auto merge of #7070 : alexcrichton/rust/rusti++, r=graydon

More descriptive comments can be found throughout the code, but the bulk of this is that it addresses a vast number of issues with the old rusti model.

Closes #6772, #5675, #5469, and #6617
This commit is contained in:
bors 2013-06-12 21:22:11 -07:00
commit 4ec08d8e12
4 changed files with 778 additions and 163 deletions

434
src/librusti/program.rs Normal file
View File

@ -0,0 +1,434 @@
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::cast;
use std::hashmap::HashMap;
use std::local_data;
use std::sys;
use syntax::ast;
use syntax::parse::token;
use syntax::print::pprust;
use rustc::middle::ty;
use rustc::util::ppaux;
use utils::*;
/// This structure keeps track of the state of the world for the code being
/// executed in rusti.
struct Program {
/// All known local variables
local_vars: HashMap<~str, LocalVariable>,
/// New variables which will be present (learned from typechecking)
newvars: HashMap<~str, LocalVariable>,
/// All known view items (use statements), distinct because these must
/// follow extern mods
view_items: ~str,
/// All known 'extern mod' statements (must always come first)
externs: ~str,
/// All known structs defined. These need to have
/// #[deriving(Encodable,Decodable)] to be at all useful in rusti
structs: HashMap<~str, ~str>,
/// All other items, can all be intermingled. Duplicate definitions of the
/// same name have the previous one overwritten.
items: HashMap<~str, ~str>,
}
/// Represents a local variable that the program is currently using.
struct LocalVariable {
/// Should this variable be locally declared as mutable?
mutable: bool,
/// This is the type of the serialized data below
ty: ~str,
/// This is the serialized version of the variable
data: ~[u8],
/// When taking borrowed pointers or slices, care must be taken to ensure
/// that the deserialization produces what we'd expect. If some magic is in
/// order, the first element of this pair is the actual type of the local
/// variable (which can be different from the deserialized type), and the
/// second element are the '&'s which need to be prepended.
alterations: Option<(~str, ~str)>,
}
type LocalCache = @mut HashMap<~str, @~[u8]>;
fn tls_key(_k: @LocalCache) {}
impl Program {
pub fn new() -> Program {
Program {
local_vars: HashMap::new(),
newvars: HashMap::new(),
view_items: ~"",
externs: ~"",
structs: HashMap::new(),
items: HashMap::new(),
}
}
/// Clears all local bindings about variables, items, externs, etc.
pub fn clear(&mut self) {
*self = Program::new();
}
/// Creates a block of code to be fed to rustc. This code is not meant to
/// run, but rather it is meant to learn about the input given. This will
/// assert that the types of all bound local variables are encodable,
/// along with checking syntax and other rust-related things. The reason
/// that we only check for encodability is that some super-common types
/// (like &'static str) are not decodable, but are encodable. By doing some
/// mild approximation when decoding, we can emulate at least &str and &[T].
///
/// Once this code has been fed to rustc, it is intended that the code()
/// function is used to actually generate code to fully compile and run.
pub fn test_code(&self, user_input: &str, to_print: &Option<~str>,
new_locals: &[(~str, bool)]) -> ~str {
let mut code = self.program_header();
code.push_str("
fn assert_encodable<T: Encodable<::extra::ebml::writer::Encoder>>(t: &T) {}
");
code.push_str("fn main() {\n");
// It's easy to initialize things if we don't run things...
for self.local_vars.each |name, var| {
let mt = var.mt();
code.push_str(fmt!("let%s %s: %s = fail!();\n", mt, *name, var.ty));
var.alter(*name, &mut code);
}
code.push_str("{\n");
code.push_str(user_input);
code.push_char('\n');
match *to_print {
Some(ref s) => {
code.push_str(*s);
code.push_char('\n');
}
None => {}
}
for new_locals.each |p| {
code.push_str(fmt!("assert_encodable(&%s);\n", *p.first_ref()));
}
code.push_str("};}");
return code;
}
/// Creates a program to be fed into rustc. This program is structured to
/// deserialize all bindings into local variables, run the code input, and
/// then reserialize all the variables back out.
