apply rustfmt to librustc_data_structures, correcting rust-lang-nursery/rustfmt#836
This commit is contained in:
parent
d31d8a9a91
commit
43dc48c7ff
@ -10,7 +10,7 @@
|
||||
|
||||
/// A very simple BitVector type.
|
||||
pub struct BitVector {
|
||||
data: Vec<u64>
|
||||
data: Vec<u64>,
|
||||
}
|
||||
|
||||
impl BitVector {
|
||||
@ -40,7 +40,9 @@ impl BitVector {
|
||||
for (i, j) in self.data.iter_mut().zip(&all.data) {
|
||||
let value = *i;
|
||||
*i = value | *j;
|
||||
if value != *i { changed = true; }
|
||||
if value != *i {
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
changed
|
||||
}
|
||||
@ -56,7 +58,7 @@ impl BitVector {
|
||||
BitVectorIter {
|
||||
iter: self.data.iter(),
|
||||
current: 0,
|
||||
idx: 0
|
||||
idx: 0,
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -64,7 +66,7 @@ impl BitVector {
|
||||
pub struct BitVectorIter<'a> {
|
||||
iter: ::std::slice::Iter<'a, u64>,
|
||||
current: u64,
|
||||
idx: usize
|
||||
idx: usize,
|
||||
}
|
||||
|
||||
impl<'a> Iterator for BitVectorIter<'a> {
|
||||
@ -108,7 +110,7 @@ impl BitMatrix {
|
||||
let u64s_per_elem = u64s(elements);
|
||||
BitMatrix {
|
||||
elements: elements,
|
||||
vector: vec![0; elements * u64s_per_elem]
|
||||
vector: vec![0; elements * u64s_per_elem],
|
||||
}
|
||||
}
|
||||
|
||||
@ -123,9 +125,9 @@ impl BitMatrix {
|
||||
let (start, _) = self.range(source);
|
||||
let (word, mask) = word_mask(target);
|
||||
let mut vector = &mut self.vector[..];
|
||||
let v1 = vector[start+word];
|
||||
let v1 = vector[start + word];
|
||||
let v2 = v1 | mask;
|
||||
vector[start+word] = v2;
|
||||
vector[start + word] = v2;
|
||||
v1 != v2
|
||||
}
|
||||
|
||||
@ -136,7 +138,7 @@ impl BitMatrix {
|
||||
pub fn contains(&self, source: usize, target: usize) -> bool {
|
||||
let (start, _) = self.range(source);
|
||||
let (word, mask) = word_mask(target);
|
||||
(self.vector[start+word] & mask) != 0
|
||||
(self.vector[start + word] & mask) != 0
|
||||
}
|
||||
|
||||
/// Returns those indices that are reachable from both `a` and
|
||||
@ -150,8 +152,12 @@ impl BitMatrix {
|
||||
for (base, (i, j)) in (a_start..a_end).zip(b_start..b_end).enumerate() {
|
||||
let mut v = self.vector[i] & self.vector[j];
|
||||
for bit in 0..64 {
|
||||
if v == 0 { break; }
|
||||
if v & 0x1 != 0 { result.push(base*64 + bit); }
|
||||
if v == 0 {
|
||||
break;
|
||||
}
|
||||
if v & 0x1 != 0 {
|
||||
result.push(base * 64 + bit);
|
||||
}
|
||||
v >>= 1;
|
||||
}
|
||||
}
|
||||
@ -170,9 +176,7 @@ impl BitMatrix {
|
||||
let (write_start, write_end) = self.range(write);
|
||||
let vector = &mut self.vector[..];
|
||||
let mut changed = false;
|
||||
for (read_index, write_index) in
|
||||
(read_start..read_end).zip(write_start..write_end)
|
||||
{
|
||||
for (read_index, write_index) in (read_start..read_end).zip(write_start..write_end) {
|
||||
let v1 = vector[write_index];
|
||||
let v2 = v1 | vector[read_index];
|
||||
vector[write_index] = v2;
|
||||
@ -204,7 +208,8 @@ fn bitvec_iter_works() {
|
||||
bitvec.insert(65);
|
||||
bitvec.insert(66);
|
||||
bitvec.insert(99);
|
||||
assert_eq!(bitvec.iter().collect::<Vec<_>>(), [1, 10, 19, 62, 63, 64, 65, 66, 99]);
|
||||
assert_eq!(bitvec.iter().collect::<Vec<_>>(),
|
||||
[1, 10, 19, 62, 63, 64, 65, 66, 99]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@ -217,7 +222,8 @@ fn bitvec_iter_works_2() {
|
||||
bitvec.insert(66);
|
||||
bitvec.insert(99);
|
||||
bitvec.insert(299);
|
||||
assert_eq!(bitvec.iter().collect::<Vec<_>>(), [1, 10, 19, 62, 66, 99, 299]);
|
||||
assert_eq!(bitvec.iter().collect::<Vec<_>>(),
|
||||
[1, 10, 19, 62, 66, 99, 299]);
|
||||
|
||||
}
|
||||
|
||||
|
@ -36,7 +36,9 @@ pub struct FnvHasher(u64);
|
||||
|
||||
impl Default for FnvHasher {
|
||||
#[inline]
|
||||
fn default() -> FnvHasher { FnvHasher(0xcbf29ce484222325) }
|
||||
fn default() -> FnvHasher {
|
||||
FnvHasher(0xcbf29ce484222325)
|
||||
}
|
||||
}
|
||||
|
||||
impl Hasher for FnvHasher {
|
||||
@ -51,5 +53,7 @@ impl Hasher for FnvHasher {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn finish(&self) -> u64 { self.0 }
|
||||
fn finish(&self) -> u64 {
|
||||
self.0
|
||||
}
|
||||
}
|
||||
|
@ -38,9 +38,9 @@ use snapshot_vec::{SnapshotVec, SnapshotVecDelegate};
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
||||
pub struct Graph<N,E> {
|
||||
nodes: SnapshotVec<Node<N>> ,
|
||||
edges: SnapshotVec<Edge<E>> ,
|
||||
pub struct Graph<N, E> {
|
||||
nodes: SnapshotVec<Node<N>>,
|
||||
edges: SnapshotVec<Edge<E>>,
|
||||
}
|
||||
|
||||
pub struct Node<N> {
|
||||
@ -71,9 +71,13 @@ impl<N> SnapshotVecDelegate for Edge<N> {
|
||||
|
||||
impl<E: Debug> Debug for Edge<E> {
|
||||
fn fmt(&self, f: &mut Formatter) -> Result<(), Error> {
|
||||
write!(f, "Edge {{ next_edge: [{:?}, {:?}], source: {:?}, target: {:?}, data: {:?} }}",
|
||||
self.next_edge[0], self.next_edge[1], self.source,
|
||||
self.target, self.data)
|
||||
write!(f,
|
||||
"Edge {{ next_edge: [{:?}, {:?}], source: {:?}, target: {:?}, data: {:?} }}",
|
||||
self.next_edge[0],
|
||||
self.next_edge[1],
|
||||
self.source,
|
||||
self.target,
|
||||
self.data)
|
||||
}
|
||||
}
|
||||
|
||||
@ -87,7 +91,9 @@ pub const INVALID_EDGE_INDEX: EdgeIndex = EdgeIndex(usize::MAX);
|
||||
|
||||
// Use a private field here to guarantee no more instances are created:
|
||||
#[derive(Copy, Clone, Debug, PartialEq)]
|
||||
pub struct Direction { repr: usize }
|
||||
pub struct Direction {
|
||||
repr: usize,
|
||||
}
|
||||
|
||||
pub const OUTGOING: Direction = Direction { repr: 0 };
|
||||
|
||||
@ -95,16 +101,20 @@ pub const INCOMING: Direction = Direction { repr: 1 };
|
||||
|
||||
impl NodeIndex {
|
||||
/// Returns unique id (unique with respect to the graph holding associated node).
|
||||
pub fn node_id(&self) -> usize { self.0 }
|
||||
pub fn node_id(&self) -> usize {
|
||||
self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl EdgeIndex {
|
||||
/// Returns unique id (unique with respect to the graph holding associated edge).
|
||||
pub fn edge_id(&self) -> usize { self.0 }
|
||||
pub fn edge_id(&self) -> usize {
|
||||
self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl<N:Debug,E:Debug> Graph<N,E> {
|
||||
pub fn new() -> Graph<N,E> {
|
||||
impl<N: Debug, E: Debug> Graph<N, E> {
|
||||
pub fn new() -> Graph<N, E> {
|
||||
Graph {
|
||||
nodes: SnapshotVec::new(),
|
||||
edges: SnapshotVec::new(),
|
||||
@ -145,7 +155,7 @@ impl<N:Debug,E:Debug> Graph<N,E> {
|
||||
let idx = self.next_node_index();
|
||||
self.nodes.push(Node {
|
||||
first_edge: [INVALID_EDGE_INDEX, INVALID_EDGE_INDEX],
|
||||
data: data
|
||||
data: data,
|
||||
});
|
||||
idx
|
||||
}
|
||||
@ -169,19 +179,14 @@ impl<N:Debug,E:Debug> Graph<N,E> {
|
||||
EdgeIndex(self.edges.len())
|
||||
}
|
||||
|
||||
pub fn add_edge(&mut self,
|
||||
source: NodeIndex,
|
||||
target: NodeIndex,
|
||||
data: E) -> EdgeIndex {
|
||||
pub fn add_edge(&mut self, source: NodeIndex, target: NodeIndex, data: E) -> EdgeIndex {
|
||||
debug!("graph: add_edge({:?}, {:?}, {:?})", source, target, data);
|
||||
|
||||
let idx = self.next_edge_index();
|
||||
|
||||
// read current first of the list of edges from each node
|
||||
let source_first = self.nodes[source.0]
|
||||
.first_edge[OUTGOING.repr];
|
||||
let target_first = self.nodes[target.0]
|
||||
.first_edge[INCOMING.repr];
|
||||
let source_first = self.nodes[source.0].first_edge[OUTGOING.repr];
|
||||
let target_first = self.nodes[target.0].first_edge[INCOMING.repr];
|
||||
|
||||
// create the new edge, with the previous firsts from each node
|
||||
// as the next pointers
|
||||
@ -189,7 +194,7 @@ impl<N:Debug,E:Debug> Graph<N,E> {
|
||||
next_edge: [source_first, target_first],
|
||||
source: source,
|
||||
target: target,
|
||||
data: data
|
||||
data: data,
|
||||
});
|
||||
|
||||
// adjust the firsts for each node target be the next object.
