core::str: Implement Chars iterator using slice::Items

Re-use the vector iterator to implement the chars iterator.

The iterator uses our guarantee that the string contains valid UTF-8,
but its only unsafe code is transmuting the decoded u32 into char.
This commit is contained in:
root 2014-07-17 19:34:07 +02:00
parent d6b42c2463
commit 42357d772b
1 changed files with 116 additions and 46 deletions

View File

@ -97,47 +97,121 @@ impl<'a> CharEq for &'a [char] {
Section: Iterators
*/
/// External iterator for a string's characters.
/// Use with the `std::iter` module.
/// Iterator for the char (representing *Unicode Scalar Values*) of a string
///
/// Created with the method `.chars()`.
#[deriving(Clone)]
pub struct Chars<'a> {
/// The slice remaining to be iterated
string: &'a str,
iter: slice::Items<'a, u8>
}
// Return the initial codepoint accumulator for the first byte.
// The first byte is special, only want bottom 5 bits for width 2, 4 bits
// for width 3, and 3 bits for width 4
macro_rules! utf8_first_byte(
($byte:expr, $width:expr) => (($byte & (0x7F >> $width)) as u32)
)
// return the value of $ch updated with continuation byte $byte
macro_rules! utf8_acc_cont_byte(
($ch:expr, $byte:expr) => (($ch << 6) | ($byte & 63u8) as u32)
)
macro_rules! utf8_is_cont_byte(
($byte:expr) => (($byte & 192u8) == 128)
)
#[inline]
fn unwrap_or_0(opt: Option<&u8>) -> u8 {
match opt {
Some(&byte) => byte,
None => 0,
}
}
impl<'a> Iterator<char> for Chars<'a> {
#[inline]
fn next(&mut self) -> Option<char> {
// Decode the next codepoint, then update
// the slice to be just the remaining part
if self.string.len() != 0 {
let CharRange {ch, next} = self.string.char_range_at(0);
unsafe {
self.string = raw::slice_unchecked(self.string, next, self.string.len());
// Decode UTF-8, using the valid UTF-8 invariant
#[inline]
fn decode_multibyte<'a>(x: u8, it: &mut slice::Items<'a, u8>) -> char {
// NOTE: Performance is very sensitive to the exact formulation here
// Decode from a byte combination out of: [[[x y] z] w]
let cont_mask = 0x3F; // continuation byte mask
let init = utf8_first_byte!(x, 2);
let y = unwrap_or_0(it.next());
let mut ch = utf8_acc_cont_byte!(init, y);
if x >= 0xE0 {
/* [[x y z] w] case */
let z = unwrap_or_0(it.next());
let y_z = (((y & cont_mask) as u32) << 6) | (z & cont_mask) as u32;
ch = init << 12 | y_z;
if x >= 0xF0 {
/* [x y z w] case */
let w = unwrap_or_0(it.next());
ch = (init & 7) << 18 | y_z << 6 | (w & cont_mask) as u32;
}
}
unsafe {
mem::transmute(ch)
}
}
match self.iter.next() {
None => None,
Some(&next_byte) => {
if next_byte < 128 {
Some(next_byte as char)
} else {
Some(decode_multibyte(next_byte, &mut self.iter))
}
}
Some(ch)
} else {
None
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
(self.string.len().saturating_add(3)/4, Some(self.string.len()))
let (len, _) = self.iter.size_hint();
(len.saturating_add(3) / 4, Some(len))
}
}
impl<'a> DoubleEndedIterator<char> for Chars<'a> {
#[inline]
fn next_back(&mut self) -> Option<char> {
if self.string.len() != 0 {
let CharRange {ch, next} = self.string.char_range_at_reverse(self.string.len());
unsafe {
self.string = raw::slice_unchecked(self.string, 0, next);
#[inline]
fn decode_multibyte_back<'a>(w: u8, it: &mut slice::Items<'a, u8>) -> char {
// Decode from a byte combination out of: [x [y [z w]]]
let mut ch;
let z = unwrap_or_0(it.next_back());
ch = utf8_first_byte!(z, 2);
if utf8_is_cont_byte!(z) {
let y = unwrap_or_0(it.next_back());
ch = utf8_first_byte!(y, 3);
if utf8_is_cont_byte!(y) {
let x = unwrap_or_0(it.next_back());
ch = utf8_first_byte!(x, 4);
ch = utf8_acc_cont_byte!(ch, y);
}
ch = utf8_acc_cont_byte!(ch, z);
}
ch = utf8_acc_cont_byte!(ch, w);
unsafe {
mem::transmute(ch)
}
}
match self.iter.next_back() {
None => None,
Some(&back_byte) => {
if back_byte < 128 {
Some(back_byte as char)
} else {
Some(decode_multibyte_back(back_byte, &mut self.iter))
}
}
Some(ch)
} else {
None
}
}
}
@ -146,18 +220,23 @@ impl<'a> DoubleEndedIterator<char> for Chars<'a> {
/// Use with the `std::iter` module.
#[deriving(Clone)]
pub struct CharOffsets<'a> {
/// The original string to be iterated
string: &'a str,
front: uint,
back: uint,
iter: Chars<'a>,
}
impl<'a> Iterator<(uint, char)> for CharOffsets<'a> {
#[inline]
fn next(&mut self) -> Option<(uint, char)> {
// Compute the byte offset by using the pointer offset between
// the original string slice and the iterator's remaining part
let offset = self.iter.string.as_ptr() as uint - self.string.as_ptr() as uint;
self.iter.next().map(|ch| (offset, ch))
match self.iter.next() {
None => None,
Some(ch) => {
let index = self.front;
let (len, _) = self.iter.iter.size_hint();
self.front += self.back - self.front - len;
Some((index, ch))
}
}
}
#[inline]
@ -169,11 +248,14 @@ impl<'a> Iterator<(uint, char)> for CharOffsets<'a> {
impl<'a> DoubleEndedIterator<(uint, char)> for CharOffsets<'a> {
#[inline]
fn next_back(&mut self) -> Option<(uint, char)> {
self.iter.next_back().map(|ch| {
let offset = self.iter.string.len() +
self.iter.string.as_ptr() as uint - self.string.as_ptr() as uint;
(offset, ch)
})
match self.iter.next_back() {
None => None,
Some(ch) => {
let (len, _) = self.iter.iter.size_hint();
self.back -= self.back - self.front - len;
Some((self.back, ch))
}
}
}
}
@ -880,18 +962,6 @@ pub struct CharRange {
pub next: uint,
}
// Return the initial codepoint accumulator for the first byte.
// The first byte is special, only want bottom 5 bits for width 2, 4 bits
// for width 3, and 3 bits for width 4
macro_rules! utf8_first_byte(
($byte:expr, $width:expr) => (($byte & (0x7F >> $width)) as u32)
)
// return the value of $ch updated with continuation byte $byte
macro_rules! utf8_acc_cont_byte(
($ch:expr, $byte:expr) => (($ch << 6) | ($byte & 63u8) as u32)
)
static TAG_CONT_U8: u8 = 128u8;
/// Unsafe operations
@ -1608,7 +1678,7 @@ impl<'a> StrSlice<'a> for &'a str {
#[inline]
fn chars(&self) -> Chars<'a> {
Chars{string: *self}
Chars{iter: self.as_bytes().iter()}
}
#[inline]
@ -1618,7 +1688,7 @@ impl<'a> StrSlice<'a> for &'a str {
#[inline]
fn char_indices(&self) -> CharOffsets<'a> {
CharOffsets{string: *self, iter: self.chars()}
CharOffsets{front: 0, back: self.len(), iter: self.chars()}
}
#[inline]