///
/// This program (unlike test_code) is meant to run to actually execute the
/// user's input
pub fn code(&mut self, user_input: &str, to_print: &Option<~str>) -> ~str {
let mut code = self.program_header();
code.push_str("
fn main() {
");
let key: sys::Closure = unsafe {
let tls_key: &'static fn(@LocalCache) = tls_key;
cast::transmute(tls_key)
};
// First, get a handle to the tls map which stores all the local
// variables. This works by totally legitimately using the 'code'
// pointer of the 'tls_key' function as a uint, and then casting it back
// up to a function
code.push_str(fmt!("
let __tls_map: @mut ::std::hashmap::HashMap<~str, @~[u8]> = unsafe {
let key = ::std::sys::Closure{ code: %? as *(),
env: ::std::ptr::null() };
let key = ::std::cast::transmute(key);
*::std::local_data::local_data_get(key).unwrap()
};\n", key.code as uint));
// Using this __tls_map handle, deserialize each variable binding that
// we know about
for self.local_vars.each |name, var| {
let mt = var.mt();
code.push_str(fmt!("let%s %s: %s = {
let data = __tls_map.get_copy(&~\"%s\");
let doc = ::extra::ebml::reader::Doc(data);
let mut decoder = ::extra::ebml::reader::Decoder(doc);
::extra::serialize::Decodable::decode(&mut decoder)
};\n", mt, *name, var.ty, *name));
var.alter(*name, &mut code);
}
// After all that, actually run the user's code.
code.push_str(user_input);
code.push_char('\n');
match *to_print {
Some(ref s) => { code.push_str(fmt!("pp({\n%s\n});", *s)); }
None => {}
}
do self.newvars.consume |name, var| {
self.local_vars.insert(name, var);
}
// After the input code is run, we can re-serialize everything back out
// into tls map (to be read later on by this task)
for self.local_vars.each |name, var| {
code.push_str(fmt!("{
let local: %s = %s;
let bytes = do ::std::io::with_bytes_writer |io| {
let mut enc = ::extra::ebml::writer::Encoder(io);
local.encode(&mut enc);
};
__tls_map.insert(~\"%s\", @bytes);
}\n", var.real_ty(), *name, *name));
}
// Close things up, and we're done.
code.push_str("}");
return code;
}
/// Creates the header of the programs which are generated to send to rustc
fn program_header(&self) -> ~str {
// up front, disable lots of annoying lints, then include all global
// state such as items, view items, and extern mods.
let mut code = fmt!("
#[allow(ctypes)];
#[allow(heap_memory)];
#[allow(implicit_copies)];
#[allow(managed_heap_memory)];
#[allow(non_camel_case_types)];
#[allow(owned_heap_memory)];
#[allow(path_statement)];
#[allow(unrecognized_lint)];
#[allow(unused_imports)];
#[allow(while_true)];
#[allow(unused_variable)];
#[allow(dead_assignment)];
#[allow(unused_unsafe)];
#[allow(unused_mut)];
#[allow(unreachable_code)];
extern mod extra;
%s // extern mods
use extra::serialize::*;
%s // view items
", self.externs, self.view_items);
for self.structs.each_value |s| {
// The structs aren't really useful unless they're encodable
code.push_str("#[deriving(Encodable, Decodable)]");
code.push_str(*s);
code.push_str("\n");
}
for self.items.each_value |s| {
code.push_str(*s);
code.push_str("\n");
}
code.push_str("fn pp<T>(t: T) { println(fmt!(\"%?\", t)); }\n");
return code;
}
/// Initializes the task-local cache of all local variables known to the
/// program. This will be used to read local variables out of once the
/// program starts
pub fn set_cache(&self) {
let map = @mut HashMap::new();
for self.local_vars.each |name, value| {
map.insert(copy *name, @copy value.data);
}
unsafe {
local_data::local_data_set(tls_key, @map);
}
}
/// Once the program has finished running, this function will consume the
/// task-local cache of local variables. After the program finishes running,
/// it updates this cache with the new values of each local variable.
