From 3ca00ec0db8875e97fbe88990722dd9378f51b11 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Adolfo=20Ochagav=C3=ADa?= Date: Thu, 5 Jun 2014 21:07:50 +0200 Subject: [PATCH] Moved integer trait and functions to submodule --- src/libnum/integer.rs | 411 ++++++++++++++++++++++++++++++++++++++++++ src/libnum/lib.rs | 408 +---------------------------------------- 2 files changed, 418 insertions(+), 401 deletions(-) create mode 100644 src/libnum/integer.rs diff --git a/src/libnum/integer.rs b/src/libnum/integer.rs new file mode 100644 index 00000000000..d958d40d3d1 --- /dev/null +++ b/src/libnum/integer.rs @@ -0,0 +1,411 @@ +// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 or the MIT license +// , at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Integer trait and functions + +pub trait Integer: Num + PartialOrd + + Div + + Rem { + /// Simultaneous truncated integer division and modulus + #[inline] + fn div_rem(&self, other: &Self) -> (Self, Self) { + (*self / *other, *self % *other) + } + + /// Floored integer division + /// + /// # Examples + /// + /// ~~~ + /// # use num::Integer; + /// assert!(( 8i).div_floor(& 3) == 2); + /// assert!(( 8i).div_floor(&-3) == -3); + /// assert!((-8i).div_floor(& 3) == -3); + /// assert!((-8i).div_floor(&-3) == 2); + /// + /// assert!(( 1i).div_floor(& 2) == 0); + /// assert!(( 1i).div_floor(&-2) == -1); + /// assert!((-1i).div_floor(& 2) == -1); + /// assert!((-1i).div_floor(&-2) == 0); + /// ~~~ + fn div_floor(&self, other: &Self) -> Self; + + /// Floored integer modulo, satisfying: + /// + /// ~~~ + /// # use num::Integer; + /// # let n = 1i; let d = 1i; + /// assert!(n.div_floor(&d) * d + n.mod_floor(&d) == n) + /// ~~~ + /// + /// # Examples + /// + /// ~~~ + /// # use num::Integer; + /// assert!(( 8i).mod_floor(& 3) == 2); + /// assert!(( 8i).mod_floor(&-3) == -1); + /// assert!((-8i).mod_floor(& 3) == 1); + /// assert!((-8i).mod_floor(&-3) == -2); + /// + /// assert!(( 1i).mod_floor(& 2) == 1); + /// assert!(( 1i).mod_floor(&-2) == -1); + /// assert!((-1i).mod_floor(& 2) == 1); + /// assert!((-1i).mod_floor(&-2) == -1); + /// ~~~ + fn mod_floor(&self, other: &Self) -> Self; + + /// Simultaneous floored integer division and modulus + fn div_mod_floor(&self, other: &Self) -> (Self, Self) { + (self.div_floor(other), self.mod_floor(other)) + } + + /// Greatest Common Divisor (GCD) + fn gcd(&self, other: &Self) -> Self; + + /// Lowest Common Multiple (LCM) + fn lcm(&self, other: &Self) -> Self; + + /// Returns `true` if `other` divides evenly into `self` + fn divides(&self, other: &Self) -> bool; + + /// Returns `true` if the number is even + fn is_even(&self) -> bool; + + /// Returns `true` if the number is odd + fn is_odd(&self) -> bool; +} + +/// Simultaneous integer division and modulus +#[inline] pub fn div_rem(x: T, y: T) -> (T, T) { x.div_rem(&y) } +/// Floored integer division +#[inline] pub fn div_floor(x: T, y: T) -> T { x.div_floor(&y) } +/// Floored integer modulus +#[inline] pub fn mod_floor(x: T, y: T) -> T { x.mod_floor(&y) } +/// Simultaneous floored integer division and modulus +#[inline] pub fn div_mod_floor(x: T, y: T) -> (T, T) { x.div_mod_floor(&y) } + +/// Calculates the Greatest Common Divisor (GCD) of the number and `other`. The +/// result is always positive. +#[inline(always)] pub fn gcd(x: T, y: T) -> T { x.gcd(&y) } +/// Calculates the Lowest Common Multiple (LCM) of the number and `other`. +#[inline(always)] pub fn lcm(x: T, y: T) -> T { x.lcm(&y) } + +macro_rules! impl_integer_for_int { + ($T:ty, $test_mod:ident) => ( + impl Integer for $T { + /// Floored integer division + #[inline] + fn div_floor(&self, other: &$T) -> $T { + // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, + // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) + match self.div_rem(other) { + (d, r) if (r > 0 && *other < 0) + || (r < 0 && *other > 0) => d - 1, + (d, _) => d, + } + } + + /// Floored integer modulo + #[inline] + fn mod_floor(&self, other: &$T) -> $T { + // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, + // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) + match *self % *other { + r if (r > 0 && *other < 0) + || (r < 0 && *other > 0) => r + *other, + r => r, + } + } + + /// Calculates `div_floor` and `mod_floor` simultaneously + #[inline] + fn div_mod_floor(&self, other: &$T) -> ($T,$T) { + // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, + // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) + match self.div_rem(other) { + (d, r) if (r > 0 && *other < 0) + || (r < 0 && *other > 0) => (d - 1, r + *other), + (d, r) => (d, r), + } + } + + /// Calculates the Greatest Common Divisor (GCD) of the number and + /// `other`. The result is always positive. + #[inline] + fn gcd(&self, other: &$T) -> $T { + // Use Euclid's algorithm + let mut m = *self; + let mut n = *other; + while m != 0 { + let temp = m; + m = n % temp; + n = temp; + } + n.abs() + } + + /// Calculates the Lowest Common Multiple (LCM) of the number and + /// `other`. + #[inline] + fn lcm(&self, other: &$T) -> $T { + // should not have to recalculate abs + ((*self * *other) / self.gcd(other)).abs() + } + + /// Returns `true` if the number can be divided by `other` without + /// leaving a remainder + #[inline] + fn divides(&self, other: &$T) -> bool { *self % *other == 0 } + + /// Returns `true` if the number is divisible by `2` + #[inline] + fn is_even(&self) -> bool { self & 1 == 0 } + + /// Returns `true` if the number is not divisible by `2` + #[inline] + fn is_odd(&self) -> bool { !self.is_even() } + } + + #[cfg(test)] + mod $test_mod { + use Integer; + + /// Checks that the division rule holds for: + /// + /// - `n`: numerator (dividend) + /// - `d`: denominator (divisor) + /// - `qr`: quotient and remainder + #[cfg(test)] + fn test_division_rule((n,d): ($T,$T), (q,r): ($T,$T)) { + assert_eq!(d * q + r, n); + } + + #[test] + fn test_div_rem() { + fn test_nd_dr(nd: ($T,$T), qr: ($T,$T)) { + let (n,d) = nd; + let separate_div_rem = (n / d, n % d); + let combined_div_rem = n.div_rem(&d); + + assert_eq!