Kill dead code
This commit is contained in:
parent
87edbea9da
commit
3ee85d828e
@ -412,285 +412,6 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
|
||||
})
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// METHOD MATCHING
|
||||
//
|
||||
// Method matching is a variation on the normal select/evaluation
|
||||
// situation. In this scenario, rather than having a full trait
|
||||
// reference to select from, we start with an expression like
|
||||
// `receiver.method(...)`. This means that we have `rcvr_ty`, the
|
||||
// type of the receiver, and we have a possible trait that
|
||||
// supplies `method`. We must determine whether the receiver is
|
||||
// applicable, taking into account the transformed self type
|
||||
// declared on `method`. We also must consider the possibility
|
||||
// that `receiver` can be *coerced* into a suitable type (for
|
||||
// example, a receiver type like `&(Any+Send)` might be coerced
|
||||
// into a receiver like `&Any` to allow for method dispatch). See
|
||||
// the body of `evaluate_method_obligation()` for more details on
|
||||
// the algorithm.
|
||||
|
||||
/// Determine whether a trait-method is applicable to a receiver of
|
||||
/// type `rcvr_ty`. *Does not affect the inference state.*
|
||||
///
|
||||
/// - `rcvr_ty` -- type of the receiver
|
||||
/// - `xform_self_ty` -- transformed self type declared on the method, with `Self`
|
||||
/// to a fresh type variable
|
||||
/// - `obligation` -- a reference to the trait where the method is declared, with
|
||||
/// the input types on the trait replaced with fresh type variables
|
||||
pub fn evaluate_method_obligation(&mut self,
|
||||
rcvr_ty: Ty<'tcx>,
|
||||
xform_self_ty: Ty<'tcx>,
|
||||
obligation: &Obligation<'tcx>)
|
||||
-> MethodMatchResult
|
||||
{
|
||||
// Here is the situation. We have a trait method declared (say) like so:
|
||||
//
|
||||
// trait TheTrait {
|
||||
// fn the_method(self: Rc<Self>, ...) { ... }
|
||||
// }
|
||||
//
|
||||
// And then we have a call looking (say) like this:
|
||||
//
|
||||
// let x: Rc<Foo> = ...;
|
||||
// x.the_method()
|
||||
//
|
||||
// Now we want to decide if `TheTrait` is applicable. As a
|
||||
// human, we can see that `TheTrait` is applicable if there is
|
||||
// an impl for the type `Foo`. But how does the compiler know
|
||||
// what impl to look for, given that our receiver has type
|
||||
// `Rc<Foo>`? We need to take the method's self type into
|
||||
// account.
|
||||
//
|
||||
// On entry to this function, we have the following inputs:
|
||||
//
|
||||
// - `rcvr_ty = Rc<Foo>`
|
||||
// - `xform_self_ty = Rc<$0>`
|
||||
// - `obligation = $0 as TheTrait`
|
||||
//
|
||||
// We do the match in two phases. The first is a *precise
|
||||
// match*, which means that no coercion is required. This is
|
||||
// the preferred way to match. It works by first making
|
||||
// `rcvr_ty` a subtype of `xform_self_ty`. This unifies `$0`
|
||||
// and `Foo`. We can then evaluate (roughly as normal) the
|
||||
// trait reference `Foo as TheTrait`.
|
||||
//
|
||||
// If this fails, we fallback to a coercive match, described below.
|
||||
|
||||
match self.infcx.probe(|| self.match_method_precise(rcvr_ty, xform_self_ty, obligation)) {
|
||||
Ok(()) => { return MethodMatched(PreciseMethodMatch); }
|
||||
Err(_) => { }
|
||||
}
|
||||
|
||||
// Coercive matches work slightly differently and cannot
|
||||
// completely reuse the normal trait matching machinery
|
||||
// (though they employ many of the same bits and pieces). To
|
||||
// see how it works, let's continue with our previous example,
|
||||
// but with the following declarations:
|
||||
//
|
||||
// ```
|
||||
// trait Foo : Bar { .. }
|
||||
// trait Bar : Baz { ... }
|
||||
// trait Baz { ... }
|
||||
// impl TheTrait for Bar {
|
||||
// fn the_method(self: Rc<Bar>, ...) { ... }
|
||||
// }
|
||||
// ```
|
||||
//
|
||||
// Now we see that the receiver type `Rc<Foo>` is actually an
|
||||
// object type. And in fact the impl we want is an impl on the
|
||||
// supertrait `Rc<Bar>`. The precise matching procedure won't
|
||||
// find it, however, because `Rc<Foo>` is not a subtype of
|
||||
// `Rc<Bar>` -- it is *coercible* to `Rc<Bar>` (actually, such
|
||||
// coercions are not yet implemented, but let's leave that
|
||||
// aside for now).