pub fn consume_cache(&mut self) {
let map = unsafe {
local_data::local_data_pop(tls_key).expect("tls is empty")
};
do map.consume |name, value| {
match self.local_vars.find_mut(&name) {
Some(v) => { v.data = copy *value; }
None => { fail!("unknown variable %s", name) }
}
}
}
// Simple functions to record various global things (as strings)
pub fn record_view_item(&mut self, vi: &str) {
self.view_items.push_str(vi);
self.view_items.push_char('\n');
}
pub fn record_struct(&mut self, name: &str, s: ~str) {
let name = name.to_owned();
self.items.remove(&name);
self.structs.insert(name, s);
}
pub fn record_item(&mut self, name: &str, it: ~str) {
let name = name.to_owned();
self.structs.remove(&name);
self.items.insert(name, it);
}
pub fn record_extern(&mut self, name: &str) {
self.externs.push_str(name);
self.externs.push_char('\n');
}
/// This monster function is responsible for reading the main function
/// generated by test_code() to determine the type of each local binding
/// created by the user's input.
///
/// Once the types are known, they are inserted into the local_vars map in
/// this Program (to be deserialized later on
pub fn register_new_vars(&mut self, blk: &ast::blk, tcx: ty::ctxt) {
debug!("looking for new variables");
let newvars = @mut HashMap::new();
do each_user_local(blk) |local| {
let mutable = local.node.is_mutbl;
do each_binding(local) |path, id| {
let name = do with_pp(token::get_ident_interner()) |pp, _| {
pprust::print_path(pp, path, false);
};
let mut t = ty::node_id_to_type(tcx, id);
let mut tystr = ~"";
let mut lvar = LocalVariable {
ty: ~"",
data: ~[],
mutable: mutable,
alterations: None,
};
// This loop is responsible for figuring out what "alterations"
// are necessary for this local variable.
loop {
match ty::get(t).sty {
// &T encoded will decode to T, so we need to be sure to
// re-take a loan after decoding
ty::ty_rptr(_, mt) => {
if mt.mutbl == ast::m_mutbl {
tystr.push_str("&mut ");
} else {
tystr.push_str("&");
}
t = mt.ty;
}
// Literals like [1, 2, 3] and (~[0]).slice() will both
// be serialized to ~[T], whereas it's requested to be a
// &[T] instead.
ty::ty_evec(mt, ty::vstore_slice(*)) |
ty::ty_evec(mt, ty::vstore_fixed(*)) => {
let vty = ppaux::ty_to_str(tcx, mt.ty);
let derefs = copy tystr;
lvar.ty = tystr + "~[" + vty + "]";
lvar.alterations = Some((tystr + "&[" + vty + "]",
derefs));
break;
}
// Similar to vectors, &str serializes to ~str, so a
// borrow must be taken
ty::ty_estr(ty::vstore_slice(*)) => {
let derefs = copy tystr;
lvar.ty = tystr + "~str";
lvar.alterations = Some((tystr + "&str", derefs));
break;
}
// Don't generate extra stuff if there's no borrowing
// going on here
_ if "" == tystr => {
lvar.ty = ppaux::ty_to_str(tcx, t);
break;
}
// If we're just borrowing (no vectors or strings), then
// we just need to record how many borrows there were.
