert!(( 8i).mod_floor(&-3) == -1);
|
||||
/// assert!((-8i).mod_floor(& 3) == 1);
|
||||
/// assert!((-8i).mod_floor(&-3) == -2);
|
||||
///
|
||||
/// assert!(( 1i).mod_floor(& 2) == 1);
|
||||
/// assert!(( 1i).mod_floor(&-2) == -1);
|
||||
/// assert!((-1i).mod_floor(& 2) == 1);
|
||||
/// assert!((-1i).mod_floor(&-2) == -1);
|
||||
/// ```
|
||||
///
|
||||
#[inline]
|
||||
fn mod_floor(&self, other: &$T) -> $T {
|
||||
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
||||
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
||||
match *self % *other {
|
||||
r if (r > 0 && *other < 0)
|
||||
|| (r < 0 && *other > 0) => r + *other,
|
||||
r => r,
|
||||
}
|
||||
}
|
||||
|
||||
/// Calculates `div_floor` and `mod_floor` simultaneously
|
||||
#[inline]
|
||||
fn div_mod_floor(&self, other: &$T) -> ($T,$T) {
|
||||
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
||||
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
||||
match self.div_rem(other) {
|
||||
(d, r) if (r > 0 && *other < 0)
|
||||
|| (r < 0 && *other > 0) => (d - 1, r + *other),
|
||||
(d, r) => (d, r),
|
||||
}
|
||||
}
|
||||
|
||||
/// Calculates `div` (`/`) and `rem` (`%`) simultaneously
|
||||
#[inline]
|
||||
fn div_rem(&self, other: &$T) -> ($T,$T) {
|
||||
(*self / *other, *self % *other)
|
||||
}
|
||||
|
||||
///
|
||||
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`
|
||||
///
|
||||
/// The result is always positive
|
||||
///
|
||||
#[inline]
|
||||
fn gcd(&self, other: &$T) -> $T {
|
||||
// Use Euclid's algorithm
|
||||
let mut m = *self;
|
||||
let mut n = *other;
|
||||
while m != 0 {
|
||||
let temp = m;
|
||||
m = n % temp;
|
||||
n = temp;
|
||||
}
|
||||
n.abs()
|
||||
}
|
||||
|
||||
///
|
||||
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`
|
||||
///
|
||||
#[inline]
|
||||
fn lcm(&self, other: &$T) -> $T {
|
||||
((*self * *other) / self.gcd(other)).abs() // should not have to recaluculate abs
|
||||
}
|
||||
|
||||
/// Returns `true` if the number can be divided by `other` without leaving a remainder
|
||||
#[inline]
|
||||
fn is_multiple_of(&self, other: &$T) -> bool { *self % *other == 0 }
|
||||
|
||||
/// Returns `true` if the number is divisible by `2`
|
||||
#[inline]
|
||||
fn is_even(&self) -> bool { self & 1 == 0 }
|
||||
|
||||
/// Returns `true` if the number is not divisible by `2`
|
||||
#[inline]
|
||||
fn is_odd(&self) -> bool { !self.is_even() }
|
||||
}
|
||||
|
||||
#[cfg(not(test))]
|
||||
impl BitOr<$T,$T> for $T {
|
||||
#[inline]
|
||||
@ -481,92 +357,6 @@ mod tests {
|
||||
assert!((-1 as $T).is_negative());
|
||||
}
|
||||
|
||||
///
|
||||
/// Checks that the division rule holds for:
|
||||
///
|
||||
/// - `n`: numerator (dividend)
|
||||
/// - `d`: denominator (divisor)
|
||||
/// - `qr`: quotient and remainder
|
||||
///
|
||||
#[cfg(test)]
|
||||
fn test_division_rule((n,d): ($T,$T), (q,r): ($T,$T)) {
|
||||
assert_eq!(d * q + r, n);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_div_rem() {
|
||||
fn test_nd_dr(nd: ($T,$T), qr: ($T,$T)) {
|
||||
let (n,d) = nd;
|
||||
let separate_div_rem = (n / d, n % d);
|
||||
let combined_div_rem = n.div_rem(&d);