(separate_div_rem, qr); + assert_eq!(combined_div_rem, qr); + + test_division_rule(nd, separate_div_rem); + test_division_rule(nd, combined_div_rem); + } + + test_nd_dr(( 8, 3), ( 2, 2)); + test_nd_dr(( 8, -3), (-2, 2)); + test_nd_dr((-8, 3), (-2, -2)); + test_nd_dr((-8, -3), ( 2, -2)); + + test_nd_dr(( 1, 2), ( 0, 1)); + test_nd_dr(( 1, -2), ( 0, 1)); + test_nd_dr((-1, 2), ( 0, -1)); + test_nd_dr((-1, -2), ( 0, -1)); + } + + #[test] + fn test_div_mod_floor() { + fn test_nd_dm(nd: ($T,$T), dm: ($T,$T)) { + let (n,d) = nd; + let separate_div_mod_floor = (n.div_floor(&d), n.mod_floor(&d)); + let combined_div_mod_floor = n.div_mod_floor(&d); + + assert_eq!(separate_div_mod_floor, dm); + assert_eq!(combined_div_mod_floor, dm); + + test_division_rule(nd, separate_div_mod_floor); + test_division_rule(nd, combined_div_mod_floor); + } + + test_nd_dm(( 8, 3), ( 2, 2)); + test_nd_dm(( 8, -3), (-3, -1)); + test_nd_dm((-8, 3), (-3, 1)); + test_nd_dm((-8, -3), ( 2, -2)); + + test_nd_dm(( 1, 2), ( 0, 1)); + test_nd_dm(( 1, -2), (-1, -1)); + test_nd_dm((-1, 2), (-1, 1)); + test_nd_dm((-1, -2), ( 0, -1)); + } + + #[test] + fn test_gcd() { + assert_eq!((10 as $T).gcd(&2), 2 as $T); + assert_eq!((10 as $T).gcd(&3), 1 as $T); + assert_eq!((0 as $T).gcd(&3), 3 as $T); + assert_eq!((3 as $T).gcd(&3), 3 as $T); + assert_eq!((56 as $T).gcd(&42), 14 as $T); + assert_eq!((3 as $T).gcd(&-3), 3 as $T); + assert_eq!((-6 as $T).gcd(&3), 3 as $T); + assert_eq!((-4 as $T).gcd(&-2), 2 as $T); + } + + #[test] + fn test_lcm() { + assert_eq!((1 as $T).lcm(&0), 0 as $T); + assert_eq!((0 as $T).lcm(&1), 0 as $T); + assert_eq!((1 as $T).lcm(&1), 1 as $T); + assert_eq!((-1 as $T).lcm(&1), 1 as $T); + assert_eq!((1 as $T).lcm(&-1), 1 as $T); + assert_eq!((-1 as $T).lcm(&-1), 1 as $T); + assert_eq!((8 as $T).lcm(&9), 72 as $T); + assert_eq!((11 as $T).lcm(&5), 55 as $T); + } + + #[test] + fn test_even() { + assert_eq!((-4 as $T).is_even(), true); + assert_eq!((-3 as $T).is_even(), false); + assert_eq!((-2 as $T).is_even(), true); + assert_eq!((-1 as $T).is_even(), false); + assert_eq!((0 as $T).is_even(), true); + assert_eq!((1 as $T).is_even(), false); + assert_eq!((2 as $T).is_even(), true); + assert_eq!((3 as $T).is_even(), false); + assert_eq!((4 as $T).is_even(), true); + } + + #[test] + fn test_odd() { + assert_eq!((-4 as $T).is_odd(), false); + assert_eq!((-3 as $T).is_odd(), true); + assert_eq!((-2 as $T).is_odd(), false); + assert_eq!((-1 as $T).is_odd(), true); + assert_eq!((0 as $T).is_odd(), false); + assert_eq!((1 as $T).is_odd(), true); + assert_eq!((2 as $T).is_odd(), false); + assert_eq!((3 as $T).is_odd(), true); + assert_eq!((4 as $T).is_odd(), false); + } + } + ) +} + +impl_integer_for_int!(i8, test_integer_i8) +impl_integer_for_int!(i16, test_integer_i16) +impl_integer_for_int!(i32, test_integer_i32) +impl_integer_for_int!(i64, test_integer_i64) +impl_integer_for_int!