_ => {
let derefs = copy tystr;
let tmptystr = ppaux::ty_to_str(tcx, t);
lvar.alterations = Some((tystr + tmptystr, derefs));
lvar.ty = tmptystr;
break;
}
}
}
newvars.insert(name, lvar);
}
}
// I'm not an @ pointer, so this has to be done outside.
do newvars.consume |k, v| {
self.newvars.insert(k, v);
}
// helper functions to perform ast iteration
fn each_user_local(blk: &ast::blk, f: &fn(@ast::local)) {
do find_user_block(blk) |blk| {
for blk.node.stmts.each |stmt| {
match stmt.node {
ast::stmt_decl(d, _) => {
match d.node {
ast::decl_local(l) => { f(l); }
_ => {}
}
}
_ => {}
}
}
}
}
fn find_user_block(blk: &ast::blk, f: &fn(&ast::blk)) {
for blk.node.stmts.each |stmt| {
match stmt.node {
ast::stmt_semi(e, _) => {
match e.node {
ast::expr_block(ref blk) => { return f(blk); }
_ => {}
}
}
_ => {}
}
}
fail!("couldn't find user block");
}
}
}
impl LocalVariable {
/// Performs alterations to the code provided, given the name of this
/// variable.
fn alter(&self, name: &str, code: &mut ~str) {
match self.alterations {
Some((ref real_ty, ref prefix)) => {
code.push_str(fmt!("let%s %s: %s = %s%s;\n",
self.mt(), name,
*real_ty, *prefix, name));
}
None => {}
}
}
fn real_ty<'a>(&'a self) -> &'a str {
match self.alterations {
Some((ref real_ty, _)) => {
let ret: &'a str = *real_ty;
return ret;
}
None => {
let ret: &'a str = self.ty;
return ret;
}
}
}
fn mt(&self) -> &'static str {
if self.mutable {" mut"} else {""}
}
}

View File

@ -8,7 +8,40 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// rusti - REPL using the JIT backend
/*!
* rusti - A REPL using the JIT backend
*
* Rusti works by serializing state between lines of input. This means that each
* line can be run in a separate task, and the only limiting factor is that all
* local bound variables are encodable.
*
* This is accomplished by feeding in generated input to rustc for execution in
* the JIT compiler. Currently input actually gets fed in three times to get
* information about the program.
*
* - Pass #1
* In this pass, the input is simply thrown at the parser and the input comes
* back. This validates the structure of the program, and at this stage the
* global items (fns, structs, impls, traits, etc.) are filtered from the
* input into the "global namespace". These declarations shadow all previous
* declarations of an item by the same name.
*
* - Pass #2
* After items have been stripped, the remaining input is passed to rustc
* along with all local variables declared (initialized to nothing). This pass
* runs up to typechecking. From this, we can learn about the types of each
* bound variable, what variables are bound, and also ensure that all the
* types are encodable (the input can actually be run).
*
* - Pass #3
* Finally, a program is generated to deserialize the local variable state,
* run the code input, and then reserialize all bindings back into a local
* hash map. Once this code runs, the input has fully been run and the REPL
* waits for new input.
*
* Encoding/decoding is done with EBML, and there is simply a map of ~str ->
* ~[u8] maintaining the values of each local binding (by name).
*/
#[link(name = "rusti",
vers = "0.7-pre",
@ -18,24 +51,25 @@
#[license = "MIT/ASL2"];
#[crate_type = "lib"];
#[no_std];
extern mod core(name = "std");
extern mod std(name = "extra");
extern mod extra;
extern mod rustc;
extern mod syntax;
use core::prelude::*;
use core::*;
use std::{libc, io, os, task, vec};
use std::cell::Cell;
use extra::rl;
use core::cell::Cell;
use rustc::driver::{driver, session};
use syntax::{ast, diagnostic};
use syntax::ast_util::*;
use syntax::parse::token;
use syntax::print::{pp, pprust};
use std::rl;
use syntax::print::pprust;
use program::Program;
use utils::*;
mod program;
pub mod utils;
/**
* A structure shared across REPL instances for storing history
@ -45,9 +79,9 @@ pub struct Repl {
prompt: ~str,
binary: ~str,
running: bool,
view_items: ~str,
lib_search_paths: ~[~str],
stmts: ~str
program: Program,
}
// Action to do after reading a :command
@ -56,67 +90,9 @@ enum CmdAction {
action_run_line(~str),
}
/// A utility function that hands off a pretty printer to a callback.
fn with_pp(intr: @token::ident_interner,
cb: &fn(@pprust::ps, @io::Writer)) -> ~str {
do io::with_str_writer |writer| {
let pp = pprust::rust_printer(writer, intr);
cb(pp, writer);
pp::eof(pp.s);
}
}
/**
* The AST (or the rest of rustc) are not sendable yet,
* so recorded things are printed to strings. A terrible hack that
* needs changes to rustc in order to be outed. This is unfortunately
* going to cause the REPL to regress in parser performance,
* because it has to parse the statements and view_items on each
* input.