|
||||
@ -230,38 +235,42 @@ impl<N:Debug,E:Debug> Graph<N,E> {
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Iterating over nodes, edges
|
||||
|
||||
pub fn each_node<'a, F>(&'a self, mut f: F) -> bool where
|
||||
F: FnMut(NodeIndex, &'a Node<N>) -> bool,
|
||||
pub fn each_node<'a, F>(&'a self, mut f: F) -> bool
|
||||
where F: FnMut(NodeIndex, &'a Node<N>) -> bool
|
||||
{
|
||||
//! Iterates over all edges defined in the graph.
|
||||
self.nodes.iter().enumerate().all(|(i, node)| f(NodeIndex(i), node))
|
||||
}
|
||||
|
||||
pub fn each_edge<'a, F>(&'a self, mut f: F) -> bool where
|
||||
F: FnMut(EdgeIndex, &'a Edge<E>) -> bool,
|
||||
pub fn each_edge<'a, F>(&'a self, mut f: F) -> bool
|
||||
where F: FnMut(EdgeIndex, &'a Edge<E>) -> bool
|
||||
{
|
||||
//! Iterates over all edges defined in the graph
|
||||
self.edges.iter().enumerate().all(|(i, edge)| f(EdgeIndex(i), edge))
|
||||
}
|
||||
|
||||
pub fn outgoing_edges(&self, source: NodeIndex) -> AdjacentEdges<N,E> {
|
||||
pub fn outgoing_edges(&self, source: NodeIndex) -> AdjacentEdges<N, E> {
|
||||
self.adjacent_edges(source, OUTGOING)
|
||||
}
|
||||
|
||||
pub fn incoming_edges(&self, source: NodeIndex) -> AdjacentEdges<N,E> {
|
||||
pub fn incoming_edges(&self, source: NodeIndex) -> AdjacentEdges<N, E> {
|
||||
self.adjacent_edges(source, INCOMING)
|
||||
}
|
||||
|
||||
pub fn adjacent_edges(&self, source: NodeIndex, direction: Direction) -> AdjacentEdges<N,E> {
|
||||
pub fn adjacent_edges(&self, source: NodeIndex, direction: Direction) -> AdjacentEdges<N, E> {
|
||||
let first_edge = self.node(source).first_edge[direction.repr];
|
||||
AdjacentEdges { graph: self, direction: direction, next: first_edge }
|
||||
AdjacentEdges {
|
||||
graph: self,
|
||||
direction: direction,
|
||||
next: first_edge,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn successor_nodes(&self, source: NodeIndex) -> AdjacentTargets<N,E> {
|
||||
pub fn successor_nodes(&self, source: NodeIndex) -> AdjacentTargets<N, E> {
|
||||
self.outgoing_edges(source).targets()
|
||||
}
|
||||
|
||||
pub fn predecessor_nodes(&self, target: NodeIndex) -> AdjacentSources<N,E> {
|
||||
pub fn predecessor_nodes(&self, target: NodeIndex) -> AdjacentSources<N, E> {
|
||||
self.incoming_edges(target).sources()
|
||||
}
|
||||
|
||||
@ -274,8 +283,8 @@ impl<N:Debug,E:Debug> Graph<N,E> {
|
||||
// variables or other bitsets. This method facilitates such a
|
||||
// computation.
|
||||
|
||||
pub fn iterate_until_fixed_point<'a, F>(&'a self, mut op: F) where
|
||||
F: FnMut(usize, EdgeIndex, &'a Edge<E>) -> bool,
|
||||
pub fn iterate_until_fixed_point<'a, F>(&'a self, mut op: F)
|
||||
where F: FnMut(usize, EdgeIndex, &'a Edge<E>) -> bool
|
||||
{
|
||||
let mut iteration = 0;
|
||||
let mut changed = true;
|
||||
@ -288,7 +297,7 @@ impl<N:Debug,E:Debug> Graph<N,E> {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn depth_traverse<'a>(&'a self, start: NodeIndex) -> DepthFirstTraversal<'a, N, E> {
|
||||
pub fn depth_traverse<'a>(&'a self, start: NodeIndex) -> DepthFirstTraversal<'a, N, E> {
|
||||
DepthFirstTraversal {
|
||||
graph: self,
|
||||
stack: vec![start],
|
||||
@ -300,25 +309,26 @@ impl<N:Debug,E:Debug> Graph<N,E> {
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Iterators
|
||||
|
||||
pub struct AdjacentEdges<'g,N,E>
|
||||
where N:'g, E:'g
|
||||
pub struct AdjacentEdges<'g, N, E>
|
||||
where N: 'g,
|
||||
E: 'g
|
||||
{
|
||||
graph: &'g Graph<N, E>,
|
||||
direction: Direction,
|
||||
next: EdgeIndex,
|
||||
}
|
||||
|
||||
impl<'g,N,E> AdjacentEdges<'g,N,E> {
|
||||
fn targets(self) -> AdjacentTargets<'g,N,E> {
|
||||
impl<'g, N, E> AdjacentEdges<'g, N, E> {
|
||||
fn targets(self) -> AdjacentTargets<'g, N, E> {
|
||||
AdjacentTargets { edges: self }
|
||||
}
|
||||
|
||||
fn sources(self) -> AdjacentSources<'g,N,E> {
|
||||
fn sources(self) -> AdjacentSources<'g, N, E> {
|
||||
AdjacentSources { edges: self }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'g, N:Debug, E:Debug> Iterator for AdjacentEdges<'g, N, E> {
|
||||
impl<'g, N: Debug, E: Debug> Iterator for AdjacentEdges<'g, N, E> {
|
||||
type Item = (EdgeIndex, &'g Edge<E>);
|
||||
|
||||
fn next(&mut self) -> Option<(EdgeIndex, &'g Edge<E>)> {
|
||||
@ -333,13 +343,14 @@ impl<'g, N:Debug, E:Debug> Iterator for AdjacentEdges<'g, N, E> {
|
||||
}
|
||||
}
|
||||
|
||||
pub struct AdjacentTargets<'g,N:'g,E:'g>
|
||||
where N:'g, E:'g
|
||||
pub struct AdjacentTargets<'g, N: 'g, E: 'g>
|
||||
where N: 'g,
|
||||
E: 'g
|
||||
{
|
||||
edges: AdjacentEdges<'g,N,E>,
|
||||
edges: AdjacentEdges<'g, N, E>,
|
||||
}
|
||||
|
||||
impl<'g, N:Debug, E:Debug> Iterator for AdjacentTargets<'g, N, E> {
|
||||
impl<'g, N: Debug, E: Debug> Iterator for AdjacentTargets<'g, N, E> {
|
||||
type Item = NodeIndex;
|
||||
|
||||
fn next(&mut self) -> Option<NodeIndex> {
|
||||
@ -347,13 +358,14 @@ impl<'g, N:Debug, E:Debug> Iterator for AdjacentTargets<'g, N, E> {
|
||||
}
|
||||
}
|
||||
|
||||
pub struct AdjacentSources<'g,N:'g,E:'g>
|
||||
where N:'g, E:'g
|
||||
pub struct AdjacentSources<'g, N: 'g, E: 'g>
|
||||
where N: 'g,
|
||||
E: 'g
|
||||
{
|
||||
edges: AdjacentEdges<'g,N,E>,
|
||||
edges: AdjacentEdges<'g, N, E>,
|
||||
}
|
||||
|
||||
impl<'g, N:Debug, E:Debug> Iterator for AdjacentSources<'g, N, E> {
|
||||
impl<'g, N: Debug, E: Debug> Iterator for AdjacentSources<'g, N, E> {
|
||||
type Item = NodeIndex;
|
||||
|
||||
fn next(&mut self) -> Option<NodeIndex> {
|
||||
@ -361,13 +373,13 @@ impl<'g, N:Debug, E:Debug> Iterator for AdjacentSources<'g, N, E> {
|
||||
}
|
||||
}
|
||||
|
||||
pub struct DepthFirstTraversal<'g, N:'g, E:'g> {
|
||||
pub struct DepthFirstTraversal<'g, N: 'g, E: 'g> {
|
||||
graph: &'g Graph<N, E>,
|
||||
stack: Vec<NodeIndex>,
|
||||
visited: BitVector
|
||||
visited: BitVector,
|
||||
}
|
||||
|
||||
impl<'g, N:Debug, E:Debug> Iterator for DepthFirstTraversal<'g, N, E> {
|
||||
impl<'g, N: Debug, E: Debug> Iterator for DepthFirstTraversal<'g, N, E> {
|
||||
type Item = NodeIndex;
|
||||
|
||||
fn next(&mut self) -> Option<NodeIndex> {
|
||||
@ -389,8 +401,8 @@ impl<'g, N:Debug, E:Debug> Iterator for DepthFirstTraversal<'g, N, E> {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn each_edge_index<F>(max_edge_index: EdgeIndex, mut f: F) where
|
||||
F: FnMut(EdgeIndex) -> bool,
|
||||
pub fn each_edge_index<F>(max_edge_index: EdgeIndex, mut f: F)
|
||||
where F: FnMut(EdgeIndex) -> bool
|
||||
{
|
||||
let mut i = 0;
|
||||
let n = max_edge_index.0;
|
||||
|
@ -64,11 +64,11 @@ fn each_edge() {
|
||||
});
|
||||
}
|
||||
|
||||
fn test_adjacent_edges<N:PartialEq+Debug,E:PartialEq+Debug>(graph: &Graph<N,E>,
|
||||
start_index: NodeIndex,
|
||||
start_data: N,
|
||||
expected_incoming: &[(E,N)],
|
||||
expected_outgoing: &[(E,N)]) {
|
||||
fn test_adjacent_edges<N: PartialEq + Debug, E: PartialEq + Debug>(graph: &Graph<N, E>,
|
||||
start_index: NodeIndex,
|
||||
start_data: N,
|
||||
expected_incoming: &[(E, N)],
|
||||
expected_outgoing: &[(E, N)]) {
|
||||
assert!(graph.node_data(start_index) == &start_data);
|
||||
|
||||
let mut counter = 0;
|
||||
@ -76,7 +76,10 @@ fn test_adjacent_edges<N:PartialEq+Debug,E:PartialEq+Debug>(graph: &Graph<N,E>,
|
||||
assert!(graph.edge_data(edge_index) == &edge.data);
|
||||
assert!(counter < expected_incoming.len());
|
||||
debug!("counter={:?} expected={:?} edge_index={:?} edge={:?}",
|
||||
counter, expected_incoming[counter], edge_index, edge);
|
||||
counter,
|
||||
expected_incoming[counter],
|
||||
edge_index,
|
||||
edge);
|
||||