|
||||
//
|
||||
// To handle this case, we employ a different procedure. Recall
|
||||
// that our initial state is as follows:
|
||||
//
|
||||
// - `rcvr_ty = Rc<Foo>`
|
||||
// - `xform_self_ty = Rc<$0>`
|
||||
// - `obligation = $0 as TheTrait`
|
||||
//
|
||||
// We now go through each impl and instantiate all of its type
|
||||
// variables, yielding the trait reference that the impl
|
||||
// provides. In our example, the impl would provide `Bar as
|
||||
// TheTrait`. Next we (try to) unify the trait reference that
|
||||
// the impl provides with the input obligation. This would
|
||||
// unify `$0` and `Bar`. Now we can see whether the receiver
|
||||
// type (`Rc<Foo>`) is *coercible to* the transformed self
|
||||
// type (`Rc<$0> == Rc<Bar>`). In this case, the answer is
|
||||
// yes, so the impl is considered a candidate.
|
||||
//
|
||||
// Note that there is the possibility of ambiguity here, even
|
||||
// when all types are known. In our example, this might occur
|
||||
// if there was *also* an impl of `TheTrait` for `Baz`. In
|
||||
// this case, `Rc<Foo>` would be coercible to both `Rc<Bar>`
|
||||
// and `Rc<Baz>`. (Note that it is not a *coherence violation*
|
||||
// to have impls for both `Bar` and `Baz`, despite this
|
||||
// ambiguity). In this case, we report an error, listing all
|
||||
// the applicable impls. The user can explicitly "up-coerce"
|
||||
// to the type they want.
|
||||
//
|
||||
// Note that this coercion step only considers actual impls
|
||||
// found in the source. This is because all the
|
||||
// compiler-provided impls (such as those for unboxed
|
||||
// closures) do not have relevant coercions. This simplifies
|
||||
// life immensely.
|
||||
|
||||
let mut impls =
|
||||
self.assemble_method_candidates_from_impls(rcvr_ty, xform_self_ty, obligation);
|
||||
|
||||
if impls.len() > 1 {
|
||||
impls.retain(|&c| self.winnow_method_impl(c, rcvr_ty, xform_self_ty, obligation));
|
||||
}
|
||||
|
||||
if impls.len() > 1 {
|
||||
return MethodAmbiguous(impls);
|
||||
}
|
||||
|
||||
match impls.pop() {
|
||||
Some(def_id) => MethodMatched(CoerciveMethodMatch(def_id)),
|
||||
None => MethodDidNotMatch
|
||||
}
|
||||
}
|
||||
|
||||
/// Given the successful result of a method match, this function "confirms" the result, which
|
||||
/// basically repeats the various matching operations, but outside of any snapshot so that
|
||||
/// their effects are committed into the inference state.
|
||||
pub fn confirm_method_match(&mut self,
|
||||
rcvr_ty: Ty<'tcx>,
|
||||
xform_self_ty: Ty<'tcx>,
|
||||
obligation: &Obligation<'tcx>,
|
||||
data: MethodMatchedData)
|
||||
{
|
||||
let is_ok = match data {
|
||||
PreciseMethodMatch => {
|
||||
self.match_method_precise(rcvr_ty, xform_self_ty, obligation).is_ok()
|
||||
}
|
||||
|
||||
CoerciveMethodMatch(impl_def_id) => {
|
||||
self.match_method_coerce(impl_def_id, rcvr_ty, xform_self_ty, obligation).is_ok()
|
||||
}
|
||||
};
|
||||
|
||||
if !is_ok {
|
||||
self.tcx().sess.span_bug(
|
||||
obligation.cause.span,
|
||||
format!("match not repeatable: {}, {}, {}, {}",
|
||||
rcvr_ty.repr(self.tcx()),
|
||||
xform_self_ty.repr(self.tcx()),
|
||||
obligation.repr(self.tcx()),
|
||||
data)[]);
|
||||
}
|
||||
}
|
||||
|
||||
/// Implements the *precise method match* procedure described in
|
||||
/// `evaluate_method_obligation()`.