*/
fn record(mut repl: Repl, blk: &ast::blk, intr: @token::ident_interner) -> Repl {
if blk.node.view_items.len() > 0 {
let new_view_items = do with_pp(intr) |pp, writer| {
for blk.node.view_items.each |view_item| {
pprust::print_view_item(pp, *view_item);
writer.write_line("");
}
};
debug!("new view items %s", new_view_items);
repl.view_items = repl.view_items + "\n" + new_view_items
}
if blk.node.stmts.len() > 0 {
let new_stmts = do with_pp(intr) |pp, writer| {
for blk.node.stmts.each |stmt| {
match stmt.node {
ast::stmt_decl(*) | ast::stmt_mac(*) => {
pprust::print_stmt(pp, *stmt);
writer.write_line("");
}
ast::stmt_expr(expr, _) | ast::stmt_semi(expr, _) => {
match expr.node {
ast::expr_assign(*) |
ast::expr_assign_op(*) |
_ => {}
}
}
}
}
};
debug!("new stmts %s", new_stmts);
repl.stmts = repl.stmts + "\n" + new_stmts
}
return repl;
}
/// Run an input string in a Repl, returning the new Repl.
fn run(repl: Repl, input: ~str) -> Repl {
fn run(mut repl: Repl, input: ~str) -> Repl {
// Build some necessary rustc boilerplate for compiling things
let binary = repl.binary.to_managed();
let options = @session::options {
crate_type: session::unknown_crate,
@ -125,56 +101,165 @@ fn run(repl: Repl, input: ~str) -> Repl {
jit: true,
.. copy *session::basic_options()
};
// Because we assume that everything is encodable (and assert so), add some
// extra helpful information if the error crops up. Otherwise people are
// bound to be very confused when they find out code is running that they
// never typed in...
let sess = driver::build_session(options, |cm, msg, lvl| {
diagnostic::emit(cm, msg, lvl);
if msg.contains("failed to find an implementation of trait") &&
msg.contains("extra::serialize::Encodable") {
diagnostic::emit(cm,
"Currrently rusti serializes bound locals between \
different lines of input. This means that all \
values of local variables need to be encodable, \
and this type isn't encodable",
diagnostic::note);
}
});
let intr = token::get_ident_interner();
debug!("building driver input");
let head = include_str!("wrapper.rs").to_owned();
let foot = fmt!("fn main() {\n%s\n%s\n\nprint({\n%s\n})\n}",
repl.view_items, repl.stmts, input);
let wrapped = driver::str_input((head + foot).to_managed());
//
// Stage 1: parse the input and filter it into the program (as necessary)
//
debug!("parsing: %s", input);
let crate = parse_input(sess, binary, input);
let mut to_run = ~[]; // statements to run (emitted back into code)
let new_locals = @mut ~[]; // new locals being defined
let mut result = None; // resultant expression (to print via pp)
do find_main(crate, sess) |blk| {
// Fish out all the view items, be sure to record 'extern mod' items
// differently beause they must appear before all 'use' statements
for blk.node.view_items.each |vi| {
let s = do with_pp(intr) |pp, _| {
pprust::print_view_item(pp, *vi);
};
match vi.node {
ast::view_item_extern_mod(*) => {
repl.program.record_extern(s);
}
ast::view_item_use(*) => { repl.program.record_view_item(s); }
}
}
debug!("inputting %s", head + foot);
// Iterate through all of the block's statements, inserting them into
// the correct portions of the program
for blk.node.stmts.each |stmt| {
let s = do with_pp(intr) |pp, _| { pprust::print_stmt(pp, *stmt); };
match stmt.node {
ast::stmt_decl(d, _) => {
match d.node {
ast::decl_item(it) => {
let name = sess.str_of(it.ident);