match expected_incoming[counter] {
|
||||
(ref e, ref n) => {
|
||||
assert!(e == &edge.data);
|
||||
@ -93,7 +96,10 @@ fn test_adjacent_edges<N:PartialEq+Debug,E:PartialEq+Debug>(graph: &Graph<N,E>,
|
||||
assert!(graph.edge_data(edge_index) == &edge.data);
|
||||
assert!(counter < expected_outgoing.len());
|
||||
debug!("counter={:?} expected={:?} edge_index={:?} edge={:?}",
|
||||
counter, expected_outgoing[counter], edge_index, edge);
|
||||
counter,
|
||||
expected_outgoing[counter],
|
||||
edge_index,
|
||||
edge);
|
||||
match expected_outgoing[counter] {
|
||||
(ref e, ref n) => {
|
||||
assert!(e == &edge.data);
|
||||
@ -109,31 +115,27 @@ fn test_adjacent_edges<N:PartialEq+Debug,E:PartialEq+Debug>(graph: &Graph<N,E>,
|
||||
#[test]
|
||||
fn each_adjacent_from_a() {
|
||||
let graph = create_graph();
|
||||
test_adjacent_edges(&graph, NodeIndex(0), "A",
|
||||
&[],
|
||||
&[("AB", "B")]);
|
||||
test_adjacent_edges(&graph, NodeIndex(0), "A", &[], &[("AB", "B")]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn each_adjacent_from_b() {
|
||||
let graph = create_graph();
|
||||
test_adjacent_edges(&graph, NodeIndex(1), "B",
|
||||
&[("FB", "F"), ("AB", "A"),],
|
||||
&[("BD", "D"), ("BC", "C"),]);
|
||||
test_adjacent_edges(&graph,
|
||||
NodeIndex(1),
|
||||
"B",
|
||||
&[("FB", "F"), ("AB", "A")],
|
||||
&[("BD", "D"), ("BC", "C")]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn each_adjacent_from_c() {
|
||||
let graph = create_graph();
|
||||
test_adjacent_edges(&graph, NodeIndex(2), "C",
|
||||
&[("EC", "E"), ("BC", "B")],
|
||||
&[]);
|
||||
test_adjacent_edges(&graph, NodeIndex(2), "C", &[("EC", "E"), ("BC", "B")], &[]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn each_adjacent_from_d() {
|
||||
let graph = create_graph();
|
||||
test_adjacent_edges(&graph, NodeIndex(3), "D",
|
||||
&[("BD", "B")],
|
||||
&[("DE", "E")]);
|
||||
test_adjacent_edges(&graph, NodeIndex(3), "D", &[("BD", "B")], &[("DE", "E")]);
|
||||
}
|
||||
|
@ -26,14 +26,12 @@ use std::cell::Cell;
|
||||
/// suffices for the current purposes.
|
||||
#[derive(PartialEq)]
|
||||
pub struct Ivar<T: Copy> {
|
||||
data: Cell<Option<T>>
|
||||
data: Cell<Option<T>>,
|
||||
}
|
||||
|
||||
impl<T: Copy> Ivar<T> {
|
||||
pub fn new() -> Ivar<T> {
|
||||
Ivar {
|
||||
data: Cell::new(None)
|
||||
}
|
||||
Ivar { data: Cell::new(None) }
|
||||
}
|
||||
|
||||
pub fn get(&self) -> Option<T> {
|
||||
@ -41,8 +39,7 @@ impl<T: Copy> Ivar<T> {
|
||||
}
|
||||
|
||||
pub fn fulfill(&self, value: T) {
|
||||
assert!(self.data.get().is_none(),
|
||||
"Value already set!");
|
||||
assert!(self.data.get().is_none(), "Value already set!");
|
||||
self.data.set(Some(value));
|
||||
}
|
||||
|
||||
@ -55,11 +52,11 @@ impl<T: Copy> Ivar<T> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Copy+fmt::Debug> fmt::Debug for Ivar<T> {
|
||||
impl<T: Copy + fmt::Debug> fmt::Debug for Ivar<T> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
match self.get() {
|
||||
Some(val) => write!(f, "Ivar({:?})", val),
|
||||
None => f.write_str("Ivar(<unfulfilled>)")
|
||||
None => f.write_str("Ivar(<unfulfilled>)"),
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -68,7 +65,7 @@ impl<T: Copy> Clone for Ivar<T> {
|
||||
fn clone(&self) -> Ivar<T> {
|
||||
match self.get() {
|
||||
Some(val) => Ivar { data: Cell::new(Some(val)) },
|
||||
None => Ivar::new()
|
||||
None => Ivar::new(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -32,7 +32,8 @@
|
||||
#![cfg_attr(test, feature(test))]
|
||||
|
||||
extern crate core;
|
||||
#[macro_use] extern crate log;
|
||||
#[macro_use]
|
||||
extern crate log;
|
||||
extern crate serialize as rustc_serialize; // used by deriving
|
||||
|
||||
pub mod bitvec;
|
||||
|
@ -28,7 +28,7 @@ use self::tree_index::TreeIndex;
|
||||
#[cfg(test)]
|
||||
mod test;
|
||||
|
||||
pub struct ObligationForest<O,T> {
|
||||
pub struct ObligationForest<O, T> {
|
||||
/// The list of obligations. In between calls to
|
||||
/// `process_obligations`, this list only contains nodes in the
|
||||
/// `Pending` or `Success` state (with a non-zero number of
|
||||
@ -43,7 +43,7 @@ pub struct ObligationForest<O,T> {
|
||||
/// backtrace iterator (which uses `split_at`).
|
||||
nodes: Vec<Node<O>>,
|
||||
trees: Vec<Tree<T>>,
|
||||
snapshots: Vec<usize>
|
||||
snapshots: Vec<usize>,
|
||||
}
|
||||
|
||||
pub struct Snapshot {
|
||||
@ -67,7 +67,9 @@ struct Node<O> {
|
||||
#[derive(Debug)]
|
||||
enum NodeState<O> {
|
||||
/// Obligation not yet resolved to success or error.
|
||||
Pending { obligation: O },
|
||||
Pending {
|
||||
obligation: O,
|
||||
},
|
||||
|
||||
/// Obligation resolved to success; `num_incomplete_children`
|
||||
/// indicates the number of children still in an "incomplete"
|
||||
@ -77,7 +79,10 @@ enum NodeState<O> {
|
||||
///
|
||||
/// Once all children have completed, success nodes are removed
|
||||
/// from the vector by the compression step.
|
||||
Success { obligation: O, num_incomplete_children: usize },
|
||||
Success {
|
||||
obligation: O,
|
||||
num_incomplete_children: usize,
|
||||
},
|
||||
|
||||
/// This obligation was resolved to an error. Error nodes are
|
||||
/// removed from the vector by the compression step.
|
||||
@ -85,13 +90,13 @@ enum NodeState<O> {
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Outcome<O,E> {
|
||||
pub struct Outcome<O, E> {
|
||||
/// Obligations that were completely evaluated, including all
|
||||
/// (transitive) subobligations.
|
||||
pub completed: Vec<O>,
|
||||
|
||||
/// Backtrace of obligations that were found to be in error.
|
||||
pub errors: Vec<Error<O,E>>,
|
||||
pub errors: Vec<Error<O, E>>,
|
||||
|
||||
/// If true, then we saw no successful obligations, which means
|
||||
/// there is no point in further iteration. This is based on the
|
||||
@ -103,7 +108,7 @@ pub struct Outcome<O,E> {
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq, Eq)]
|
||||
pub struct Error<O,E> {
|
||||
pub struct Error<O, E> {
|
||||
pub error: E,
|
||||
pub backtrace: Vec<O>,
|
||||
}
|
||||
@ -113,7 +118,7 @@ impl<O: Debug, T: Debug> ObligationForest<O, T> {
|
||||
ObligationForest {
|
||||
trees: vec![],
|
||||
nodes: vec![],
|
||||
snapshots: vec![]
|
||||
snapshots: vec![],
|
||||
}
|
||||
}
|
||||
|
||||
@ -148,11 +153,12 @@ impl<O: Debug, T: Debug> ObligationForest<O, T> {
|
||||
// snapshot but pushing trees, all nodes after that should be
|
||||
// roots of other trees as well
|
||||
let first_root_index = self.trees[trees_len].root.get();
|
||||
debug_assert!(
|
||||
self.nodes[first_root_index..]
|
||||
.iter()
|
||||
.zip(first_root_index..)
|
||||
.all(|(root, root_index)| self.trees[root.tree.get()].root.get() == root_index));
|
||||
debug_assert!(self.nodes[first_root_index..]
|
||||
.iter()
|
||||
.zip(first_root_index..)
|
||||
.all(|(root, root_index)| {
|
||||
self.trees[root.tree.get()].root.get() == root_index
|
||||
}));
|
||||
|
||||
// Pop off tree/root pairs pushed during snapshot.
|
||||
self.trees.truncate(trees_len);
|
||||
@ -169,14 +175,17 @@ impl<O: Debug, T: Debug> ObligationForest<O, T> {
|
||||
pub fn push_tree(&mut self, obligation: O, tree_state: T) {
|
||||
let index = NodeIndex::new(self.nodes.len());
|
||||
let tree = TreeIndex::new(self.trees.len());
|
||||
self.trees.push(Tree { root: index, state: tree_state });
|
||||
self.trees.push(Tree {
|
||||
root: index,
|
||||
state: tree_state,
|
||||
});
|
||||
self.nodes.push(Node::new(tree, None, obligation));
|
||||
}
|
||||
|
||||
/// Convert all remaining obligations to the given error.