(int, test_integer_int) + +macro_rules! impl_integer_for_uint { + ($T:ty, $test_mod:ident) => ( + impl Integer for $T { + /// Unsigned integer division. Returns the same result as `div` (`/`). + #[inline] + fn div_floor(&self, other: &$T) -> $T { *self / *other } + + /// Unsigned integer modulo operation. Returns the same result as `rem` (`%`). + #[inline] + fn mod_floor(&self, other: &$T) -> $T { *self % *other } + + /// Calculates the Greatest Common Divisor (GCD) of the number and `other` + #[inline] + fn gcd(&self, other: &$T) -> $T { + // Use Euclid's algorithm + let mut m = *self; + let mut n = *other; + while m != 0 { + let temp = m; + m = n % temp; + n = temp; + } + n + } + + /// Calculates the Lowest Common Multiple (LCM) of the number and `other` + #[inline] + fn lcm(&self, other: &$T) -> $T { + (*self * *other) / self.gcd(other) + } + + /// Returns `true` if the number can be divided by `other` without leaving a remainder + #[inline] + fn divides(&self, other: &$T) -> bool { *self % *other == 0 } + + /// Returns `true` if the number is divisible by `2` + #[inline] + fn is_even(&self) -> bool { self & 1 == 0 } + + /// Returns `true` if the number is not divisible by `2` + #[inline] + fn is_odd(&self) -> bool { !self.is_even() } + } + + #[cfg(test)] + mod $test_mod { + use Integer; + + #[test] + fn test_div_mod_floor() { + assert_eq!((10 as $T).div_floor(&(3 as $T)), 3 as $T); + assert_eq!((10 as $T).mod_floor(&(3 as $T)), 1 as $T); + assert_eq!((10 as $T).div_mod_floor(&(3 as $T)), (3 as $T, 1 as $T)); + assert_eq!((5 as $T).div_floor(&(5 as $T)), 1 as $T); + assert_eq!((5 as $T).mod_floor(&(5 as $T)), 0 as $T); + assert_eq!((5 as $T).div_mod_floor(&(5 as $T)), (1 as $T, 0 as $T)); + assert_eq!((3 as $T).div_floor(&(7 as $T)), 0 as $T); + assert_eq!((3 as $T).mod_floor(&(7 as $T)), 3 as $T); + assert_eq!((3 as $T).div_mod_floor(&(7 as $T)), (0 as $T, 3 as $T)); + } + + #[test] + fn test_gcd() { + assert_eq!((10 as $T).gcd(&2), 2 as $T); + assert_eq!((10 as $T).gcd(&3), 1 as $T); + assert_eq!((0 as $T).gcd(&3), 3 as $T); + assert_eq!((3 as $T).gcd(&3), 3 as $T); + assert_eq!((56 as $T).gcd(&42), 14 as $T); + } + + #[test] + fn test_lcm() { + assert_eq!((1 as $T).lcm(&0), 0 as $T); + assert_eq!((0 as $T).lcm(&1), 0 as $T); + assert_eq!((1 as $T).lcm(&1), 1 as $T); + assert_eq!((8 as $T).lcm(&9), 72 as $T); + assert_eq!((11 as $T).lcm(&5), 55 as $T); + assert_eq!((99 as $T).lcm(&17), 1683 as $T); + } + + #[test] + fn test_divides() { + assert!((6 as $T).divides(&(6 as $T))); + assert!((6 as $T).divides(&(3 as $T))); + assert!((6 as $T).divides(&(1 as $T))); + } + + #[test] + fn test_even() { + assert_eq!((0 as $T).is_even(), true); + assert_eq!((1 as $T).is_even(), false); + assert_eq!((2 as $T).is_even(), true); + assert_eq!((3 as $T).is_even(), false); + assert_eq!((4 as $T).is_even(), true); + } + + #[test] + fn test_odd() { + assert_eq!((0 as $T).is_odd(), false); + assert_eq!((1 as $T).is_odd(), true); + assert_eq!((2 as $T).is_odd(), false); + assert_eq!((3 as $T).is_odd(), true); + assert_eq!((4 as $T).is_odd(), false); + } + } + ) +} + +impl_integer_for_uint!