match it.node {
// Structs are treated specially because to make
// them at all usable they need to be decorated
// with #[deriving(Encoable, Decodable)]
ast::item_struct(*) => {
repl.program.record_struct(name, s);
}
// Item declarations are hoisted out of main()
_ => { repl.program.record_item(name, s); }
}
}
debug!("building a driver session");
let sess = driver::build_session(options, diagnostic::emit);
// Local declarations must be specially dealt with,
// record all local declarations for use later on
ast::decl_local(l) => {
let mutbl = l.node.is_mutbl;
do each_binding(l) |path, _| {
let s = do with_pp(intr) |pp, _| {
pprust::print_path(pp, path, false);
};
new_locals.push((s, mutbl));
}
to_run.push(s);
}
}
}
debug!("building driver configuration");
let cfg = driver::build_configuration(sess,
binary,
&wrapped);
let outputs = driver::build_output_filenames(&wrapped, &None, &None, [], sess);
debug!("calling compile_upto");
let crate = driver::parse_input(sess, copy cfg, &wrapped);
driver::compile_rest(sess, cfg, driver::compile_upto { from: driver::cu_parse,
to: driver::cu_everything },
Some(outputs), Some(crate));
let mut opt = None;
for crate.node.module.items.each |item| {
match item.node {
ast::item_fn(_, _, _, _, ref blk) => {
if item.ident == sess.ident_of("main") {
opt = blk.node.expr;
// run statements with expressions (they have effects)
ast::stmt_mac(*) | ast::stmt_semi(*) | ast::stmt_expr(*) => {
to_run.push(s);
}
}
_ => {}
}
result = do blk.node.expr.map_consume |e| {
do with_pp(intr) |pp, _| { pprust::print_expr(pp, e); }
};
}
// return fast for empty inputs
if to_run.len() == 0 && result.is_none() {
return repl;
}
let e = opt.unwrap();
let blk = match e.node {
ast::expr_call(_, ref exprs, _) => {
match exprs[0].node {
ast::expr_block(ref blk) => blk,
_ => fail!()
//
// Stage 2: run everything up to typeck to learn the types of the new
// variables introduced into the program
//
info!("Learning about the new types in the program");
repl.program.set_cache(); // before register_new_vars (which changes them)
let input = to_run.connect("\n");
let test = repl.program.test_code(input, &result, *new_locals);
debug!("testing with ^^^^^^ %?", (||{ println(test) })());
let dinput = driver::str_input(test.to_managed());
let cfg = driver::build_configuration(sess, binary, &dinput);
let outputs = driver::build_output_filenames(&dinput, &None, &None, [], sess);
let (crate, tcx) = driver::compile_upto(sess, copy cfg, &dinput,
driver::cu_typeck, Some(outputs));
// Once we're typechecked, record the types of all local variables defined
// in this input
do find_main(crate.expect("crate after cu_typeck"), sess) |blk| {
repl.program.register_new_vars(blk, tcx.expect("tcx after cu_typeck"));
}
//
// Stage 3: Actually run the code in the JIT
//
info!("actually running code");
let code = repl.program.code(input, &result);
debug!("actually running ^^^^^^ %?", (||{ println(code) })());
let input = driver::str_input(code.to_managed());
let cfg = driver::build_configuration(sess, binary, &input);
let outputs = driver::build_output_filenames(&input, &None, &None, [], sess);
let sess = driver::build_session(options, diagnostic::emit);
driver::compile_upto(sess, cfg, &input, driver::cu_everything,
Some(outputs));
//
// Stage 4: Inform the program that computation is done so it can update all
// local variable bindings.