|
||||
///
|
||||
/// This cannot be done during a snapshot.
|
||||
pub fn to_errors<E:Clone>(&mut self, error: E) -> Vec<Error<O,E>> {
|
||||
pub fn to_errors<E: Clone>(&mut self, error: E) -> Vec<Error<O, E>> {
|
||||
assert!(!self.in_snapshot());
|
||||
let mut errors = vec![];
|
||||
for index in 0..self.nodes.len() {
|
||||
@ -184,7 +193,10 @@ impl<O: Debug, T: Debug> ObligationForest<O, T> {
|
||||
self.inherit_error(index);
|
||||
if let NodeState::Pending { .. } = self.nodes[index].state {
|
||||
let backtrace = self.backtrace(index);
|
||||
errors.push(Error { error: error.clone(), backtrace: backtrace });
|
||||
errors.push(Error {
|
||||
error: error.clone(),
|
||||
backtrace: backtrace,
|
||||
});
|
||||
}
|
||||
}
|
||||
let successful_obligations = self.compress();
|
||||
@ -193,21 +205,27 @@ impl<O: Debug, T: Debug> ObligationForest<O, T> {
|
||||
}
|
||||
|
||||
/// Returns the set of obligations that are in a pending state.
|
||||
pub fn pending_obligations(&self) -> Vec<O> where O: Clone {
|
||||
self.nodes.iter()
|
||||
.filter_map(|n| match n.state {
|
||||
NodeState::Pending { ref obligation } => Some(obligation),
|
||||
_ => None,
|
||||
})
|
||||
.cloned()
|
||||
.collect()
|
||||
pub fn pending_obligations(&self) -> Vec<O>
|
||||
where O: Clone
|
||||
{
|
||||
self.nodes
|
||||
.iter()
|
||||
.filter_map(|n| {
|
||||
match n.state {
|
||||
NodeState::Pending { ref obligation } => Some(obligation),
|
||||
_ => None,
|
||||
}
|
||||
})
|
||||
.cloned()
|
||||
.collect()
|
||||
}
|
||||
|
||||
/// Process the obligations.
|
||||
///
|
||||
/// This CANNOT be unrolled (presently, at least).
|
||||
pub fn process_obligations<E,F>(&mut self, mut action: F) -> Outcome<O,E>
|
||||
where E: Debug, F: FnMut(&mut O, &mut T, Backtrace<O>) -> Result<Option<Vec<O>>, E>
|
||||
pub fn process_obligations<E, F>(&mut self, mut action: F) -> Outcome<O, E>
|
||||
where E: Debug,
|
||||
F: FnMut(&mut O, &mut T, Backtrace<O>) -> Result<Option<Vec<O>>, E>
|
||||
{
|
||||
debug!("process_obligations(len={})", self.nodes.len());
|
||||
assert!(!self.in_snapshot()); // cannot unroll this action
|
||||
@ -228,7 +246,8 @@ impl<O: Debug, T: Debug> ObligationForest<O, T> {
|
||||
self.inherit_error(index);
|
||||
|
||||
debug!("process_obligations: node {} == {:?}",
|
||||
index, self.nodes[index].state);
|
||||
index,
|
||||
self.nodes[index].state);
|
||||
|
||||
let result = {
|
||||
let Node { tree, parent, .. } = self.nodes[index];
|
||||
@ -236,14 +255,16 @@ impl<O: Debug, T: Debug> ObligationForest<O, T> {
|
||||
let backtrace = Backtrace::new(prefix, parent);
|
||||
match suffix[0].state {
|
||||
NodeState::Error |
|
||||
NodeState::Success { .. } =>
|
||||
continue,
|
||||
NodeState::Pending { ref mut obligation } =>
|
||||
action(obligation, &mut self.trees[tree.get()].state, backtrace),
|
||||
NodeState::Success { .. } => continue,
|
||||
NodeState::Pending { ref mut obligation } => {
|
||||
action(obligation, &mut self.trees[tree.get()].state, backtrace)
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
debug!("process_obligations: node {} got result {:?}", index, result);
|
||||
debug!("process_obligations: node {} got result {:?}",
|
||||
index,
|
||||
result);
|
||||
|
||||
match result {
|
||||
Ok(None) => {
|
||||
@ -256,7 +277,10 @@ impl<O: Debug, T: Debug> ObligationForest<O, T> {
|
||||
}
|
||||
Err(err) => {
|
||||
let backtrace = self.backtrace(index);
|
||||
errors.push(Error { error: err, backtrace: backtrace });
|
||||
errors.push(Error {
|
||||
error: err,
|
||||
backtrace: backtrace,
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -291,20 +315,21 @@ impl<O: Debug, T: Debug> ObligationForest<O, T> {
|
||||
// create child work
|
||||
let tree_index = self.nodes[index].tree;
|
||||
let node_index = NodeIndex::new(index);
|
||||
self.nodes.extend(
|
||||
children.into_iter()
|
||||
.map(|o| Node::new(tree_index, Some(node_index), o)));
|
||||
self.nodes.extend(children.into_iter()
|
||||
.map(|o| Node::new(tree_index, Some(node_index), o)));
|
||||
}
|
||||
|
||||
// change state from `Pending` to `Success`, temporarily swapping in `Error`
|
||||
let state = mem::replace(&mut self.nodes[index].state, NodeState::Error);
|
||||
self.nodes[index].state = match state {
|
||||
NodeState::Pending { obligation } =>
|
||||
NodeState::Success { obligation: obligation,
|
||||
num_incomplete_children: num_incomplete_children },
|
||||
NodeState::Pending { obligation } => {
|
||||
NodeState::Success {
|
||||
obligation: obligation,
|
||||
num_incomplete_children: num_incomplete_children,
|
||||
}
|
||||
}
|
||||
NodeState::Success { .. } |
|
||||
NodeState::Error =>
|
||||
unreachable!()
|
||||
NodeState::Error => unreachable!(),
|
||||
};
|
||||
}
|
||||
|
||||
@ -358,14 +383,19 @@ impl<O: Debug, T: Debug> ObligationForest<O, T> {
|
||||
// there was an error in the ancestors, it should
|
||||
// have been propagated down and we should never
|
||||
// have tried to process this obligation
|
||||
panic!("encountered error in node {:?} when collecting stack trace", p);
|
||||
panic!("encountered error in node {:?} when collecting stack trace",
|
||||
p);
|
||||
}
|
||||
}
|
||||
|
||||
// loop to the parent
|
||||
match self.nodes[p].parent {
|
||||
Some(q) => { p = q.get(); }
|
||||
None => { return trace; }
|
||||
Some(q) => {
|
||||
p = q.get();
|
||||
}
|
||||
None => {
|
||||
return trace;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -427,18 +457,19 @@ impl<O: Debug, T: Debug> ObligationForest<O, T> {
|
||||
|
||||
// Pop off all the nodes we killed and extract the success
|
||||
// stories.
|
||||
let successful =
|
||||
(0 .. dead_nodes)
|
||||
.map(|_| self.nodes.pop().unwrap())
|
||||
.flat_map(|node| match node.state {
|
||||
NodeState::Error => None,
|
||||
NodeState::Pending { .. } => unreachable!(),
|
||||
NodeState::Success { obligation, num_incomplete_children } => {
|
||||
assert_eq!(num_incomplete_children, 0);
|
||||
Some(obligation)
|
||||
}
|
||||
})
|
||||
.collect();
|
||||
let successful = (0..dead_nodes)
|
||||
.map(|_| self.nodes.pop().unwrap())
|
||||
.flat_map(|node| {
|
||||
match node.state {
|
||||
NodeState::Error => None,
|
||||
NodeState::Pending { .. } => unreachable!(),
|
||||
NodeState::Success { obligation, num_incomplete_children } => {
|
||||
assert_eq!(num_incomplete_children, 0);
|
||||
Some(obligation)
|
||||
}
|
||||
}
|
||||
})
|
||||
.collect();
|
||||
|
||||
// Adjust the various indices, since we compressed things.
|
||||
for tree in &mut self.trees {
|
||||
@ -484,7 +515,10 @@ pub struct Backtrace<'b, O: 'b> {
|
||||
|
||||
impl<'b, O> Backtrace<'b, O> {
|
||||
fn new(nodes: &'b [Node<O>], pointer: Option<NodeIndex>) -> Backtrace<'b, O> {
|
||||
Backtrace { nodes: nodes, pointer: pointer }
|
||||
Backtrace {
|
||||
nodes: nodes,
|
||||
pointer: pointer,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -497,9 +531,7 @@ impl<'b, O> Iterator for Backtrace<'b, O> {
|
||||
self.pointer = self.nodes[p.get()].parent;
|
||||
match self.nodes[p.get()].state {
|
||||
NodeState::Pending { ref obligation } |
|
||||
NodeState::Success { ref obligation, .. } => {
|
||||
Some(obligation)
|
||||
}
|
||||
NodeState::Success { ref obligation, .. } => Some(obligation),
|
||||
NodeState::Error => {
|
||||
panic!("Backtrace encountered an error.");
|
||||
}
|
||||
|
@ -13,19 +13,16 @@ use std::u32;
|
||||
|
||||
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
|
||||
pub struct NodeIndex {
|
||||
index: NonZero<u32>
|
||||
index: NonZero<u32>,
|
||||
}
|
||||
|
||||
impl NodeIndex {
|
||||
pub fn new(value: usize) -> NodeIndex {
|
||||
assert!(value < (u32::MAX as usize));
|
||||
unsafe {
|
||||
NodeIndex { index: NonZero::new((value as u32) + 1) }
|
||||
}
|
||||
unsafe { NodeIndex { index: NonZero::new((value as u32) + 1) } }
|
||||
}
|
||||
|
||||
pub fn get(self) -> usize {
|
||||
(*self.index - 1) as usize
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -21,19 +21,23 @@ fn push_pop() {
|
||||
// A |-> A.1
|
||||
// |-> A.2
|
||||
// |-> A.3
|
||||
let Outcome { completed: ok, errors: err, .. } =
|
||||
forest.process_obligations(|obligation, tree, _| {
|
||||
assert_eq!(obligation.chars().next(), tree.chars().next());
|
||||
match *obligation {
|
||||
"A" => Ok(Some(vec!["A.1", "A.2", "A.3"])),
|
||||
"B" => Err("B is for broken"),
|
||||
"C" => Ok(Some(vec![])),
|
||||
_ => unreachable!(),
|
||||
}
|
||||
});
|
||||
let Outcome { completed: ok, errors: err, .. } = forest.process_obligations(|obligation,
|
||||
tree,
|
||||
_| {
|
||||
assert_eq!(obligation.chars().next(), tree.chars().next());
|
||||
match *obligation {
|
||||
"A" => Ok(Some(vec!["A.1", "A.2", "A.3"])),
|
||||
"B" => Err("B is for broken"),
|
||||
"C" => Ok(Some(vec![])),
|
||||
_ => unreachable!(),
|
||||
}
|
||||
});
|
||||
assert_eq!(ok, vec!["C"]);
|
||||
assert_eq!(err, vec![Error {error: "B is for broken",
|
||||
backtrace: vec!["B"]}]);
|
||||
assert_eq!(err,
|
||||
vec![Error {
|
||||
error: "B is for broken",
|
||||
backtrace: vec!["B"],
|
||||
}]);
|
||||
|
||||
// second round: two delays, one success, creating an uneven set of subtasks:
|
||||
// A |-> A.1
|
||||
@ -61,33 +65,41 @@ fn push_pop() {
|
||||
// propagates to A.3.i, but not D.1 or D.2.