(u8, test_integer_u8) +impl_integer_for_uint!(u16, test_integer_u16) +impl_integer_for_uint!(u32, test_integer_u32) +impl_integer_for_uint!(u64, test_integer_u64) +impl_integer_for_uint!(uint, test_integer_uint) diff --git a/src/libnum/lib.rs b/src/libnum/lib.rs index fae21e80f30..709882c87ce 100644 --- a/src/libnum/lib.rs +++ b/src/libnum/lib.rs @@ -57,406 +57,12 @@ extern crate rand; +pub use bigint::{BigInt, BigUint}; +pub use rational::{Rational, BigRational}; +pub use complex::Complex; +pub use integer::Integer; + pub mod bigint; -pub mod rational; pub mod complex; - -pub trait Integer: Num + PartialOrd - + Div - + Rem { - /// Simultaneous truncated integer division and modulus - #[inline] - fn div_rem(&self, other: &Self) -> (Self, Self) { - (*self / *other, *self % *other) - } - - /// Floored integer division - /// - /// # Examples - /// - /// ~~~ - /// # use num::Integer; - /// assert!(( 8i).div_floor(& 3) == 2); - /// assert!(( 8i).div_floor(&-3) == -3); - /// assert!((-8i).div_floor(& 3) == -3); - /// assert!((-8i).div_floor(&-3) == 2); - /// - /// assert!(( 1i).div_floor(& 2) == 0); - /// assert!(( 1i).div_floor(&-2) == -1); - /// assert!((-1i).div_floor(& 2) == -1); - /// assert!((-1i).div_floor(&-2) == 0); - /// ~~~ - fn div_floor(&self, other: &Self) -> Self; - - /// Floored integer modulo, satisfying: - /// - /// ~~~ - /// # use num::Integer; - /// # let n = 1i; let d = 1i; - /// assert!(n.div_floor(&d) * d + n.mod_floor(&d) == n) - /// ~~~ - /// - /// # Examples - /// - /// ~~~ - /// # use num::Integer; - /// assert!(( 8i).mod_floor(& 3) == 2); - /// assert!(( 8i).mod_floor(&-3) == -1); - /// assert!((-8i).mod_floor(& 3) == 1); - /// assert!((-8i).mod_floor(&-3) == -2); - /// - /// assert!(( 1i).mod_floor(& 2) == 1); - /// assert!(( 1i).mod_floor(&-2) == -1); - /// assert!((-1i).mod_floor(& 2) == 1); - /// assert!((-1i).mod_floor(&-2) == -1); - /// ~~~ - fn mod_floor(&self, other: &Self) -> Self; - - /// Simultaneous floored integer division and modulus - fn div_mod_floor(&self, other: &Self) -> (Self, Self) { - (self.div_floor(other), self.mod_floor(other)) - } - - /// Greatest Common Divisor (GCD) - fn gcd(&self, other: &Self) -> Self; - - /// Lowest Common Multiple (LCM) - fn lcm(&self, other: &Self) -> Self; - - /// Returns `true` if `other` divides evenly into `self` - fn divides(&self, other: &Self) -> bool; - - /// Returns `true` if the number is even - fn is_even(&self) -> bool; - - /// Returns `true` if the number is odd - fn is_odd(&self) -> bool; -} - -/// Simultaneous integer division and modulus -#[inline] pub fn div_rem(x: T, y: T) -> (T, T) { x.div_rem(&y) } -/// Floored integer division -#[inline] pub fn div_floor(x: T, y: T) -> T { x.div_floor(&y) } -/// Floored integer modulus -#[inline] pub fn mod_floor(x: T, y: T) -> T { x.mod_floor(&y) } -/// Simultaneous floored integer division and modulus -#[inline] pub fn div_mod_floor(x: T, y: T) -> (T, T) { x.div_mod_floor(&y) } - -/// Calculates the Greatest Common Divisor (GCD) of the number and `other`. The -/// result is always positive. -#[inline(always)] pub fn gcd(x: T, y: T) -> T { x.gcd(&y) } -/// Calculates the Lowest Common Multiple (LCM) of the number and `other`. -#[inline(always)] pub fn lcm(x: T, y: T) -> T { x.lcm(&y) } - -macro_rules! impl_integer_for_int { - ($T:ty, $test_mod:ident) => ( - impl Integer for $T { - /// Floored integer division - #[inline] - fn div_floor(&self, other: &$T) -> $T { - // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, - // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) - match self.div_rem(other) { - (d, r) if (r > 0 && *other < 0) - || (r < 0 && *other > 0) => d - 1, - (d, _) => d, - } - } - - /// Floored integer modulo - #[inline] - fn mod_floor(&self, other: &$T) -> $T { - // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, - // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) - match *self % *other { - r if (r > 0 && *other < 0) - || (r < 0 && *other > 0) => r + *other, - r => r, - } - } - - /// Calculates `div_floor` and `mod_floor` simultaneously - #[inline] - fn div_mod_floor(&self, other: &$T) -> ($T,$T) { - // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, - // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) - match self.div_rem(other) { - (d, r) if (r > 0 && *other < 0) - || (r < 0 && *other > 0) => (d - 1, r + *other), - (d, r) => (d, r), - } - } - - /// Calculates the Greatest Common Divisor (GCD) of the number and - /// `other`. The result is always positive. - #[inline] - fn gcd(&self, other: &$T) -> $T { - // Use Euclid's algorithm - let mut m = *self; - let mut n = *other; - while m != 0 { - let temp = m; - m = n % temp; - n = temp; - } - n.abs() - } - - /// Calculates the Lowest Common Multiple (LCM) of the number and - /// `other`. - #[inline] - fn lcm(&self, other: &$T) -> $T { - // should not have to recalculate abs - ((*self * *other) / self.gcd(other)).abs() - } - - /// Returns `true` if the number can be divided by `other` without - /// leaving a remainder - #[inline] - fn divides(&self, other: &$T) -> bool { *self % *other == 0 } - - /// Returns `true` if the number is divisible by `2` - #[inline] - fn is_even(&self) -> bool { self & 1 == 0 } - - /// Returns `true` if the number is not divisible by `2` - #[inline] - fn is_odd(&self) -> bool { !self.is_even() } - } - - #[cfg(test)] - mod $test_mod { - use Integer; - - /// Checks that the division rule holds for: - /// - /// - `n`: numerator (dividend) - /// - `d`: denominator (divisor) - /// - `qr`: quotient and remainder - #[cfg(test)] - fn test_division_rule((n,d): ($T,$T), (q,r): ($T,$T)) { - assert_eq!(d * q + r, n); - } - - #[test] - fn test_div_rem() { - fn test_nd_dr(nd: ($T,$T), qr: ($T,$T)) { - let (n,d) = nd; - let separate_div_rem = (n / d, n % d); - let combined_div_rem = n.div_rem(&d); - - assert_eq!(separate_div_rem, qr); - assert_eq!