move validation to its own file

This commit is contained in:
Ralf Jung 2018-08-17 12:18:02 +02:00
parent f2aeb5b893
commit 5099933614
3 changed files with 346 additions and 331 deletions

View File

@ -7,7 +7,7 @@ use rustc::hir::def::Def;
use rustc::hir::map::definitions::DefPathData; use rustc::hir::map::definitions::DefPathData;
use rustc::mir; use rustc::mir;
use rustc::ty::layout::{ use rustc::ty::layout::{
self, Size, Align, HasDataLayout, LayoutOf, TyLayout, Primitive self, Size, Align, HasDataLayout, LayoutOf, TyLayout
}; };
use rustc::ty::subst::{Subst, Substs}; use rustc::ty::subst::{Subst, Substs};
use rustc::ty::{self, Ty, TyCtxt, TypeFoldable}; use rustc::ty::{self, Ty, TyCtxt, TypeFoldable};
@ -15,7 +15,7 @@ use rustc::ty::query::TyCtxtAt;
use rustc_data_structures::fx::{FxHashSet, FxHasher}; use rustc_data_structures::fx::{FxHashSet, FxHasher};
use rustc_data_structures::indexed_vec::IndexVec; use rustc_data_structures::indexed_vec::IndexVec;
use rustc::mir::interpret::{ use rustc::mir::interpret::{
GlobalId, Scalar, FrameInfo, AllocType, GlobalId, Scalar, FrameInfo,
EvalResult, EvalErrorKind, EvalResult, EvalErrorKind,
ScalarMaybeUndef, ScalarMaybeUndef,
truncate, sign_extend, truncate, sign_extend,
@ -29,31 +29,6 @@ use super::{
Memory, Machine Memory, Machine
}; };
macro_rules! validation_failure{
($what:expr, $where:expr, $details:expr) => {{
let where_ = if $where.is_empty() {
String::new()
} else {
format!(" at {}", $where)
};
err!(ValidationFailure(format!(
"encountered {}{}, but expected {}",
$what, where_, $details,
)))
}};
($what:expr, $where:expr) => {{
let where_ = if $where.is_empty() {
String::new()
} else {
format!(" at {}", $where)
};
err!(ValidationFailure(format!(
"encountered {}{}",
$what, where_,
)))
}};
}
pub struct EvalContext<'a, 'mir, 'tcx: 'a + 'mir, M: Machine<'mir, 'tcx>> { pub struct EvalContext<'a, 'mir, 'tcx: 'a + 'mir, M: Machine<'mir, 'tcx>> {
/// Stores the `Machine` instance. /// Stores the `Machine` instance.
pub machine: M, pub machine: M,
@ -670,243 +645,6 @@ impl<'a, 'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M
self.tcx.const_eval(param_env.and(gid)).map_err(|err| EvalErrorKind::ReferencedConstant(err).into()) self.tcx.const_eval(param_env.and(gid)).map_err(|err| EvalErrorKind::ReferencedConstant(err).into())
} }
fn validate_scalar(
&self,
value: ScalarMaybeUndef,
size: Size,
scalar: &layout::Scalar,
path: &str,
ty: Ty,
) -> EvalResult<'tcx> {
trace!("validate scalar: {:#?}, {:#?}, {:#?}, {}", value, size, scalar, ty);
let (lo, hi) = scalar.valid_range.clone().into_inner();
let value = match value {
ScalarMaybeUndef::Scalar(scalar) => scalar,
ScalarMaybeUndef::Undef => return validation_failure!("undefined bytes", path),
};
let bits = match value {
Scalar::Bits { bits, size: value_size } => {
assert_eq!(value_size as u64, size.bytes());
bits
},
Scalar::Ptr(_) => {
let ptr_size = self.memory.pointer_size();
let ptr_max = u128::max_value() >> (128 - ptr_size.bits());
return if lo > hi {
if lo - hi == 1 {
// no gap, all values are ok
Ok(())
} else if hi < ptr_max || lo > 1 {
let max = u128::max_value() >> (128 - size.bits());
validation_failure!(
"pointer",
path,
format!("something in the range {:?} or {:?}", 0..=lo, hi..=max)
)
} else {
Ok(())
}
} else if hi < ptr_max || lo > 1 {
validation_failure!(
"pointer",
path,
format!("something in the range {:?}", scalar.valid_range)
)
} else {
Ok(())
};
},
};
// char gets a special treatment, because its number space is not contiguous so `TyLayout`
// has no special checks for chars
match ty.sty {
ty::TyChar => {
debug_assert_eq!(size.bytes(), 4);
if ::std::char::from_u32(bits as u32).is_none() {
return err!(InvalidChar(bits));
}
}
_ => {},
}
use std::ops::RangeInclusive;
let in_range = |bound: RangeInclusive<u128>| bound.contains(&bits);
if lo > hi {
if in_range(0..=hi) || in_range(lo..=u128::max_value()) {
Ok(())
} else {
validation_failure!(
bits,
path,
format!("something in the range {:?} or {:?}", ..=hi, lo..)