|
||||
// D |-> D.1 |-> D.1.i
|
||||
// |-> D.2 |-> D.2.i
|
||||
let Outcome { completed: ok, errors: err, .. } =
|
||||
forest.process_obligations(|obligation, tree, _| {
|
||||
assert_eq!(obligation.chars().next(), tree.chars().next());
|
||||
match *obligation {
|
||||
"A.1" => Ok(Some(vec![])),
|
||||
"A.2" => Err("A is for apple"),
|
||||
"D.1" => Ok(Some(vec!["D.1.i"])),
|
||||
"D.2" => Ok(Some(vec!["D.2.i"])),
|
||||
_ => unreachable!(),
|
||||
}
|
||||
});
|
||||
let Outcome { completed: ok, errors: err, .. } = forest.process_obligations(|obligation,
|
||||
tree,
|
||||
_| {
|
||||
assert_eq!(obligation.chars().next(), tree.chars().next());
|
||||
match *obligation {
|
||||
"A.1" => Ok(Some(vec![])),
|
||||
"A.2" => Err("A is for apple"),
|
||||
"D.1" => Ok(Some(vec!["D.1.i"])),
|
||||
"D.2" => Ok(Some(vec!["D.2.i"])),
|
||||
_ => unreachable!(),
|
||||
}
|
||||
});
|
||||
assert_eq!(ok, vec!["A.1"]);
|
||||
assert_eq!(err, vec![Error { error: "A is for apple",
|
||||
backtrace: vec!["A.2", "A"] }]);
|
||||
assert_eq!(err,
|
||||
vec![Error {
|
||||
error: "A is for apple",
|
||||
backtrace: vec!["A.2", "A"],
|
||||
}]);
|
||||
|
||||
// fourth round: error in D.1.i that should propagate to D.2.i
|
||||
let Outcome { completed: ok, errors: err, .. } =
|
||||
forest.process_obligations(|obligation, tree, _| {
|
||||
assert_eq!(obligation.chars().next(), tree.chars().next());
|
||||
match *obligation {
|
||||
"D.1.i" => Err("D is for dumb"),
|
||||
_ => panic!("unexpected obligation {:?}", obligation),
|
||||
}
|
||||
});
|
||||
let Outcome { completed: ok, errors: err, .. } = forest.process_obligations(|obligation,
|
||||
tree,
|
||||
_| {
|
||||
assert_eq!(obligation.chars().next(), tree.chars().next());
|
||||
match *obligation {
|
||||
"D.1.i" => Err("D is for dumb"),
|
||||
_ => panic!("unexpected obligation {:?}", obligation),
|
||||
}
|
||||
});
|
||||
assert_eq!(ok, Vec::<&'static str>::new());
|
||||
assert_eq!(err, vec![Error { error: "D is for dumb",
|
||||
backtrace: vec!["D.1.i", "D.1", "D"] }]);
|
||||
assert_eq!(err,
|
||||
vec![Error {
|
||||
error: "D is for dumb",
|
||||
backtrace: vec!["D.1.i", "D.1", "D"],
|
||||
}]);
|
||||
}
|
||||
|
||||
// Test that if a tree with grandchildren succeeds, everything is
|
||||
@ -104,7 +116,7 @@ fn success_in_grandchildren() {
|
||||
forest.push_tree("A", "A");
|
||||
|
||||
let Outcome { completed: ok, errors: err, .. } =
|
||||
forest.process_obligations::<(),_>(|obligation, tree, _| {
|
||||
forest.process_obligations::<(), _>(|obligation, tree, _| {
|
||||
assert_eq!(obligation.chars().next(), tree.chars().next());
|
||||
match *obligation {
|
||||
"A" => Ok(Some(vec!["A.1", "A.2", "A.3"])),
|
||||
@ -115,7 +127,7 @@ fn success_in_grandchildren() {
|
||||
assert!(err.is_empty());
|
||||
|
||||
let Outcome { completed: ok, errors: err, .. } =
|
||||
forest.process_obligations::<(),_>(|obligation, tree, _| {
|
||||
forest.process_obligations::<(), _>(|obligation, tree, _| {
|
||||
assert_eq!(obligation.chars().next(), tree.chars().next());
|
||||
match *obligation {
|
||||
"A.1" => Ok(Some(vec![])),
|
||||
@ -128,7 +140,7 @@ fn success_in_grandchildren() {
|
||||
assert!(err.is_empty());
|
||||
|
||||
let Outcome { completed: ok, errors: err, .. } =
|
||||
forest.process_obligations::<(),_>(|obligation, tree, _| {
|
||||
forest.process_obligations::<(), _>(|obligation, tree, _| {
|
||||
assert_eq!(obligation.chars().next(), tree.chars().next());
|
||||
match *obligation {
|
||||
"A.2.i" => Ok(Some(vec!["A.2.i.a"])),
|
||||
@ -140,7 +152,7 @@ fn success_in_grandchildren() {
|
||||
assert!(err.is_empty());
|
||||
|
||||
let Outcome { completed: ok, errors: err, .. } =
|
||||
forest.process_obligations::<(),_>(|obligation, tree, _| {
|
||||
forest.process_obligations::<(), _>(|obligation, tree, _| {
|
||||
assert_eq!(obligation.chars().next(), tree.chars().next());
|
||||
match *obligation {
|
||||
"A.2.i.a" => Ok(Some(vec![])),
|
||||
@ -150,8 +162,11 @@ fn success_in_grandchildren() {
|
||||
assert_eq!(ok, vec!["A.2.i.a", "A.2.i", "A.2", "A"]);
|
||||
assert!(err.is_empty());
|
||||
|
||||
let Outcome { completed: ok, errors: err, .. } =
|
||||
forest.process_obligations::<(),_>(|_, _, _| unreachable!());
|
||||
let Outcome { completed: ok, errors: err, .. } = forest.process_obligations::<(), _>(|_,
|
||||
_,
|
||||
_| {
|
||||
unreachable!()
|
||||
});
|
||||
assert!(ok.is_empty());
|
||||
assert!(err.is_empty());
|
||||
}
|
||||
@ -163,7 +178,7 @@ fn to_errors_no_throw() {
|
||||
let mut forest = ObligationForest::new();
|
||||
forest.push_tree("A", "A");
|
||||
let Outcome { completed: ok, errors: err, .. } =
|
||||
forest.process_obligations::<(),_>(|obligation, tree, _| {
|
||||
forest.process_obligations::<(), _>(|obligation, tree, _| {
|
||||
assert_eq!(obligation.chars().next(), tree.chars().next());
|
||||
match *obligation {
|
||||
"A" => Ok(Some(vec!["A.1", "A.2", "A.3"])),
|
||||
@ -183,7 +198,7 @@ fn backtrace() {
|
||||
let mut forest = ObligationForest::new();
|
||||
forest.push_tree("A", "A");
|
||||
let Outcome { completed: ok, errors: err, .. } =
|
||||
forest.process_obligations::<(),_>(|obligation, tree, mut backtrace| {
|
||||
forest.process_obligations::<(), _>(|obligation, tree, mut backtrace| {
|
||||
assert_eq!(obligation.chars().next(), tree.chars().next());
|
||||
assert!(backtrace.next().is_none());
|
||||
match *obligation {
|
||||
@ -194,7 +209,7 @@ fn backtrace() {
|
||||
assert!(ok.is_empty());
|
||||
assert!(err.is_empty());
|
||||
let Outcome { completed: ok, errors: err, .. } =
|
||||
forest.process_obligations::<(),_>(|obligation, tree, mut backtrace| {
|
||||
forest.process_obligations::<(), _>(|obligation, tree, mut backtrace| {
|
||||
assert_eq!(obligation.chars().next(), tree.chars().next());
|
||||
assert!(backtrace.next().unwrap() == &"A");
|
||||
assert!(backtrace.next().is_none());
|
||||
@ -206,7 +221,7 @@ fn backtrace() {
|
||||
assert!(ok.is_empty());
|
||||
assert!(err.is_empty());
|
||||
let Outcome { completed: ok, errors: err, .. } =
|
||||
forest.process_obligations::<(),_>(|obligation, tree, mut backtrace| {
|
||||
forest.process_obligations::<(), _>(|obligation, tree, mut backtrace| {
|
||||
assert_eq!(obligation.chars().next(), tree.chars().next());
|
||||
assert!(backtrace.next().unwrap() == &"A.1");
|
||||
assert!(backtrace.next().unwrap() == &"A");
|
||||
|
@ -12,7 +12,7 @@ use std::u32;
|
||||
|
||||
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
|
||||
pub struct TreeIndex {
|
||||
index: u32
|
||||
index: u32,
|
||||
}
|
||||
|
||||
impl TreeIndex {
|
||||
@ -25,4 +25,3 @@ impl TreeIndex {
|
||||
self.index as usize
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -23,7 +23,7 @@ use self::UndoLog::*;
|
||||
use std::mem;
|
||||
use std::ops;
|
||||
|
||||
pub enum UndoLog<D:SnapshotVecDelegate> {
|
||||
pub enum UndoLog<D: SnapshotVecDelegate> {
|
||||
/// Indicates where a snapshot started.