(combined_div_rem, qr); - - test_division_rule(nd, separate_div_rem); - test_division_rule(nd, combined_div_rem); - } - - test_nd_dr(( 8, 3), ( 2, 2)); - test_nd_dr(( 8, -3), (-2, 2)); - test_nd_dr((-8, 3), (-2, -2)); - test_nd_dr((-8, -3), ( 2, -2)); - - test_nd_dr(( 1, 2), ( 0, 1)); - test_nd_dr(( 1, -2), ( 0, 1)); - test_nd_dr((-1, 2), ( 0, -1)); - test_nd_dr((-1, -2), ( 0, -1)); - } - - #[test] - fn test_div_mod_floor() { - fn test_nd_dm(nd: ($T,$T), dm: ($T,$T)) { - let (n,d) = nd; - let separate_div_mod_floor = (n.div_floor(&d), n.mod_floor(&d)); - let combined_div_mod_floor = n.div_mod_floor(&d); - - assert_eq!(separate_div_mod_floor, dm); - assert_eq!(combined_div_mod_floor, dm); - - test_division_rule(nd, separate_div_mod_floor); - test_division_rule(nd, combined_div_mod_floor); - } - - test_nd_dm(( 8, 3), ( 2, 2)); - test_nd_dm(( 8, -3), (-3, -1)); - test_nd_dm((-8, 3), (-3, 1)); - test_nd_dm((-8, -3), ( 2, -2)); - - test_nd_dm(( 1, 2), ( 0, 1)); - test_nd_dm(( 1, -2), (-1, -1)); - test_nd_dm((-1, 2), (-1, 1)); - test_nd_dm((-1, -2), ( 0, -1)); - } - - #[test] - fn test_gcd() { - assert_eq!((10 as $T).gcd(&2), 2 as $T); - assert_eq!((10 as $T).gcd(&3), 1 as $T); - assert_eq!((0 as $T).gcd(&3), 3 as $T); - assert_eq!((3 as $T).gcd(&3), 3 as $T); - assert_eq!((56 as $T).gcd(&42), 14 as $T); - assert_eq!((3 as $T).gcd(&-3), 3 as $T); - assert_eq!((-6 as $T).gcd(&3), 3 as $T); - assert_eq!((-4 as $T).gcd(&-2), 2 as $T); - } - - #[test] - fn test_lcm() { - assert_eq!((1 as $T).lcm(&0), 0 as $T); - assert_eq!((0 as $T).lcm(&1), 0 as $T); - assert_eq!((1 as $T).lcm(&1), 1 as $T); - assert_eq!((-1 as $T).lcm(&1), 1 as $T); - assert_eq!((1 as $T).lcm(&-1), 1 as $T); - assert_eq!((-1 as $T).lcm(&-1), 1 as $T); - assert_eq!((8 as $T).lcm(&9), 72 as $T); - assert_eq!((11 as $T).lcm(&5), 55 as $T); - } - - #[test] - fn test_even() { - assert_eq!((-4 as $T).is_even(), true); - assert_eq!((-3 as $T).is_even(), false); - assert_eq!((-2 as $T).is_even(), true); - assert_eq!((-1 as $T).is_even(), false); - assert_eq!((0 as $T).is_even(), true); - assert_eq!((1 as $T).is_even(), false); - assert_eq!((2 as $T).is_even(), true); - assert_eq!((3 as $T).is_even(), false); - assert_eq!((4 as $T).is_even(), true); - } - - #[test] - fn test_odd() { - assert_eq!((-4 as $T).is_odd(), false); - assert_eq!((-3 as $T).is_odd(), true); - assert_eq!((-2 as $T).is_odd(), false); - assert_eq!((-1 as $T).is_odd(), true); - assert_eq!((0 as $T).is_odd(), false); - assert_eq!((1 as $T).is_odd(), true); - assert_eq!((2 as $T).is_odd(), false); - assert_eq!((3 as $T).is_odd(), true); - assert_eq!((4 as $T).is_odd(), false); - } - } - ) -} - -impl_integer_for_int!(i8, test_integer_i8) -impl_integer_for_int!(i16, test_integer_i16) -impl_integer_for_int!(i32, test_integer_i32) -impl_integer_for_int!(i64, test_integer_i64) -impl_integer_for_int!