)
}
} else {
if in_range(scalar.valid_range.clone()) {
Ok(())
} else {
validation_failure!(
bits,
path,
format!("something in the range {:?}", scalar.valid_range)
)
}
}
}
/// This function checks the memory where `ptr` points to.
/// It will error if the bits at the destination do not match the ones described by the layout.
pub fn validate_mplace(
&self,
dest: MPlaceTy<'tcx>,
path: String,
seen: &mut FxHashSet<(MPlaceTy<'tcx>)>,
todo: &mut Vec<(MPlaceTy<'tcx>, String)>,
) -> EvalResult<'tcx> {
self.memory.dump_alloc(dest.to_ptr()?.alloc_id);
trace!("validate_mplace: {:?}, {:#?}", *dest, dest.layout);
// Find the right variant
let (variant, dest) = match dest.layout.variants {
layout::Variants::NicheFilling { niche: ref tag, .. } |
layout::Variants::Tagged { ref tag, .. } => {
let size = tag.value.size(self);
// we first read the tag value as scalar, to be able to validate it
let tag_mplace = self.mplace_field(dest, 0)?;
let tag_value = self.read_scalar(tag_mplace.into())?;
let path = format!("{}.TAG", path);
self.validate_scalar(
tag_value, size, tag, &path, tag_mplace.layout.ty
)?;
// then we read it again to get the index, to continue
let variant = self.read_discriminant_as_variant_index(dest.into())?;
let dest = self.mplace_downcast(dest, variant)?;
trace!("variant layout: {:#?}", dest.layout);
(variant, dest)
},
layout::Variants::Single { index } => {
(index, dest)
}
};
// Validate all fields
match dest.layout.fields {
// primitives are unions with zero fields
layout::FieldPlacement::Union(0) => {
match dest.layout.abi {
// nothing to do, whatever the pointer points to, it is never going to be read
layout::Abi::Uninhabited => validation_failure!("a value of an uninhabited type", path),
// check that the scalar is a valid pointer or that its bit range matches the
// expectation.
layout::Abi::Scalar(ref scalar_layout) => {
let size = scalar_layout.value.size(self);
let value = self.read_value(dest.into())?;
let scalar = value.to_scalar_or_undef();
self.validate_scalar(scalar, size, scalar_layout, &path, dest.layout.ty)?;
if scalar_layout.value == Primitive::Pointer {
// ignore integer pointers, we can't reason about the final hardware
if let Scalar::Ptr(ptr) = scalar.not_undef()? {
let alloc_kind = self.tcx.alloc_map.lock().get(ptr.alloc_id);
if let Some(AllocType::Static(did)) = alloc_kind {
// statics from other crates are already checked
// extern statics should not be validated as they have no body
if !did.is_local() || self.tcx.is_foreign_item(did) {
return Ok(());
}
}
if value.layout.ty.builtin_deref(false).is_some() {
trace!("Recursing below ptr {:#?}", value);
let ptr_place = self.ref_to_mplace(value)?;
// we have not encountered this pointer+layout combination before
if seen.insert(ptr_place) {
todo.push((ptr_place, format!("(*{})", path)))
}
}
}
}
Ok(())
},
_ => bug!("bad abi for FieldPlacement::Union(0): {:#?}", dest.layout.abi),
}
}
layout::FieldPlacement::Union(_) => {
// We can't check unions, their bits are allowed to be anything.
// The fields don't need to correspond to any bit pattern of the union's fields.