|
||||
|
||||
assert_eq!(separate_div_rem, qr);
|
||||
assert_eq!(combined_div_rem, qr);
|
||||
|
||||
test_division_rule(nd, separate_div_rem);
|
||||
test_division_rule(nd, combined_div_rem);
|
||||
}
|
||||
|
||||
test_nd_dr(( 8, 3), ( 2, 2));
|
||||
test_nd_dr(( 8, -3), (-2, 2));
|
||||
test_nd_dr((-8, 3), (-2, -2));
|
||||
test_nd_dr((-8, -3), ( 2, -2));
|
||||
|
||||
test_nd_dr(( 1, 2), ( 0, 1));
|
||||
test_nd_dr(( 1, -2), ( 0, 1));
|
||||
test_nd_dr((-1, 2), ( 0, -1));
|
||||
test_nd_dr((-1, -2), ( 0, -1));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_div_mod_floor() {
|
||||
fn test_nd_dm(nd: ($T,$T), dm: ($T,$T)) {
|
||||
let (n,d) = nd;
|
||||
let separate_div_mod_floor = (n.div_floor(&d), n.mod_floor(&d));
|
||||
let combined_div_mod_floor = n.div_mod_floor(&d);
|
||||
|
||||
assert_eq!(separate_div_mod_floor, dm);
|
||||
assert_eq!(combined_div_mod_floor, dm);
|
||||
|
||||
test_division_rule(nd, separate_div_mod_floor);
|
||||
test_division_rule(nd, combined_div_mod_floor);
|
||||
}
|
||||
|
||||
test_nd_dm(( 8, 3), ( 2, 2));
|
||||
test_nd_dm(( 8, -3), (-3, -1));
|
||||
test_nd_dm((-8, 3), (-3, 1));
|
||||
test_nd_dm((-8, -3), ( 2, -2));
|
||||
|
||||
test_nd_dm(( 1, 2), ( 0, 1));
|
||||
test_nd_dm(( 1, -2), (-1, -1));
|
||||
test_nd_dm((-1, 2), (-1, 1));
|
||||
test_nd_dm((-1, -2), ( 0, -1));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_gcd() {
|
||||
assert_eq!((10 as $T).gcd(&2), 2 as $T);
|
||||
assert_eq!((10 as $T).gcd(&3), 1 as $T);
|
||||
assert_eq!((0 as $T).gcd(&3), 3 as $T);
|
||||
assert_eq!((3 as $T).gcd(&3), 3 as $T);
|
||||
assert_eq!((56 as $T).gcd(&42), 14 as $T);
|
||||
assert_eq!((3 as $T).gcd(&-3), 3 as $T);
|
||||
assert_eq!((-6 as $T).gcd(&3), 3 as $T);
|
||||
assert_eq!((-4 as $T).gcd(&-2), 2 as $T);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_lcm() {
|
||||
assert_eq!((1 as $T).lcm(&0), 0 as $T);
|
||||
assert_eq!((0 as $T).lcm(&1), 0 as $T);
|
||||
assert_eq!((1 as $T).lcm(&1), 1 as $T);
|
||||
assert_eq!((-1 as $T).lcm(&1), 1 as $T);
|
||||
assert_eq!((1 as $T).lcm(&-1), 1 as $T);
|
||||
assert_eq!((-1 as $T).lcm(&-1), 1 as $T);
|
||||
assert_eq!((8 as $T).lcm(&9), 72 as $T);
|
||||
assert_eq!((11 as $T).lcm(&5), 55 as $T);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bitwise() {
|
||||
assert_eq!(0b1110 as $T, (0b1100 as $T).bitor(&(0b1010 as $T)));
|
||||
@ -577,42 +367,6 @@ mod tests {
|
||||
assert_eq!(-(0b11 as $T) - (1 as $T), (0b11 as $T).not());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_multiple_of() {
|
||||
assert!((6 as $T).is_multiple_of(&(6 as $T)));
|
||||
assert!((6 as $T).is_multiple_of(&(3 as $T)));
|
||||
assert!((6 as $T).is_multiple_of(&(1 as $T)));
|
||||
assert!((-8 as $T).is_multiple_of(&(4 as $T)));
|
||||
assert!((8 as $T).is_multiple_of(&(-1 as $T)));
|
||||
assert!((-8 as $T).is_multiple_of(&(-2 as $T)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_even() {
|
||||
assert_eq!((-4 as $T).is_even(), true);
|
||||
assert_eq!((-3 as $T).is_even(), false);
|
||||
assert_eq!((-2 as $T).is_even(), true);
|
||||
assert_eq!((-1 as $T).is_even(), false);
|
||||