|
||||
fn match_method_precise(&mut self,
|
||||
rcvr_ty: Ty<'tcx>,
|
||||
xform_self_ty: Ty<'tcx>,
|
||||
obligation: &Obligation<'tcx>)
|
||||
-> Result<(),()>
|
||||
{
|
||||
self.infcx.commit_if_ok(|| {
|
||||
match self.infcx.sub_types(false, infer::RelateSelfType(obligation.cause.span),
|
||||
rcvr_ty, xform_self_ty) {
|
||||
Ok(()) => { }
|
||||
Err(_) => { return Err(()); }
|
||||
}
|
||||
|
||||
if self.evaluate_obligation(obligation) {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(())
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
/// Assembles a list of potentially applicable impls using the *coercive match* procedure
|
||||
/// described in `evaluate_method_obligation()`.
|
||||
fn assemble_method_candidates_from_impls(&mut self,
|
||||
rcvr_ty: Ty<'tcx>,
|
||||
xform_self_ty: Ty<'tcx>,
|
||||
obligation: &Obligation<'tcx>)
|
||||
-> Vec<ast::DefId>
|
||||
{
|
||||
let mut candidates = Vec::new();
|
||||
|
||||
let all_impls = self.all_impls(obligation.trait_ref.def_id);
|
||||
for &impl_def_id in all_impls.iter() {
|
||||
self.infcx.probe(|| {
|
||||
match self.match_method_coerce(impl_def_id, rcvr_ty, xform_self_ty, obligation) {
|
||||
Ok(_) => { candidates.push(impl_def_id); }
|
||||
Err(_) => { }
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
candidates
|
||||
}
|
||||
|
||||
/// Applies the *coercive match* procedure described in `evaluate_method_obligation()` to a
|
||||
/// particular impl.
|
||||
fn match_method_coerce(&mut self,
|
||||
impl_def_id: ast::DefId,
|
||||
rcvr_ty: Ty<'tcx>,
|
||||
xform_self_ty: Ty<'tcx>,
|
||||
obligation: &Obligation<'tcx>)
|
||||
-> Result<Substs<'tcx>, ()>
|
||||
{
|
||||
// This is almost always expected to succeed. It
|
||||
// causes the impl's self-type etc to be unified with
|
||||
// the type variable that is shared between
|
||||
// obligation/xform_self_ty. In our example, after
|
||||
// this is done, the type of `xform_self_ty` would
|
||||
// change from `Rc<$0>` to `Rc<Foo>` (because $0 is
|
||||
// unified with `Foo`).
|
||||
let substs = try!(self.match_impl(impl_def_id, obligation));
|
||||
|
||||
// Next, check whether we can coerce. For now we require
|
||||
// that the coercion be a no-op.
|
||||
let origin = infer::Misc(obligation.cause.span);
|
||||
match infer::mk_coercety(self.infcx, true, origin,
|
||||
rcvr_ty, xform_self_ty) {
|
||||
Ok(None) => { /* Fallthrough */ }
|
||||
Ok(Some(_)) | Err(_) => { return Err(()); }
|
||||
}
|
||||
|
||||
Ok(substs)
|
||||
}
|
||||
|
||||
/// A version of `winnow_impl` applicable to coerice method matching. This is basically the
|
||||
/// same as `winnow_impl` but it uses the method matching procedure and is specific to impls.
|
||||
fn winnow_method_impl(&mut self,
|
||||
impl_def_id: ast::DefId,
|
||||
rcvr_ty: Ty<'tcx>,
|
||||
xform_self_ty: Ty<'tcx>,
|
||||
obligation: &Obligation<'tcx>)
|
||||
-> bool
|
||||
{
|
||||
debug!("winnow_method_impl: impl_def_id={} rcvr_ty={} xform_self_ty={} obligation={}",
|
||||
impl_def_id.repr(self.tcx()),
|
||||
rcvr_ty.repr(self.tcx()),
|
||||
xform_self_ty.repr(self.tcx()),
|
||||
obligation.repr(self.tcx()));
|
||||
|
||||
self.infcx.probe(|| {
|
||||
match self.match_method_coerce(impl_def_id, rcvr_ty, xform_self_ty, obligation) {
|
||||
Ok(substs) => {
|
||||
let vtable_impl = self.vtable_impl(impl_def_id,
|
||||
substs,
|
||||
obligation.cause,
|
||||
obligation.recursion_depth + 1);
|
||||
self.winnow_selection(None, VtableImpl(vtable_impl)).may_apply()
|
||||
}
|
||||
Err(()) => {
|
||||
false
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// CANDIDATE ASSEMBLY
|
||||
//
|
||||
|
Loading…
x
Reference in New Issue
Block a user