|
||||
OpenSnapshot,
|
||||
|
||||
@ -37,10 +37,10 @@ pub enum UndoLog<D:SnapshotVecDelegate> {
|
||||
SetElem(usize, D::Value),
|
||||
|
||||
/// Extensible set of actions
|
||||
Other(D::Undo)
|
||||
Other(D::Undo),
|
||||
}
|
||||
|
||||
pub struct SnapshotVec<D:SnapshotVecDelegate> {
|
||||
pub struct SnapshotVec<D: SnapshotVecDelegate> {
|
||||
values: Vec<D::Value>,
|
||||
undo_log: Vec<UndoLog<D>>,
|
||||
}
|
||||
@ -58,7 +58,7 @@ pub trait SnapshotVecDelegate {
|
||||
fn reverse(values: &mut Vec<Self::Value>, action: Self::Undo);
|
||||
}
|
||||
|
||||
impl<D:SnapshotVecDelegate> SnapshotVec<D> {
|
||||
impl<D: SnapshotVecDelegate> SnapshotVec<D> {
|
||||
pub fn new() -> SnapshotVec<D> {
|
||||
SnapshotVec {
|
||||
values: Vec::new(),
|
||||
@ -117,9 +117,7 @@ impl<D:SnapshotVecDelegate> SnapshotVec<D> {
|
||||
Snapshot { length: length }
|
||||
}
|
||||
|
||||
pub fn actions_since_snapshot(&self,
|
||||
snapshot: &Snapshot)
|
||||
-> &[UndoLog<D>] {
|
||||
pub fn actions_since_snapshot(&self, snapshot: &Snapshot) -> &[UndoLog<D>] {
|
||||
&self.undo_log[snapshot.length..]
|
||||
}
|
||||
|
||||
@ -128,11 +126,10 @@ impl<D:SnapshotVecDelegate> SnapshotVec<D> {
|
||||
assert!(self.undo_log.len() > snapshot.length);
|
||||
|
||||
// Invariant established by start_snapshot():
|
||||
assert!(
|
||||
match self.undo_log[snapshot.length] {
|
||||
OpenSnapshot => true,
|
||||
_ => false
|
||||
});
|
||||
assert!(match self.undo_log[snapshot.length] {
|
||||
OpenSnapshot => true,
|
||||
_ => false,
|
||||
});
|
||||
}
|
||||
|
||||
pub fn rollback_to(&mut self, snapshot: Snapshot) {
|
||||
@ -168,7 +165,10 @@ impl<D:SnapshotVecDelegate> SnapshotVec<D> {
|
||||
}
|
||||
|
||||
let v = self.undo_log.pop().unwrap();
|
||||
assert!(match v { OpenSnapshot => true, _ => false });
|
||||
assert!(match v {
|
||||
OpenSnapshot => true,
|
||||
_ => false,
|
||||
});
|
||||
assert!(self.undo_log.len() == snapshot.length);
|
||||
}
|
||||
|
||||
@ -188,20 +188,28 @@ impl<D:SnapshotVecDelegate> SnapshotVec<D> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<D:SnapshotVecDelegate> ops::Deref for SnapshotVec<D> {
|
||||
impl<D: SnapshotVecDelegate> ops::Deref for SnapshotVec<D> {
|
||||
type Target = [D::Value];
|
||||
fn deref(&self) -> &[D::Value] { &*self.values }
|
||||
fn deref(&self) -> &[D::Value] {
|
||||
&*self.values
|
||||
}
|
||||
}
|
||||
|
||||
impl<D:SnapshotVecDelegate> ops::DerefMut for SnapshotVec<D> {
|
||||
fn deref_mut(&mut self) -> &mut [D::Value] { &mut *self.values }
|
||||
impl<D: SnapshotVecDelegate> ops::DerefMut for SnapshotVec<D> {
|
||||
fn deref_mut(&mut self) -> &mut [D::Value] {
|
||||
&mut *self.values
|
||||
}
|
||||
}
|
||||
|
||||
impl<D:SnapshotVecDelegate> ops::Index<usize> for SnapshotVec<D> {
|
||||
impl<D: SnapshotVecDelegate> ops::Index<usize> for SnapshotVec<D> {
|
||||
type Output = D::Value;
|
||||
fn index(&self, index: usize) -> &D::Value { self.get(index) }
|
||||
fn index(&self, index: usize) -> &D::Value {
|
||||
self.get(index)
|
||||
}
|
||||
}
|
||||
|
||||
impl<D:SnapshotVecDelegate> ops::IndexMut<usize> for SnapshotVec<D> {
|
||||
fn index_mut(&mut self, index: usize) -> &mut D::Value { self.get_mut(index) }
|
||||
impl<D: SnapshotVecDelegate> ops::IndexMut<usize> for SnapshotVec<D> {
|
||||
fn index_mut(&mut self, index: usize) -> &mut D::Value {
|
||||
self.get_mut(index)
|
||||
}
|
||||
}
|
||||
|
@ -14,7 +14,7 @@ use std::fmt::Debug;
|
||||
use std::mem;
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct TransitiveRelation<T:Debug+PartialEq> {
|
||||
pub struct TransitiveRelation<T: Debug + PartialEq> {
|
||||
// List of elements. This is used to map from a T to a usize. We
|
||||
// expect domain to be small so just use a linear list versus a
|
||||
// hashmap or something.
|
||||
@ -33,7 +33,7 @@ pub struct TransitiveRelation<T:Debug+PartialEq> {
|
||||
// are added with new elements. Perhaps better would be to ask the
|
||||
// user for a batch of edges to minimize this effect, but I
|
||||
// already wrote the code this way. :P -nmatsakis
|
||||
closure: RefCell<Option<BitMatrix>>
|
||||
closure: RefCell<Option<BitMatrix>>,
|
||||
}
|
||||
|
||||
#[derive(Clone, PartialEq, PartialOrd)]
|
||||
@ -45,11 +45,13 @@ struct Edge {
|
||||
target: Index,
|
||||
}
|
||||
|
||||
impl<T:Debug+PartialEq> TransitiveRelation<T> {
|
||||
impl<T: Debug + PartialEq> TransitiveRelation<T> {
|
||||
pub fn new() -> TransitiveRelation<T> {
|
||||
TransitiveRelation { elements: vec![],
|
||||
edges: vec![],
|
||||
closure: RefCell::new(None) }
|
||||
TransitiveRelation {
|
||||
elements: vec![],
|
||||
edges: vec![],
|
||||
closure: RefCell::new(None),
|
||||
}
|
||||
}
|
||||
|
||||
fn index(&self, a: &T) -> Option<Index> {
|
||||
@ -74,7 +76,10 @@ impl<T:Debug+PartialEq> TransitiveRelation<T> {
|
||||
pub fn add(&mut self, a: T, b: T) {
|
||||
let a = self.add_index(a);
|
||||
let b = self.add_index(b);
|
||||
let edge = Edge { source: a, target: b };
|
||||
let edge = Edge {
|
||||
source: a,
|
||||
target: b,
|
||||
};
|
||||
if !self.edges.contains(&edge) {
|
||||
self.edges.push(edge);
|
||||
|
||||
@ -86,10 +91,8 @@ impl<T:Debug+PartialEq> TransitiveRelation<T> {
|
||||
/// Check whether `a < target` (transitively)
|
||||
pub fn contains(&self, a: &T, b: &T) -> bool {
|
||||
match (self.index(a), self.index(b)) {
|
||||
(Some(a), Some(b)) =>
|
||||
self.with_closure(|closure| closure.contains(a.0, b.0)),
|
||||
(None, _) | (_, None) =>
|
||||
false,
|
||||
(Some(a), Some(b)) => self.with_closure(|closure| closure.contains(a.0, b.0)),
|
||||
(None, _) | (_, None) => false,
|
||||
}
|
||||
}
|
||||
|
||||
@ -156,7 +159,9 @@ impl<T:Debug+PartialEq> TransitiveRelation<T> {
|
||||
pub fn minimal_upper_bounds(&self, a: &T, b: &T) -> Vec<&T> {
|
||||
let (mut a, mut b) = match (self.index(a), self.index(b)) {
|
||||
(Some(a), Some(b)) => (a, b),
|
||||
(None, _) | (_, None) => { return vec![]; }
|
||||
(None, _) | (_, None) => {
|
||||
return vec![];
|
||||
}
|
||||
};
|
||||
|
||||
// in some cases, there are some arbitrary choices to be made;
|
||||
@ -233,7 +238,7 @@ impl<T:Debug+PartialEq> TransitiveRelation<T> {
|
||||
.collect()
|
||||
}
|
||||
|
||||
fn with_closure<OP,R>(&self, op: OP) -> R
|
||||
fn with_closure<OP, R>(&self, op: OP) -> R
|
||||
where OP: FnOnce(&BitMatrix) -> R
|
||||
{
|
||||
let mut closure_cell = self.closure.borrow_mut();
|
||||
@ -431,14 +436,15 @@ fn pdub_crisscross() {
|
||||
// b -> b1 ---+
|
||||
|
||||
let mut relation = TransitiveRelation::new();
|
||||
relation.add("a", "a1");
|
||||
relation.add("a", "b1");
|
||||
relation.add("b", "a1");
|
||||
relation.add("b", "b1");
|
||||
relation.add("a", "a1");
|
||||
relation.add("a", "b1");
|
||||
relation.add("b", "a1");
|
||||
relation.add("b", "b1");
|
||||
relation.add("a1", "x");
|
||||
relation.add("b1", "x");
|
||||
|
||||
assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"a1", &"b1"]);
|
||||
assert_eq!(relation.minimal_upper_bounds(&"a", &"b"),
|
||||
vec![&"a1", &"b1"]);
|
||||
assert_eq!(relation.postdom_upper_bound(&"a", &"b"), Some(&"x"));
|
||||
}
|
||||
|
||||
@ -451,23 +457,25 @@ fn pdub_crisscross_more() {
|
||||
// b -> b1 -> b2 ---------+
|
||||
|
||||
let mut relation = TransitiveRelation::new();
|
||||
relation.add("a", "a1");
|
||||
relation.add("a", "b1");
|
||||