assert_eq!((0 as $T).is_even(), true);
|
||||
assert_eq!((1 as $T).is_even(), false);
|
||||
assert_eq!((2 as $T).is_even(), true);
|
||||
assert_eq!((3 as $T).is_even(), false);
|
||||
assert_eq!((4 as $T).is_even(), true);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_odd() {
|
||||
assert_eq!((-4 as $T).is_odd(), false);
|
||||
assert_eq!((-3 as $T).is_odd(), true);
|
||||
assert_eq!((-2 as $T).is_odd(), false);
|
||||
assert_eq!((-1 as $T).is_odd(), true);
|
||||
assert_eq!((0 as $T).is_odd(), false);
|
||||
assert_eq!((1 as $T).is_odd(), true);
|
||||
assert_eq!((2 as $T).is_odd(), false);
|
||||
assert_eq!((3 as $T).is_odd(), true);
|
||||
assert_eq!((4 as $T).is_odd(), false);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_count_ones() {
|
||||
assert_eq!((0b0101100 as $T).count_ones(), 3);
|
||||
|
@ -33,6 +33,12 @@ pub trait Num: Eq + Zero + One
|
||||
+ Div<Self,Self>
|
||||
+ Rem<Self,Self> {}
|
||||
|
||||
/// Simultaneous division and remainder
|
||||
#[inline]
|
||||
pub fn div_rem<T: Div<T, T> + Rem<T, T>>(x: T, y: T) -> (T, T) {
|
||||
(x / y, x % y)
|
||||
}
|
||||
|
||||
/// Defines an additive identity element for `Self`.
|
||||
///
|
||||
/// # Deriving
|
||||
@ -122,31 +128,6 @@ pub trait Signed: Num
|
||||
|
||||
pub trait Unsigned: Num {}
|
||||
|
||||
pub trait Integer: Num
|
||||
+ Ord
|
||||
+ Div<Self,Self>
|
||||
+ Rem<Self,Self> {
|
||||
fn div_rem(&self, other: &Self) -> (Self,Self);
|
||||
|
||||
fn div_floor(&self, other: &Self) -> Self;
|
||||
fn mod_floor(&self, other: &Self) -> Self;
|
||||
fn div_mod_floor(&self, other: &Self) -> (Self,Self);
|
||||
|
||||
fn gcd(&self, other: &Self) -> Self;
|
||||
fn lcm(&self, other: &Self) -> Self;
|
||||
|
||||
fn is_multiple_of(&self, other: &Self) -> bool;
|
||||
fn is_even(&self) -> bool;
|
||||
fn is_odd(&self) -> bool;
|
||||
}
|
||||
|
||||
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`.
|
||||
///
|
||||
/// The result is always positive.
|
||||
#[inline(always)] pub fn gcd<T: Integer>(x: T, y: T) -> T { x.gcd(&y) }
|
||||
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
|
||||
#[inline(always)] pub fn lcm<T: Integer>(x: T, y: T) -> T { x.lcm(&y) }
|
||||
|
||||
/// A collection of rounding operations.
|
||||
pub trait Round {
|
||||
/// Return the largest integer less than or equal to a number.
|
||||
@ -270,8 +251,7 @@ pub trait Primitive: Clone
|
||||
+ Bounded {}
|
||||
|
||||
/// A collection of traits relevant to primitive signed and unsigned integers
|
||||
pub trait Int: Integer
|
||||
+ Primitive
|
||||
pub trait Int: Primitive
|
||||
+ Bitwise
|
||||
+ CheckedAdd
|
||||
+ CheckedSub
|
||||
|
@ -21,7 +21,7 @@ use str;
|
||||
use vec::{CloneableVector, ImmutableVector, MutableVector};
|
||||
use vec::OwnedVector;
|
||||
use num;
|
||||
use num::{NumCast, Zero, One, cast, Integer};
|
||||
use num::{NumCast, Zero, One, cast, Int};
|
||||
use num::{Round, Float, FPNaN, FPInfinite, ToPrimitive};
|
||||
|
||||
pub enum ExponentFormat {
|
||||
@ -133,19 +133,7 @@ static NAN_BUF: [u8, ..3] = ['N' as u8, 'a' as u8, 'N' as u8];
|
||||
* # Failure
|
||||
* - Fails if `radix` < 2 or `radix` > 36.