// See https://github.com/rust-lang/rust/issues/32836#issuecomment-406875389
Ok(())
},
layout::FieldPlacement::Array { count, .. } => {
for i in 0..count {
let mut path = path.clone();
self.dump_field_name(&mut path, dest.layout.ty, i as usize, variant).unwrap();
let field = self.mplace_field(dest, i)?;
self.validate_mplace(field, path, seen, todo)?;
}
Ok(())
},
layout::FieldPlacement::Arbitrary { ref offsets, .. } => {
// fat pointers need special treatment
match dest.layout.ty.builtin_deref(false).map(|tam| &tam.ty.sty) {
| Some(ty::TyStr)
| Some(ty::TySlice(_)) => {
// check the length (for nicer error messages)
let len_mplace = self.mplace_field(dest, 1)?;
let len = self.read_scalar(len_mplace.into())?;
let len = match len.to_bits(len_mplace.layout.size) {
Err(_) => return validation_failure!("length is not a valid integer", path),
Ok(len) => len as u64,
};
// get the fat ptr, and recursively check it
let ptr = self.ref_to_mplace(self.read_value(dest.into())?)?;
assert_eq!(ptr.extra, PlaceExtra::Length(len));
let unpacked_ptr = self.unpack_unsized_mplace(ptr)?;
if seen.insert(unpacked_ptr) {
let mut path = path.clone();
self.dump_field_name(&mut path, dest.layout.ty, 0, 0).unwrap();
todo.push((unpacked_ptr, path))
}
},
Some(ty::TyDynamic(..)) => {
// check the vtable (for nicer error messages)
let vtable = self.read_scalar(self.mplace_field(dest, 1)?.into())?;
let vtable = match vtable.to_ptr() {
Err(_) => return validation_failure!("vtable address is not a pointer", path),
Ok(vtable) => vtable,
};
// get the fat ptr, and recursively check it
let ptr = self.ref_to_mplace(self.read_value(dest.into())?)?;
assert_eq!(ptr.extra, PlaceExtra::Vtable(vtable));
let unpacked_ptr = self.unpack_unsized_mplace(ptr)?;
if seen.insert(unpacked_ptr) {
let mut path = path.clone();
self.dump_field_name(&mut path, dest.layout.ty, 0, 0).unwrap();
todo.push((unpacked_ptr, path))
}
// FIXME: More checks for the vtable... making sure it is exactly
// the one one would expect for this type.
},
Some(ty) =>
bug!("Unexpected fat pointer target type {:?}", ty),
None => {
// Not a pointer, perform regular aggregate handling below
for i in 0..offsets.len() {
let mut path = path.clone();
self.dump_field_name(&mut path, dest.layout.ty, i, variant).unwrap();
let field = self.mplace_field(dest, i as u64)?;
self.validate_mplace(field, path, seen, todo)?;
}
// FIXME: For a TyStr, check that this is valid UTF-8.
},
}
Ok(())
}
}
}
#[inline(always)] #[inline(always)]
pub fn frame(&self) -> &Frame<'mir, 'tcx> { pub fn frame(&self) -> &Frame<'mir, 'tcx> {
self.stack.last().expect("no call frames exist") self.stack.last().expect("no call frames exist")
@ -1041,72 +779,5 @@ impl<'a, 'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M
pub fn truncate(&self, value: u128, ty: TyLayout<'_>) -> u128 { pub fn truncate(&self, value: u128, ty: TyLayout<'_>) -> u128 {
truncate(value, ty.size) truncate(value, ty.size)
} }
fn dump_field_name(&self, s: &mut String, ty: Ty<'tcx>, i: usize, variant: usize) -> ::std::fmt::Result {
match ty.sty {
ty::TyBool |
ty::TyChar |
ty::TyInt(_) |
ty::TyUint(_) |
ty::TyFloat(_) |
ty::TyFnPtr(_) |
ty::TyNever |
ty::TyFnDef(..) |
ty::TyGeneratorWitness(..) |
ty::TyForeign(..) |
ty::TyDynamic(..) => {
bug!("field_name({:?}): not applicable", ty)
}
// Potentially-fat pointers.
ty::TyRef(_, pointee, _) |
ty::TyRawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
assert!(i < 2);
// Reuse the fat *T type as its own thin pointer data field.