//
info!("cleaning up after code");
repl.program.consume_cache();
return repl;
fn parse_input(sess: session::Session, binary: @str,
input: &str) -> @ast::crate {
let code = fmt!("fn main() {\n %s \n}", input);
let input = driver::str_input(code.to_managed());
let cfg = driver::build_configuration(sess, binary, &input);
let outputs = driver::build_output_filenames(&input, &None, &None, [], sess);
let (crate, _) = driver::compile_upto(sess, cfg, &input,
driver::cu_parse, Some(outputs));
crate.expect("parsing should return a crate")
}
fn find_main(crate: @ast::crate, sess: session::Session,
f: &fn(&ast::blk)) {
for crate.node.module.items.each |item| {
match item.node {
ast::item_fn(_, _, _, _, ref blk) => {
if item.ident == sess.ident_of("main") {
return f(blk);
}
}
_ => {}
}
}
_ => fail!()
};
debug!("recording input into repl history");
record(repl, blk, token::get_ident_interner())
fail!("main function was expected somewhere...");
}
}
// Compiles a crate given by the filename as a library if the compiled
@ -265,8 +350,7 @@ fn run_cmd(repl: &mut Repl, _in: @io::Reader, _out: @io::Writer,
match cmd {
~"exit" => repl.running = false,
~"clear" => {
repl.view_items = ~"";
repl.stmts = ~"";
repl.program.clear();
// XXX: Win32 version of linenoise can't do this
//rl::clear();
@ -296,12 +380,9 @@ fn run_cmd(repl: &mut Repl, _in: @io::Reader, _out: @io::Writer,
for loaded_crates.each |crate| {
let crate_path = Path(*crate);
let crate_dir = crate_path.dirname();
let crate_name = crate_path.filename().get();
if !repl.view_items.contains(*crate) {
repl.view_items += fmt!("extern mod %s;\n", crate_name);
if !repl.lib_search_paths.contains(&crate_dir) {
repl.lib_search_paths.push(crate_dir);
}
repl.program.record_extern(fmt!("extern mod %s;", *crate));
if !repl.lib_search_paths.contains(&crate_dir) {
repl.lib_search_paths.push(crate_dir);
}
}
if loaded_crates.is_empty() {
@ -340,7 +421,7 @@ pub fn run_line(repl: &mut Repl, in: @io::Reader, out: @io::Writer, line: ~str,
-> Option<Repl> {
if line.starts_with(":") {
// FIXME #5898: conflicts with Cell.take(), so can't be at the top level
use core::iterator::IteratorUtil;
use std::iterator::IteratorUtil;
// drop the : and the \n (one byte each)
let full = line.slice(1, line.len() - 1);
@ -388,9 +469,9 @@ pub fn main() {
prompt: ~"rusti> ",
binary: copy args[0],
running: true,
view_items: ~"",
lib_search_paths: ~[],
stmts: ~""
program: Program::new(),
};
let istty = unsafe { libc::isatty(libc::STDIN_FILENO as i32) } != 0;
@ -434,23 +515,24 @@ pub fn main() {
#[cfg(test)]
mod tests {
use std::io;
use std::iterator::IteratorUtil;
use program::Program;
use super::*;
use core::io;
fn repl() -> Repl {
Repl {
prompt: ~"rusti> ",
binary: ~"rusti",
running: true,
view_items: ~"",
lib_search_paths: ~[],
stmts: ~""
program: Program::new(),
}
}
fn run_cmds(cmds: &[&str]) {
fn run_program(prog: &str) {
let mut r = repl();
for cmds.each |&cmd| {
for prog.split_iter('\n').advance |cmd| {
let result = run_line(&mut r, io::stdin(), io::stdout(),
cmd.to_owned(), false);
r = result.expect(fmt!("the command '%s' failed", cmd));
@ -469,18 +551,102 @@ mod tests {
// To get some interesting output, run with RUST_LOG=rusti::tests
debug!("hopefully this runs");
run_cmds([""]);
run_program("");
debug!("regression test for #5937");
run_cmds(["use std;", ""]);
run_program("use std::hashmap;");
debug!("regression test for #5784");
run_cmds(["let a = 1;"]);
run_program("let a = 3;");
// XXX: can't spawn new tasks because the JIT code is cleaned up
// after the main function is done.