|
||||
*/
|
||||
pub fn int_to_str_bytes_common<T:NumCast
|
||||
+Zero
|
||||
+Eq
|
||||
+Ord
|
||||
+Integer
|
||||
+Div<T,T>
|
||||
+Neg<T>
|
||||
+Rem<T,T>
|
||||
+Mul<T,T>>(
|
||||
num: T,
|
||||
radix: uint,
|
||||
sign: SignFormat,
|
||||
f: |u8|) {
|
||||
pub fn int_to_str_bytes_common<T: Int>(num: T, radix: uint, sign: SignFormat, f: |u8|) {
|
||||
assert!(2 <= radix && radix <= 36);
|
||||
|
||||
let _0: T = Zero::zero();
|
||||
|
@ -100,60 +100,6 @@ impl Neg<$T> for $T {
|
||||
|
||||
impl Unsigned for $T {}
|
||||
|
||||
impl Integer for $T {
|
||||
/// Calculates `div` (`/`) and `rem` (`%`) simultaneously
|
||||
#[inline]
|
||||
fn div_rem(&self, other: &$T) -> ($T,$T) {
|
||||
(*self / *other, *self % *other)
|
||||
}
|
||||
|
||||
/// Unsigned integer division. Returns the same result as `div` (`/`).
|
||||
#[inline]
|
||||
fn div_floor(&self, other: &$T) -> $T { *self / *other }
|
||||
|
||||
/// Unsigned integer modulo operation. Returns the same result as `rem` (`%`).
|
||||
#[inline]
|
||||
fn mod_floor(&self, other: &$T) -> $T { *self % *other }
|
||||
|
||||
/// Calculates `div_floor` and `mod_floor` simultaneously
|
||||
#[inline]
|
||||
fn div_mod_floor(&self, other: &$T) -> ($T,$T) {
|
||||
(*self / *other, *self % *other)
|
||||
}
|
||||
|
||||
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`
|
||||
#[inline]
|
||||
fn gcd(&self, other: &$T) -> $T {
|
||||
// Use Euclid's algorithm
|
||||
let mut m = *self;
|
||||
let mut n = *other;
|
||||
while m != 0 {
|
||||
let temp = m;
|
||||
m = n % temp;
|
||||
n = temp;
|
||||
}
|
||||
n
|
||||
}
|
||||
|
||||
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`
|
||||
#[inline]
|
||||
fn lcm(&self, other: &$T) -> $T {
|
||||
(*self * *other) / self.gcd(other)
|
||||
}
|
||||
|
||||
/// Returns `true` if the number can be divided by `other` without leaving a remainder
|
||||
#[inline]
|
||||
fn is_multiple_of(&self, other: &$T) -> bool { *self % *other == 0 }
|
||||
|
||||
/// Returns `true` if the number is divisible by `2`
|
||||
#[inline]
|
||||
fn is_even(&self) -> bool { self & 1 == 0 }
|
||||
|
||||
/// Returns `true` if the number is not divisible by `2`
|
||||
#[inline]
|
||||
fn is_odd(&self) -> bool { !self.is_even() }
|
||||
}
|
||||
|
||||
#[cfg(not(test))]
|
||||
impl BitOr<$T,$T> for $T {
|
||||
#[inline]
|
||||
@ -309,63 +255,6 @@ mod tests {
|
||||
num::test_num(10 as $T, 2 as $T);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_div_mod_floor() {
|
||||
assert_eq!((10 as $T).div_floor(&(3 as $T)), 3 as $T);
|
||||
assert_eq!((10 as $T).mod_floor(&(3 as $T)), 1 as $T);
|
||||
assert_eq!((10 as $T).div_mod_floor(&(3 as $T)), (3 as $T, 1 as $T));
|
||||
assert_eq!((5 as $T).div_floor(&(5 as $T)), 1 as $T);
|
||||
assert_eq!((5 as $T).mod_floor(&(5 as $T)), 0 as $T);
|
||||
assert_eq!((5 as $T).div_mod_floor(&(5 as $T)), (1 as $T, 0 as $T));
|
||||
assert_eq!((3 as $T).div_floor(&(7 as $T)), 0 as $T);
|
||||
assert_eq!((3 as $T).mod_floor(&(7 as $T)), 3 as $T);
|
||||
assert_eq!((3 as $T).div_mod_floor(&(7 as $T)), (0 as $T, 3 as $T));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_gcd() {
|
||||
assert_eq!((10 as $T).gcd(&2), 2 as $T);
|
||||
assert_eq!((10 as $T).gcd(&3), 1 as $T);
|
||||
assert_eq!((0 as $T).gcd(&3), 3 as $T);
|
||||