relation.add("b", "a1");
|
||||
relation.add("b", "b1");
|
||||
relation.add("a", "a1");
|
||||
relation.add("a", "b1");
|
||||
relation.add("b", "a1");
|
||||
relation.add("b", "b1");
|
||||
|
||||
relation.add("a1", "a2");
|
||||
relation.add("a1", "b2");
|
||||
relation.add("b1", "a2");
|
||||
relation.add("b1", "b2");
|
||||
relation.add("a1", "a2");
|
||||
relation.add("a1", "b2");
|
||||
relation.add("b1", "a2");
|
||||
relation.add("b1", "b2");
|
||||
|
||||
relation.add("a2", "a3");
|
||||
|
||||
relation.add("a3", "x");
|
||||
relation.add("b2", "x");
|
||||
|
||||
assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"a1", &"b1"]);
|
||||
assert_eq!(relation.minimal_upper_bounds(&"a1", &"b1"), vec![&"a2", &"b2"]);
|
||||
assert_eq!(relation.minimal_upper_bounds(&"a", &"b"),
|
||||
vec![&"a1", &"b1"]);
|
||||
assert_eq!(relation.minimal_upper_bounds(&"a1", &"b1"),
|
||||
vec![&"a2", &"b2"]);
|
||||
assert_eq!(relation.postdom_upper_bound(&"a", &"b"), Some(&"x"));
|
||||
}
|
||||
|
||||
@ -479,8 +487,8 @@ fn pdub_lub() {
|
||||
// b -> b1 ---+
|
||||
|
||||
let mut relation = TransitiveRelation::new();
|
||||
relation.add("a", "a1");
|
||||
relation.add("b", "b1");
|
||||
relation.add("a", "a1");
|
||||
relation.add("b", "b1");
|
||||
relation.add("a1", "x");
|
||||
relation.add("b1", "x");
|
||||
|
||||
@ -497,9 +505,9 @@ fn mubs_intermediate_node_on_one_side_only() {
|
||||
|
||||
// "digraph { a -> c -> d; b -> d; }",
|
||||
let mut relation = TransitiveRelation::new();
|
||||
relation.add("a", "c");
|
||||
relation.add("c", "d");
|
||||
relation.add("b", "d");
|
||||
relation.add("a", "c");
|
||||
relation.add("c", "d");
|
||||
relation.add("b", "d");
|
||||
|
||||
assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"d"]);
|
||||
}
|
||||
@ -516,11 +524,11 @@ fn mubs_scc_1() {
|
||||
|
||||
// "digraph { a -> c -> d; d -> c; a -> d; b -> d; }",
|
||||
let mut relation = TransitiveRelation::new();
|
||||
relation.add("a", "c");
|
||||
relation.add("c", "d");
|
||||
relation.add("d", "c");
|
||||
relation.add("a", "d");
|
||||
relation.add("b", "d");
|
||||
relation.add("a", "c");
|
||||
relation.add("c", "d");
|
||||
relation.add("d", "c");
|
||||
relation.add("a", "d");
|
||||
relation.add("b", "d");
|
||||
|
||||
assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"c"]);
|
||||
}
|
||||
@ -536,11 +544,11 @@ fn mubs_scc_2() {
|
||||
|
||||
// "digraph { a -> c -> d; d -> c; b -> d; b -> c; }",
|
||||
let mut relation = TransitiveRelation::new();
|
||||
relation.add("a", "c");
|
||||
relation.add("c", "d");
|
||||
relation.add("d", "c");
|
||||
relation.add("b", "d");
|
||||
relation.add("b", "c");
|
||||
relation.add("a", "c");
|
||||
relation.add("c", "d");
|
||||
relation.add("d", "c");
|
||||
relation.add("b", "d");
|
||||
relation.add("b", "c");
|
||||
|
||||
assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"c"]);
|
||||
}
|
||||
@ -556,12 +564,12 @@ fn mubs_scc_3() {
|
||||
|
||||
// "digraph { a -> c -> d -> e -> c; b -> d; b -> e; }",
|
||||
let mut relation = TransitiveRelation::new();
|
||||
relation.add("a", "c");
|
||||
relation.add("c", "d");
|
||||
relation.add("d", "e");
|
||||
relation.add("e", "c");
|
||||
relation.add("b", "d");
|
||||
relation.add("b", "e");
|
||||
relation.add("a", "c");
|
||||
relation.add("c", "d");
|
||||
relation.add("d", "e");
|
||||
relation.add("e", "c");
|
||||
relation.add("b", "d");
|
||||
relation.add("b", "e");
|
||||
|
||||
assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"c"]);
|
||||
}
|
||||
@ -578,12 +586,12 @@ fn mubs_scc_4() {
|
||||
|
||||
// "digraph { a -> c -> d -> e -> c; a -> d; b -> e; }"
|
||||
let mut relation = TransitiveRelation::new();
|
||||
relation.add("a", "c");
|
||||
relation.add("c", "d");
|
||||
relation.add("d", "e");
|
||||
relation.add("e", "c");
|
||||
relation.add("a", "d");
|
||||
relation.add("b", "e");
|
||||
relation.add("a", "c");
|
||||
relation.add("c", "d");
|
||||
relation.add("d", "e");
|
||||
relation.add("e", "c");
|
||||
relation.add("a", "d");
|
||||
relation.add("b", "e");
|
||||
|
||||
assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"c"]);
|
||||
}
|
||||
|
@ -36,13 +36,13 @@ macro_rules! impl_tuple_slice {
|
||||
}
|
||||
}
|
||||
|
||||
impl_tuple_slice!((T,T), 2);
|
||||
impl_tuple_slice!((T,T,T), 3);
|
||||
impl_tuple_slice!((T,T,T,T), 4);
|
||||
impl_tuple_slice!((T,T,T,T,T), 5);
|
||||
impl_tuple_slice!((T,T,T,T,T,T), 6);
|
||||
impl_tuple_slice!((T,T,T,T,T,T,T), 7);
|
||||
impl_tuple_slice!((T,T,T,T,T,T,T,T), 8);
|
||||
impl_tuple_slice!((T, T), 2);
|
||||
impl_tuple_slice!((T, T, T), 3);
|
||||
impl_tuple_slice!((T, T, T, T), 4);
|
||||
impl_tuple_slice!((T, T, T, T, T), 5);
|
||||
impl_tuple_slice!((T, T, T, T, T, T), 6);
|
||||
impl_tuple_slice!((T, T, T, T, T, T, T), 7);
|
||||
impl_tuple_slice!((T, T, T, T, T, T, T, T), 8);
|
||||
|
||||
#[test]
|
||||
fn test_sliced_tuples() {
|
||||
|
@ -56,21 +56,21 @@ impl Combine for () {
|
||||
/// time of the algorithm under control. For more information, see
|
||||
/// <http://en.wikipedia.org/wiki/Disjoint-set_data_structure>.
|
||||
#[derive(PartialEq,Clone,Debug)]
|
||||
pub struct VarValue<K:UnifyKey> {
|
||||
parent: K, // if equal to self, this is a root
|
||||
pub struct VarValue<K: UnifyKey> {
|
||||
parent: K, // if equal to self, this is a root
|
||||
value: K::Value, // value assigned (only relevant to root)
|
||||
rank: u32, // max depth (only relevant to root)
|
||||
rank: u32, // max depth (only relevant to root)
|
||||
}
|
||||
|
||||
/// Table of unification keys and their values.
|
||||
pub struct UnificationTable<K:UnifyKey> {
|
||||
pub struct UnificationTable<K: UnifyKey> {
|
||||
/// Indicates the current value of each key.
|
||||
values: sv::SnapshotVec<Delegate<K>>,
|
||||
}
|
||||
|
||||
/// At any time, users may snapshot a unification table. The changes
|
||||
/// made during the snapshot may either be *committed* or *rolled back*.
|
||||
pub struct Snapshot<K:UnifyKey> {
|
||||
pub struct Snapshot<K: UnifyKey> {
|
||||
// Link snapshot to the key type `K` of the table.
|
||||
marker: marker::PhantomData<K>,
|
||||
snapshot: sv::Snapshot,
|
||||
@ -79,15 +79,17 @@ pub struct Snapshot<K:UnifyKey> {
|
||||
#[derive(Copy, Clone)]
|
||||
struct Delegate<K>(PhantomData<K>);
|
||||
|
||||
impl<K:UnifyKey> VarValue<K> {
|
||||
impl<K: UnifyKey> VarValue<K> {
|
||||
fn new_var(key: K, value: K::Value) -> VarValue<K> {
|
||||
VarValue::new(key, value, 0)
|
||||
}
|
||||
|
||||
fn new(parent: K, value: K::Value, rank: u32) -> VarValue<K> {
|
||||
VarValue { parent: parent, // this is a root
|
||||
value: value,
|
||||
rank: rank }
|
||||
VarValue {
|
||||
parent: parent, // this is a root
|
||||
value: value,
|
||||
rank: rank,
|
||||
}
|
||||
}
|
||||
|
||||
fn redirect(self, to: K) -> VarValue<K> {
|
||||
@ -95,7 +97,11 @@ impl<K:UnifyKey> VarValue<K> {
|
||||
}
|
||||
|
||||
fn root(self, rank: u32, value: K::Value) -> VarValue<K> {
|
||||
VarValue { rank: rank, value: value, ..self }
|
||||
VarValue {
|
||||
rank: rank,
|
||||
value: value,
|
||||
..self
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the key of this node. Only valid if this is a root
|
||||
@ -122,18 +128,18 @@ impl<K:UnifyKey> VarValue<K> {
|
||||
// other type parameter U, and we have no way to say
|
||||
// Option<U>:LatticeValue.