// This provides information about e.g. DST struct pointees
// (which may have no non-DST form), and will work as long
// as the `Abi` or `FieldPlacement` is checked by users.
if i == 0 {
return write!(s, ".data_ptr");
}
match self.tcx.struct_tail(pointee).sty {
ty::TySlice(_) |
ty::TyStr => write!(s, ".len"),
ty::TyDynamic(..) => write!(s, ".vtable_ptr"),
_ => bug!("field_name({:?}): not applicable", ty)
}
}
// Arrays and slices.
ty::TyArray(_, _) |
ty::TySlice(_) |
ty::TyStr => write!(s, "[{}]", i),
// generators and closures.
ty::TyClosure(def_id, _) | ty::TyGenerator(def_id, _, _) => {
let node_id = self.tcx.hir.as_local_node_id(def_id).unwrap();
let freevar = self.tcx.with_freevars(node_id, |fv| fv[i]);
write!(s, ".upvar({})", self.tcx.hir.name(freevar.var_id()))
}
ty::TyTuple(_) => write!(s, ".{}", i),
// enums
ty::TyAdt(def, ..) if def.is_enum() => {
let variant = &def.variants[variant];
write!(s, ".{}::{}", variant.name, variant.fields[i].ident)
}
// other ADTs.
ty::TyAdt(def, _) => write!(s, ".{}", def.non_enum_variant().fields[i].ident),
ty::TyProjection(_) | ty::TyAnon(..) | ty::TyParam(_) |
ty::TyInfer(_) | ty::TyError => {
bug!("dump_field_name: unexpected type `{}`", ty)
}
}
}
} }

View File

@ -11,6 +11,7 @@ mod step;
mod terminator; mod terminator;
mod traits; mod traits;
mod const_eval; mod const_eval;
mod validity;
pub use self::eval_context::{ pub use self::eval_context::{
EvalContext, Frame, StackPopCleanup, LocalValue, EvalContext, Frame, StackPopCleanup, LocalValue,

View File

@ -0,0 +1,343 @@
use std::fmt::Write;
use rustc::ty::layout::{self, Size, Primitive};
use rustc::ty::{self, Ty};
use rustc_data_structures::fx::FxHashSet;
use rustc::mir::interpret::{
Scalar, AllocType, EvalResult, ScalarMaybeUndef,
};
use super::{
MPlaceTy, PlaceExtra, Machine, EvalContext
};
macro_rules! validation_failure{
($what:expr, $where:expr, $details:expr) => {{
let where_ = if $where.is_empty() {
String::new()
} else {
format!(" at {}", $where)
};
err!(ValidationFailure(format!(
"encountered {}{}, but expected {}",
$what, where_, $details,
)))
}};
($what:expr, $where:expr) => {{
let where_ = if $where.is_empty() {
String::new()
} else {
format!(" at {}", $where)
};
err!(ValidationFailure(format!(
"encountered {}{}",
$what, where_,
)))
}};
}
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M> {
fn validate_scalar(
&self,
value: ScalarMaybeUndef,
size: Size,
scalar: &layout::Scalar,
path: &str,
ty: Ty,
) -> EvalResult<'tcx> {
trace!("validate scalar: {:#?}, {:#?}, {:#?}, {}", value, size, scalar, ty);
let (lo, hi) = scalar.valid_range.clone().into_inner();
let value = match value {
ScalarMaybeUndef::Scalar(scalar) => scalar,
ScalarMaybeUndef::Undef => return validation_failure!("undefined bytes", path),
};
let bits = match value {
Scalar::Bits { bits, size: value_size } => {
assert_eq!(value_size as u64, size.bytes());
bits
},
Scalar::Ptr(_) => {
let ptr_size = self.memory.pointer_size();
let ptr_max = u128::max_value() >> (128 - ptr_size.bits());
return if lo > hi {
if lo - hi == 1 {
// no gap, all values are ok
Ok(())
} else if hi < ptr_max || lo > 1 {
let max = u128::max_value() >> (128 - size.bits());
validation_failure!(
"pointer",
path,
format!("something in the range {:?} or {:?}", 0..=lo, hi..=max)
)
} else {
Ok(())
}
} else if hi < ptr_max || lo > 1 {
validation_failure!(
"pointer",
path,
format!("something in the range {:?}", scalar.valid_range)
)
} else {
Ok(())
};
},
};
// char gets a special treatment, because its number space is not contiguous so `TyLayout`
// has no special checks for chars
match ty.sty {
ty::TyChar => {
debug_assert_eq!(size.bytes(), 4);
if ::std::char::from_u32(bits as u32).is_none() {
return err!(InvalidChar(bits));
}
}
_ => {},
}
use std::ops::RangeInclusive;
let in_range = |bound: RangeInclusive<u128>| bound.contains(&bits);
if lo > hi {
if in_range(0..=hi) || in_range(lo..=u128::max_value()) {
Ok(())
} else {
validation_failure!(
bits,
path,
format!("something in the range {:?} or {:?}", ..=hi, lo..)