// debug!("regression test for #5803");
// run_cmds(["spawn( || println(\"Please don't segfault\") );",
// "do spawn { println(\"Please?\"); }"]);
// run_program("
// spawn( || println(\"Please don't segfault\") );
// do spawn { println(\"Please?\"); }
// ");
debug!("inferred integers are usable");
run_program("let a = 2;\n()\n");
run_program("
let a = 3;
let b = 4u;
assert!((a as uint) + b == 7)
");
debug!("local variables can be shadowed");
run_program("
let a = 3;
let a = 5;
assert!(a == 5)
");
debug!("strings are usable");
run_program("
let a = ~\"\";
let b = \"\";
let c = @\"\";
let d = a + b + c;
assert!(d.len() == 0);
");
debug!("vectors are usable");
run_program("
let a = ~[1, 2, 3];
let b = &[1, 2, 3];
let c = @[1, 2, 3];
let d = a + b + c;
assert!(d.len() == 9);
let e: &[int] = [];
");
debug!("structs are usable");
run_program("
struct A{ a: int }
let b = A{ a: 3 };
assert!(b.a == 3)
");
debug!("mutable variables");
run_program("
let mut a = 3;
a = 5;
let mut b = std::hashmap::HashSet::new::<int>();
b.insert(a);
assert!(b.contains(&5))
assert!(b.len() == 1)
");
debug!("functions are cached");
run_program("
fn fib(x: int) -> int { if x < 2 {x} else { fib(x - 1) + fib(x - 2) } }
let a = fib(3);
let a = a + fib(4);
assert!(a == 5)
");
debug!("modules are cached");
run_program("
mod b { pub fn foo() -> uint { 3 } }
assert!(b::foo() == 3)
");
debug!("multiple function definitions are allowed");
run_program("
fn f() {}
fn f() {}
f()
");
debug!("multiple item definitions are allowed");
run_program("
fn f() {}
mod f {}
struct f;
enum f {}
fn f() {}
f()
");
}
}

45
src/librusti/utils.rs Normal file
View File

@ -0,0 +1,45 @@
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::io;
use syntax::ast;
use syntax::print::pp;
use syntax::print::pprust;
use syntax::parse::token;
pub fn each_binding(l: @ast::local, f: @fn(@ast::Path, ast::node_id)) {
use syntax::visit;
let vt = visit::mk_simple_visitor(
@visit::SimpleVisitor {
visit_pat: |pat| {
match pat.node {
ast::pat_ident(_, path, _) => {
f(path, pat.id);
}
_ => {}
}
},
.. *visit::default_simple_visitor()
}
);
(vt.visit_pat)(l.node.pat, ((), vt));
}
/// A utility function that hands off a pretty printer to a callback.
pub fn with_pp(intr: @token::ident_interner,
cb: &fn(@pprust::ps, @io::Writer)) -> ~str {
do io::with_str_writer |writer| {
let pp = pprust::rust_printer(writer, intr);
cb(pp, writer);
pp::eof(pp.s);
}
}

View File

@ -1,30 +0,0 @@
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[allow(ctypes)];
#[allow(heap_memory)];
#[allow(implicit_copies)];
#[allow(managed_heap_memory)];
#[allow(non_camel_case_types)];
#[allow(owned_heap_memory)];
#[allow(path_statement)];
#[allow(unrecognized_lint)];
#[allow(unused_imports)];
#[allow(while_true)];
#[allow(unused_variable)];
#[allow(dead_assignment)];
#[allow(unused_unsafe)];
#[allow(unused_mut)];
extern mod std;
fn print<T>(result: T) {
println(fmt!("%?", result));
}