(int, test_integer_int) - -macro_rules! impl_integer_for_uint { - ($T:ty, $test_mod:ident) => ( - impl Integer for $T { - /// Unsigned integer division. Returns the same result as `div` (`/`). - #[inline] - fn div_floor(&self, other: &$T) -> $T { *self / *other } - - /// Unsigned integer modulo operation. Returns the same result as `rem` (`%`). - #[inline] - fn mod_floor(&self, other: &$T) -> $T { *self % *other } - - /// Calculates the Greatest Common Divisor (GCD) of the number and `other` - #[inline] - fn gcd(&self, other: &$T) -> $T { - // Use Euclid's algorithm - let mut m = *self; - let mut n = *other; - while m != 0 { - let temp = m; - m = n % temp; - n = temp; - } - n - } - - /// Calculates the Lowest Common Multiple (LCM) of the number and `other` - #[inline] - fn lcm(&self, other: &$T) -> $T { - (*self * *other) / self.gcd(other) - } - - /// Returns `true` if the number can be divided by `other` without leaving a remainder - #[inline] - fn divides(&self, other: &$T) -> bool { *self % *other == 0 } - - /// Returns `true` if the number is divisible by `2` - #[inline] - fn is_even(&self) -> bool { self & 1 == 0 } - - /// Returns `true` if the number is not divisible by `2` - #[inline] - fn is_odd(&self) -> bool { !self.is_even() } - } - - #[cfg(test)] - mod $test_mod { - use Integer; - - #[test] - fn test_div_mod_floor() { - assert_eq!((10 as $T).div_floor(&(3 as $T)), 3 as $T); - assert_eq!((10 as $T).mod_floor(&(3 as $T)), 1 as $T); - assert_eq!((10 as $T).div_mod_floor(&(3 as $T)), (3 as $T, 1 as $T)); - assert_eq!((5 as $T).div_floor(&(5 as $T)), 1 as $T); - assert_eq!((5 as $T).mod_floor(&(5 as $T)), 0 as $T); - assert_eq!((5 as $T).div_mod_floor(&(5 as $T)), (1 as $T, 0 as $T)); - assert_eq!((3 as $T).div_floor(&(7 as $T)), 0 as $T); - assert_eq!((3 as $T).mod_floor(&(7 as $T)), 3 as $T); - assert_eq!((3 as $T).div_mod_floor(&(7 as $T)), (0 as $T, 3 as $T)); - } - - #[test] - fn test_gcd() { - assert_eq!((10 as $T).gcd(&2), 2 as $T); - assert_eq!((10 as $T).gcd(&3), 1 as $T); - assert_eq!((0 as $T).gcd(&3), 3 as $T); - assert_eq!((3 as $T).gcd(&3), 3 as $T); - assert_eq!((56 as $T).gcd(&42), 14 as $T); - } - - #[test] - fn test_lcm() { - assert_eq!((1 as $T).lcm(&0), 0 as $T); - assert_eq!((0 as $T).lcm(&1), 0 as $T); - assert_eq!((1 as $T).lcm(&1), 1 as $T); - assert_eq!((8 as $T).lcm(&9), 72 as $T); - assert_eq!((11 as $T).lcm(&5), 55 as $T); - assert_eq!((99 as $T).lcm(&17), 1683 as $T); - } - - #[test] - fn test_divides() { - assert!((6 as $T).divides(&(6 as $T))); - assert!((6 as $T).divides(&(3 as $T))); - assert!((6 as $T).divides(&(1 as $T))); - } - - #[test] - fn test_even() { - assert_eq!((0 as $T).is_even(), true); - assert_eq!((1 as $T).is_even(), false); - assert_eq!((2 as $T).is_even(), true); - assert_eq!((3 as $T).is_even(), false); - assert_eq!((4 as $T).is_even(), true); - } - - #[test] - fn test_odd() { - assert_eq!((0 as $T).is_odd(), false); - assert_eq!((1 as $T).is_odd(), true); - assert_eq!((2 as $T).is_odd(), false); - assert_eq!((3 as $T).is_odd(), true); - assert_eq!((4 as $T).is_odd(), false); - } - } - ) -} - -impl_integer_for_uint!(u8, test_integer_u8) -impl_integer_for_uint!(u16, test_integer_u16) -impl_integer_for_uint!(u32, test_integer_u32) -impl_integer_for_uint!(u64, test_integer_u64) -impl_integer_for_uint!(uint, test_integer_uint) +pub mod integer; +pub mod rational;