)
}
} else {
if in_range(scalar.valid_range.clone()) {
Ok(())
} else {
validation_failure!(
bits,
path,
format!("something in the range {:?}", scalar.valid_range)
)
}
}
}
/// This function checks the memory where `ptr` points to.
/// It will error if the bits at the destination do not match the ones described by the layout.
pub fn validate_mplace(
&self,
dest: MPlaceTy<'tcx>,
path: String,
seen: &mut FxHashSet<(MPlaceTy<'tcx>)>,
todo: &mut Vec<(MPlaceTy<'tcx>, String)>,
) -> EvalResult<'tcx> {
self.memory.dump_alloc(dest.to_ptr()?.alloc_id);
trace!("validate_mplace: {:?}, {:#?}", *dest, dest.layout);
// Find the right variant
let (variant, dest) = match dest.layout.variants {
layout::Variants::NicheFilling { niche: ref tag, .. } |
layout::Variants::Tagged { ref tag, .. } => {
let size = tag.value.size(self);
// we first read the tag value as scalar, to be able to validate it
let tag_mplace = self.mplace_field(dest, 0)?;
let tag_value = self.read_scalar(tag_mplace.into())?;
let path = format!("{}.TAG", path);
self.validate_scalar(
tag_value, size, tag, &path, tag_mplace.layout.ty
)?;
// then we read it again to get the index, to continue
let variant = self.read_discriminant_as_variant_index(dest.into())?;
let dest = self.mplace_downcast(dest, variant)?;
trace!("variant layout: {:#?}", dest.layout);
(variant, dest)
},
layout::Variants::Single { index } => {
(index, dest)
}
};
// Validate all fields
match dest.layout.fields {
// primitives are unions with zero fields
layout::FieldPlacement::Union(0) => {
match dest.layout.abi {
// nothing to do, whatever the pointer points to, it is never going to be read
layout::Abi::Uninhabited => validation_failure!("a value of an uninhabited type", path),
// check that the scalar is a valid pointer or that its bit range matches the
// expectation.
layout::Abi::Scalar(ref scalar_layout) => {
let size = scalar_layout.value.size(self);
let value = self.read_value(dest.into())?;
let scalar = value.to_scalar_or_undef();
self.validate_scalar(scalar, size, scalar_layout, &path, dest.layout.ty)?;
if scalar_layout.value == Primitive::Pointer {
// ignore integer pointers, we can't reason about the final hardware
if let Scalar::Ptr(ptr) = scalar.not_undef()? {
let alloc_kind = self.tcx.alloc_map.lock().get(ptr.alloc_id);
if let Some(AllocType::Static(did)) = alloc_kind {
// statics from other crates are already checked
// extern statics should not be validated as they have no body
if !did.is_local() || self.tcx.is_foreign_item(did) {
return Ok(());
}
}
if value.layout.ty.builtin_deref(false).is_some() {
trace!("Recursing below ptr {:#?}", value);
let ptr_place = self.ref_to_mplace(value)?;
// we have not encountered this pointer+layout combination before
if seen.insert(ptr_place) {
todo.push((ptr_place, format!("(*{})", path)))
}
}
}
}
Ok(())
},
_ => bug!("bad abi for FieldPlacement::Union(0): {:#?}", dest.layout.abi),
}
}
layout::FieldPlacement::Union(_) => {
// We can't check unions, their bits are allowed to be anything.
// The fields don't need to correspond to any bit pattern of the union's fields.