assert_eq!((3 as $T).gcd(&3), 3 as $T);
|
||||
assert_eq!((56 as $T).gcd(&42), 14 as $T);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_lcm() {
|
||||
assert_eq!((1 as $T).lcm(&0), 0 as $T);
|
||||
assert_eq!((0 as $T).lcm(&1), 0 as $T);
|
||||
assert_eq!((1 as $T).lcm(&1), 1 as $T);
|
||||
assert_eq!((8 as $T).lcm(&9), 72 as $T);
|
||||
assert_eq!((11 as $T).lcm(&5), 55 as $T);
|
||||
assert_eq!((99 as $T).lcm(&17), 1683 as $T);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_multiple_of() {
|
||||
assert!((6 as $T).is_multiple_of(&(6 as $T)));
|
||||
assert!((6 as $T).is_multiple_of(&(3 as $T)));
|
||||
assert!((6 as $T).is_multiple_of(&(1 as $T)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_even() {
|
||||
assert_eq!((0 as $T).is_even(), true);
|
||||
assert_eq!((1 as $T).is_even(), false);
|
||||
assert_eq!((2 as $T).is_even(), true);
|
||||
assert_eq!((3 as $T).is_even(), false);
|
||||
assert_eq!((4 as $T).is_even(), true);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_odd() {
|
||||
assert_eq!((0 as $T).is_odd(), false);
|
||||
assert_eq!((1 as $T).is_odd(), true);
|
||||
assert_eq!((2 as $T).is_odd(), false);
|
||||
assert_eq!((3 as $T).is_odd(), true);
|
||||
assert_eq!((4 as $T).is_odd(), false);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bitwise() {
|
||||
assert_eq!(0b1110 as $T, (0b1100 as $T).bitor(&(0b1010 as $T)));
|
||||
|
@ -49,7 +49,7 @@ pub use hash::Hash;
|
||||
pub use iter::{FromIterator, Extendable};
|
||||
pub use iter::{Iterator, DoubleEndedIterator, RandomAccessIterator, CloneableIterator};
|
||||
pub use iter::{OrdIterator, MutableDoubleEndedIterator, ExactSize};
|
||||
pub use num::{Integer, Num, NumCast, CheckedAdd, CheckedSub, CheckedMul};
|
||||
pub use num::{Num, NumCast, CheckedAdd, CheckedSub, CheckedMul};
|
||||
pub use num::{Signed, Unsigned, Round};
|
||||
pub use num::{Primitive, Int, Float, ToStrRadix, ToPrimitive, FromPrimitive};
|
||||
pub use path::{GenericPath, Path, PosixPath, WindowsPath};
|
||||
|
@ -111,7 +111,7 @@ use cmp;
|
||||
use default::Default;
|
||||
use fmt;
|
||||
use iter::*;
|
||||
use num::{Integer, CheckedAdd, Saturating, checked_next_power_of_two};
|
||||
use num::{CheckedAdd, Saturating, checked_next_power_of_two, div_rem};
|
||||
use option::{None, Option, Some};
|
||||
use ptr;
|
||||
use ptr::RawPtr;
|
||||
@ -575,7 +575,7 @@ impl<'a, T> Iterator<&'a [T]> for Chunks<'a, T> {
|
||||
if self.v.len() == 0 {
|
||||
(0, Some(0))
|
||||
} else {
|
||||
let (n, rem) = self.v.len().div_rem(&self.size);
|
||||
let (n, rem) = div_rem(self.v.len(), self.size);
|
||||
let n = if rem > 0 { n+1 } else { n };
|
||||
(n, Some(n))
|
||||
}
|
||||
@ -2859,7 +2859,7 @@ impl<'a, T> Iterator<&'a mut [T]> for MutChunks<'a, T> {
|
||||
if self.v.len() == 0 {
|
||||
(0, Some(0))
|
||||
} else {
|
||||
let (n, rem) = self.v.len().div_rem(&self.chunk_size);
|
||||
let (n, rem) = div_rem(self.v.len(), self.chunk_size);
|
||||
let n = if rem > 0 { n + 1 } else { n };
|
||||
(n, Some(n))
|
||||
}
|
||||
|
@ -14,6 +14,7 @@ use std::from_str::FromStr;
|
||||
use std::num::One;
|
||||
use std::num::Zero;
|
||||
use std::num::FromPrimitive;
|
||||
use num::Integer;
|
||||
use num::bigint::BigInt;
|
||||
|
||||
struct Context {
|
||||
|
Loading…
Reference in New Issue
Block a user