|
||||
|
||||
impl<K:UnifyKey> UnificationTable<K> {
|
||||
impl<K: UnifyKey> UnificationTable<K> {
|
||||
pub fn new() -> UnificationTable<K> {
|
||||
UnificationTable {
|
||||
values: sv::SnapshotVec::new()
|
||||
}
|
||||
UnificationTable { values: sv::SnapshotVec::new() }
|
||||
}
|
||||
|
||||
/// Starts a new snapshot. Each snapshot must be either
|
||||
/// rolled back or committed in a "LIFO" (stack) order.
|
||||
pub fn snapshot(&mut self) -> Snapshot<K> {
|
||||
Snapshot { marker: marker::PhantomData::<K>,
|
||||
snapshot: self.values.start_snapshot() }
|
||||
Snapshot {
|
||||
marker: marker::PhantomData::<K>,
|
||||
snapshot: self.values.start_snapshot(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Reverses all changes since the last snapshot. Also
|
||||
@ -154,9 +160,7 @@ impl<K:UnifyKey> UnificationTable<K> {
|
||||
let len = self.values.len();
|
||||
let key: K = UnifyKey::from_index(len as u32);
|
||||
self.values.push(VarValue::new_var(key, value));
|
||||
debug!("{}: created new key: {:?}",
|
||||
UnifyKey::tag(None::<K>),
|
||||
key);
|
||||
debug!("{}: created new key: {:?}", UnifyKey::tag(None::<K>), key);
|
||||
key
|
||||
}
|
||||
|
||||
@ -179,9 +183,7 @@ impl<K:UnifyKey> UnificationTable<K> {
|
||||
}
|
||||
root
|
||||
}
|
||||
None => {
|
||||
value
|
||||
}
|
||||
None => value,
|
||||
}
|
||||
}
|
||||
|
||||
@ -195,8 +197,7 @@ impl<K:UnifyKey> UnificationTable<K> {
|
||||
fn set(&mut self, key: K, new_value: VarValue<K>) {
|
||||
assert!(self.is_root(key));
|
||||
|
||||
debug!("Updating variable {:?} to {:?}",
|
||||
key, new_value);
|
||||
debug!("Updating variable {:?} to {:?}", key, new_value);
|
||||
|
||||
let index = key.index() as usize;
|
||||
self.values.set(index, new_value);
|
||||
@ -243,7 +244,7 @@ impl<K:UnifyKey> UnificationTable<K> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<K:UnifyKey> sv::SnapshotVecDelegate for Delegate<K> {
|
||||
impl<K: UnifyKey> sv::SnapshotVecDelegate for Delegate<K> {
|
||||
type Value = VarValue<K>;
|
||||
type Undo = ();
|
||||
|
||||
@ -253,7 +254,7 @@ impl<K:UnifyKey> sv::SnapshotVecDelegate for Delegate<K> {
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Base union-find algorithm, where we are just making sets
|
||||
|
||||
impl<'tcx,K:UnifyKey> UnificationTable<K>
|
||||
impl<'tcx, K: UnifyKey> UnificationTable<K>
|
||||
where K::Value: Combine
|
||||
{
|
||||
pub fn union(&mut self, a_id: K, b_id: K) {
|
||||
@ -285,30 +286,24 @@ impl<'tcx,K:UnifyKey> UnificationTable<K>
|
||||
// floats---anything that doesn't have a subtyping relationship we
|
||||
// need to worry about.
|
||||
|
||||
impl<'tcx,K,V> UnificationTable<K>
|
||||
where K: UnifyKey<Value=Option<V>>,
|
||||
V: Clone+PartialEq+Debug,
|
||||
impl<'tcx, K, V> UnificationTable<K>
|
||||
where K: UnifyKey<Value = Option<V>>,
|
||||
V: Clone + PartialEq + Debug
|
||||
{
|
||||
pub fn unify_var_var(&mut self,
|
||||
a_id: K,
|
||||
b_id: K)
|
||||
-> Result<(),(V,V)>
|
||||
{
|
||||
pub fn unify_var_var(&mut self, a_id: K, b_id: K) -> Result<(), (V, V)> {
|
||||
let node_a = self.get(a_id);
|
||||
let node_b = self.get(b_id);
|
||||
let a_id = node_a.key();
|
||||
let b_id = node_b.key();
|
||||
|
||||
if a_id == b_id { return Ok(()); }
|
||||
if a_id == b_id {
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
let combined = {
|
||||
match (&node_a.value, &node_b.value) {
|
||||
(&None, &None) => {
|
||||
None
|
||||
}
|
||||
(&Some(ref v), &None) | (&None, &Some(ref v)) => {
|
||||
Some(v.clone())
|
||||
}
|
||||
(&None, &None) => None,
|
||||
(&Some(ref v), &None) | (&None, &Some(ref v)) => Some(v.clone()),
|
||||
(&Some(ref v1), &Some(ref v2)) => {
|
||||
if *v1 != *v2 {
|
||||
return Err((v1.clone(), v2.clone()));
|
||||
@ -323,11 +318,7 @@ impl<'tcx,K,V> UnificationTable<K>
|
||||
|
||||
/// Sets the value of the key `a_id` to `b`. Because simple keys do not have any subtyping
|
||||
/// relationships, if `a_id` already has a value, it must be the same as `b`.
|
||||
pub fn unify_var_value(&mut self,
|
||||
a_id: K,
|
||||
b: V)
|
||||
-> Result<(),(V,V)>
|
||||
{
|
||||
pub fn unify_var_value(&mut self, a_id: K, b: V) -> Result<(), (V, V)> {
|
||||
let mut node_a = self.get(a_id);
|
||||
|
||||
match node_a.value {
|
||||
@ -358,7 +349,13 @@ impl<'tcx,K,V> UnificationTable<K>
|
||||
pub fn unsolved_variables(&mut self) -> Vec<K> {
|
||||
self.values
|
||||
.iter()
|
||||
.filter_map(|vv| if vv.value.is_some() { None } else { Some(vv.key()) })
|
||||
.filter_map(|vv| {
|
||||
if vv.value.is_some() {
|
||||
None
|
||||
} else {
|
||||
Some(vv.key())
|
||||
}
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
}
|
||||
|
@ -19,9 +19,15 @@ struct UnitKey(u32);
|
||||
|
||||
impl UnifyKey for UnitKey {
|
||||
type Value = ();
|
||||
fn index(&self) -> u32 { self.0 }
|
||||
fn from_index(u: u32) -> UnitKey { UnitKey(u) }
|
||||
fn tag(_: Option<UnitKey>) -> &'static str { "UnitKey" }
|
||||
fn index(&self) -> u32 {
|
||||
self.0
|
||||
}
|
||||
fn from_index(u: u32) -> UnitKey {
|
||||
UnitKey(u)
|
||||
}
|
||||
fn tag(_: Option<UnitKey>) -> &'static str {
|
||||
"UnitKey"
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
@ -45,7 +51,7 @@ fn big_array() {
|
||||
}
|
||||
|
||||
for i in 1..MAX {
|
||||
let l = keys[i-1];
|
||||
let l = keys[i - 1];
|
||||
let r = keys[i];
|
||||
ut.union(l, r);
|
||||
}
|
||||
@ -68,7 +74,7 @@ fn big_array_bench(b: &mut Bencher) {
|
||||
|
||||
b.iter(|| {
|
||||
for i in 1..MAX {
|
||||
let l = keys[i-1];
|
||||
let l = keys[i - 1];
|
||||
let r = keys[i];
|
||||
ut.union(l, r);
|
||||
}
|
||||
@ -90,16 +96,16 @@ fn even_odd() {
|
||||
keys.push(key);
|
||||
|
||||
if i >= 2 {
|
||||
ut.union(key, keys[i-2]);
|
||||
ut.union(key, keys[i - 2]);
|
||||
}
|
||||
}
|
||||
|
||||
for i in 1..MAX {
|
||||
assert!(!ut.unioned(keys[i-1], keys[i]));
|
||||
assert!(!ut.unioned(keys[i - 1], keys[i]));
|
||||
}
|
||||
|
||||
for i in 2..MAX {
|
||||
assert!(ut.unioned(keys[i-2], keys[i]));
|
||||
assert!(ut.unioned(keys[i - 2], keys[i]));
|
||||
}
|
||||
}
|
||||
|
||||
@ -108,9 +114,15 @@ struct IntKey(u32);
|
||||
|
||||
impl UnifyKey for IntKey {
|
||||
type Value = Option<i32>;
|
||||
fn index(&self) -> u32 { self.0 }
|
||||
fn from_index(u: u32) -> IntKey { IntKey(u) }
|
||||
fn tag(_: Option<IntKey>) -> &'static str { "IntKey" }
|
||||
fn index(&self) -> u32 {
|
||||
self.0
|
||||
}
|
||||
fn from_index(u: u32) -> IntKey {
|
||||
IntKey(u)
|
||||
}
|
||||
fn tag(_: Option<IntKey>) -> &'static str {
|
||||
"IntKey"
|
||||
}
|
||||
}
|
||||
|
||||
/// Test unifying a key whose value is `Some(_)` with a key whose value is `None`.
|
||||
@ -191,4 +203,3 @@ fn unify_key_Some_x_val_x() {
|
||||
assert!(ut.unify_var_value(k1, 22).is_ok());
|
||||
assert_eq!(ut.probe(k1), Some(22));
|
||||
}
|
||||
|
||||
|
@ -12,11 +12,11 @@ use std::cell::UnsafeCell;
|
||||
use std::mem;
|
||||
|
||||
pub struct VecCell<T> {
|
||||
data: UnsafeCell<Vec<T>>
|
||||
data: UnsafeCell<Vec<T>>,
|
||||
}
|
||||
|
||||
impl<T> VecCell<T> {
|
||||
pub fn with_capacity(capacity: usize) -> VecCell<T>{
|
||||
pub fn with_capacity(capacity: usize) -> VecCell<T> {
|
||||
VecCell { data: UnsafeCell::new(Vec::with_capacity(capacity)) }
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user