// See https://github.com/rust-lang/rust/issues/32836#issuecomment-406875389
Ok(())
},
layout::FieldPlacement::Array { count, .. } => {
for i in 0..count {
let mut path = path.clone();
self.dump_field_name(&mut path, dest.layout.ty, i as usize, variant).unwrap();
let field = self.mplace_field(dest, i)?;
self.validate_mplace(field, path, seen, todo)?;
}
Ok(())
},
layout::FieldPlacement::Arbitrary { ref offsets, .. } => {
// fat pointers need special treatment
match dest.layout.ty.builtin_deref(false).map(|tam| &tam.ty.sty) {
| Some(ty::TyStr)
| Some(ty::TySlice(_)) => {
// check the length (for nicer error messages)
let len_mplace = self.mplace_field(dest, 1)?;
let len = self.read_scalar(len_mplace.into())?;
let len = match len.to_bits(len_mplace.layout.size) {
Err(_) => return validation_failure!("length is not a valid integer", path),
Ok(len) => len as u64,
};
// get the fat ptr, and recursively check it
let ptr = self.ref_to_mplace(self.read_value(dest.into())?)?;
assert_eq!(ptr.extra, PlaceExtra::Length(len));
let unpacked_ptr = self.unpack_unsized_mplace(ptr)?;
if seen.insert(unpacked_ptr) {
let mut path = path.clone();
self.dump_field_name(&mut path, dest.layout.ty, 0, 0).unwrap();
todo.push((unpacked_ptr, path))
}
},
Some(ty::TyDynamic(..)) => {
// check the vtable (for nicer error messages)
let vtable = self.read_scalar(self.mplace_field(dest, 1)?.into())?;
let vtable = match vtable.to_ptr() {
Err(_) => return validation_failure!("vtable address is not a pointer", path),
Ok(vtable) => vtable,
};
// get the fat ptr, and recursively check it
let ptr = self.ref_to_mplace(self.read_value(dest.into())?)?;
assert_eq!(ptr.extra, PlaceExtra::Vtable(vtable));
let unpacked_ptr = self.unpack_unsized_mplace(ptr)?;
if seen.insert(unpacked_ptr) {
let mut path = path.clone();
self.dump_field_name(&mut path, dest.layout.ty, 0, 0).unwrap();
todo.push((unpacked_ptr, path))
}
// FIXME: More checks for the vtable... making sure it is exactly
// the one one would expect for this type.
},
Some(ty) =>
bug!("Unexpected fat pointer target type {:?}", ty),
None => {
// Not a pointer, perform regular aggregate handling below
for i in 0..offsets.len() {
let mut path = path.clone();
self.dump_field_name(&mut path, dest.layout.ty, i, variant).unwrap();
let field = self.mplace_field(dest, i as u64)?;
self.validate_mplace(field, path, seen, todo)?;
}
// FIXME: For a TyStr, check that this is valid UTF-8.
},
}
Ok(())
}
}
}
fn dump_field_name(&self, s: &mut String, ty: Ty<'tcx>, i: usize, variant: usize) -> ::std::fmt::Result {
match ty.sty {
ty::TyBool |
ty::TyChar |
ty::TyInt(_) |
ty::TyUint(_) |
ty::TyFloat(_) |
ty::TyFnPtr(_) |
ty::TyNever |
ty::TyFnDef(..) |
ty::TyGeneratorWitness(..) |
ty::TyForeign(..) |
ty::TyDynamic(..) => {
bug!("field_name({:?}): not applicable", ty)
}
// Potentially-fat pointers.
ty::TyRef(_, pointee, _) |
ty::TyRawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
assert!(i < 2);
// Reuse the fat *T type as its own thin pointer data field.
// This provides information about e.g. DST struct pointees
// (which may have no non-DST form), and will work as long
// as the `Abi` or `FieldPlacement` is checked by users.
if i == 0 {
return write!(s, ".data_ptr");
}
match self.tcx.struct_tail(pointee).sty {
ty::TySlice(_) |
ty::TyStr => write!(s, ".len"),
ty::TyDynamic(..) => write!(s, ".vtable_ptr"),
_ => bug!("field_name({:?}): not applicable", ty)
}
}
// Arrays and slices.
ty::TyArray(_, _) |
ty::TySlice(_) |
ty::TyStr => write!(s, "[{}]", i),
// generators and closures.
ty::TyClosure(def_id, _) | ty::TyGenerator(def_id, _, _) => {
let node_id = self.tcx.hir.as_local_node_id(def_id).unwrap();
let freevar = self.tcx.with_freevars(node_id, |fv| fv[i]);
write!(s, ".upvar({})", self.tcx.hir.name(freevar.var_id()))
}
ty::TyTuple(_) => write!(s, ".{}", i),
// enums
ty::TyAdt(def, ..) if def.is_enum() => {
let variant = &def.variants[variant];
write!(s, ".{}::{}", variant.name, variant.fields[i].ident)
}
// other ADTs.
ty::TyAdt(def, _) => write!(s, ".{}", def.non_enum_variant().fields[i].ident),
ty::TyProjection(_) | ty::TyAnon(..) | ty::TyParam(_) |
ty::TyInfer(_) | ty::TyError => {
bug!("dump_field_name: unexpected type `{}`", ty)
}
}
}
}